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Abstract

This thesis studies the evolution of the natural gas markets in Europe, until 2035, using op-
timization theory tools. The model we develop, named GaMMES, is based on an oligopolistic
description of the markets. Its main advantages are the following : we consider an important le-
vel of detail in the economic structure of the gas chain and we endogenously take into account
long-term contracts in the upstream as well as energy substitution between gas, oil, and coal in
the demand.

In the first part of this thesis, we study the issue of security of supply in Europe and the
conditions under which it is necessary to regulate the gas markets that are strongly dependent on
foreign imports. Three case studies are then presented, regarding the level of dependence and the
markets’ specificities : the German gas trade of the 1980s and the current Spanish and Bulgarian
markets. We study in particular the evolution of the markets’ outcome as a function of the supply
disruption probability and the kind of regulation to implement in order to maximize the social
welfare.

In the second part, we develop a system dynamics model in order to capture fuel substitution
between oil, coal, and natural gas. Our approach allows one to calculate a new functional form of
the demand function for natural gas that contains energy substitution and consumption inertia
effects due to end-users’ investments.

In the third part, we take advantage of our demand function and use it in a partial equilibrium
model of natural gas markets in Europe. The GaMMES model, when written as a complementa-
rity problem, describes the principal gas chain actors as well as their strategic interactions and
market power. It was applied to the northwestern European gas trade to analyze the evolution
of consumption, spot and long-term contract prices and volumes, production, and natural gas
dependence, until 2035.

In the last part, we present a stochastic extension of the GaMMES model in order to study the
impact of the strong Brent price fluctuation on the gas markets. An econometric analysis allowed
us to calculate the probability law of the oil price, when taken as a random variable, in order to
construct the scenario tree and estimate its weights. Our results show how uncertainty changes
the strategic behavior, in particular for the long-term contracting activity. Finally, the value of
the stochastic solution is calculated to quantify the importance of taking into account randomness
in the optimization programs of the gas chain actors.
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Résumé

Cette thèse étudie l’évolution des marchés du gaz naturel en Europe jusqu’en 2035 en utilisant
les outils de la modélisation. Le modèle proposé, intitulé GaMMES, repose sur une description
oligopolistique des marchés. Ses principaux avantages sont les suivants : un niveau de détail impor-
tant de la structure économique de la chaîne gazière et une prise en compte endogène des contrats
de long-terme en amont ainsi que de la substitution avec les produits pétroliers et le charbon, au
niveau de la demande.

Dans un premier temps, nous étudions la question de la sécurité d’approvisionnement en gaz
en Europe et les conditions favorables à la régulation des marchés vulnérables au risque de rupture
d’approvisionnement, notamment de la part de la Russie. Trois études de cas sont proposées selon
le degré de dépendance et la nature de la régulation en place : le marché allemand des années 1980
et les marchés actuels de la Bulgarie et de l’Espagne. Nous étudions en particulier l’évolution des
caractéristiques des marchés en fonction du risque de rupture et le type de régulation à mettre en
place afin d’assurer l’optimalité du bien-être social.

Ensuite, nous proposons un modèle de type systèmes dynamiques afin de prendre en compte
la substitution énergétique entre le charbon, le pétrole et le gaz naturel. Notre approche permet
d’estimer une nouvelle forme fonctionnelle de la fonction de demande pour le gaz naturel, qui
englobe à la fois la substitution énergétique et les inerties de consommation dues aux investisse-
ments des usagers finaux.

Dans un troisième temps, nous utilisons cette fonction de demande dans un modèle d’équi-
libre partiel des marchés du gaz naturel en Europe. Le modèle GaMMES, écrit sous forme de
problème de complémentarité, représente les principaux acteurs de l’industrie du gaz naturel en
considérant leurs interactions stratégiques et les pouvoirs de marchés. Il a été appliqué au marché
du gaz naturel dans la zone nord-ouest de l’Europe afin d’étudier l’évolution, jusqu’en 2035, de la
consommation, des prix spot, des prix et volumes long-terme, de la production et de la dépendance
par rapport aux imports étrangers.

Finalement, nous proposons une extension stochastique du modèle GaMMES afin d’analyser
l’impact de la forte fluctuation du prix du Brent sur les marchés gaziers. Une étude économétrique
a été menée afin de calculer la loi de probabilité du prix du pétrole, lorsqu’il est modélisé en tant
que variable aléatoire, dans le but de construire et pondérer l’arbre des scénarii. Les résultats
permettent de comprendre comment l’aléa modifie les comportements stratégiques des acteurs,
notamment au niveau des contrats de long-terme. Enfin, la valeur de la solution stochastique est
calculée afin de quantifier l’importance de la prise en compte des fluctuations du prix du pétrole
pour chaque acteur de la chaîne.
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Introduction

§ 0.1 La consommation énergétique

Il est aisé de constater que notre société devient de plus en plus dépendante de l’énergie. Pour
s’en convaincre, il suffit d’énumérer quelques secteurs et activités où elle est devenue indispen-
sable : que ce soit pour le transport, le chauffage, l’éclairage ou les communications, l’énergie est
devenue nécessaire à nos modes de vie contemporains. Plus particulièrement, depuis le début de
l’ère industrielle, les énergies fossiles, extraites du sol terrestre, prennent une place très importante
dans notre consommation puisqu’elle ont représenté, durant plusieurs décennies, la majorité de
l’énergie que nous utilisons 1. Cette énergie fossile est issue de la matière organique que la terre met
quelques milliards d’années à produire à des profondeurs assurant des conditions de température
et de pression favorables à sa formation. Cette énergie se trouve principalement sous trois formes
qui coïncident avec les trois états de la matière : le pétrole (liquide), le gaz naturel (gazeux) et
le charbon (solide). La matière fossile a très rapidement été exploitée à grande échelle car son
utilisation est simple, pratique et, à certains égards, peu coûteuse par rapport aux autres sources
d’énergie.

Etant donné la durée de fabrication naturelle de la matière fossile, force est de constater que
son utilisation a été d’une rapidité sidérante. En 2005, entre 45 et 70% des réserves mondiales de
pétrole ont été consommées (BP Statistical Review 2010). Ainsi, dans un monde qui doit faire face
à une situation alarmante de ressource épuisable, se tourne-t-on vers des énergies renouvelables
telles que l’énergie solaire et l’énergie éolienne. En outre, les problèmes environnementaux, dont
on commence à appréhender l’importance, nous poussent à limiter l’impact de nos activités sur la
planète, notamment en réduisant nos emissions de gaz à effet de serre. A cet effet, le gaz naturel
peut apporter une solution transitoire entre notre mode de consommation actuel, fondé sur la
matière fossile et un mode d’usage "décarboné". En effet, des trois énergies fossiles, le gaz naturel
est celle qui libère le moins de dioxyde de carbone et de polluants (tels que les NOx et les SOx) et
est par conséquent souvent considérée comme comparativement moins polluante. 2 En outre, les
réserves prouvées de gaz naturel sont plus importantes que celles du pétrole. Cependant, il paraît

1. Cette remarque s’applique surtout pour les pays développés puisque pour ceux en voie de développement, la
biomasse continue de prendre une part majoritaire de la consommation énergétique.

2. Toutefois, le gaz naturel emet de fortes quantités de méthane, un puissant gaz à effet de serre.

3
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important de ne pas reporter notre dépendance énergétique au gaz naturel qui, ne l’oublions pas,
est une ressource épuisable, mais plutôt de l’utiliser comme un appui provisoire des approvision-
nements renouvelables. Ainsi, selon un rapport de l’AIE (WEO 2011), un usage important du
gaz naturel en remplacement des autres sources ne permettrait pas réduire significativement la
concentration de dioxyde de carbone dans l’atmosphère.

Les scénarii d’évolution de la croissance économique et de notre consommation énergétique
prévoient une hausse continue dans les décennies à venir. Cela est principalement dû à une sorte
d’inertie de consommation, inhérente aux usages actuels de l’énergie. En outre, l’augmentation
démographique de la planète induira indubitablement une augmentation de la consommation de
l’énergie. 3 Ainsi, la croissance économique et démographique des pays en voie de développement
(Chine, Inde, etc.) constitue un moteur important de la demande énergétique mondiale. Selon
l’Agence Internationale de l’Energie (rapport IEA 2008), la consommation d’énergie primaire
augmentera de plus de 40% entre 2008 et 2030. Ce phénomène s’accompagnera donc d’une aug-
mentation de l’exploitation et de la consommation du gaz naturel dans le monde. La figure 1
donne l’évolution de la consommation mondiale de gaz naturel entre 1990 et 2011, ainsi qu’une
prévision d’évolution de la consommation jusqu’en 2030 (BP Statistical Review 2011).
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Figure 1 – Evolution de la consommation mondiale de gaz naturel.

3. Cet argument est valable même si l’on améliore l’efficacité énergétique au niveau mondiale, ce qui aurait pour
effet de réduire la consommation par tête.
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Cette courbe indique ainsi que le gaz naturel jouera un rôle de plus en plus important dans
notre consommation, avec un taux de croissance estimé de 52% entre 2010 et 2030. Cependant,
il serait plus judicieux de comparer les tendances d’évolution de l’utilisation des trois matières
fossiles, afin de quantifier l’essor à venir du gaz naturel dans le mix énergétique mondial. La figure
2 montre les tendances de croissance des énergies fossiles entre 1990 et 2030 (BP Statistical Review
2011).
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Figure 2 – Evolution de la consommation primaire mondiale d’énergie fossile.

Le tableau suivant fournit les taux d’évolution par an de la consommation des trois énergies :

Combustible taux annuel de croissance de la consommation primaire (en %)
Pétrole 0, 85

Gaz naturel 2, 13

Charbon 1, 17

On constate donc que les prévisions estiment que le gaz naturel aura le plus fort taux de
croissance entre aujourd’hui et 2030 et sa consommation atteindra celle du charbon à partir de
cette année. Par ailleurs, la catastrophe nucléaire qui a touché le Japon en mars 2011 et qui a
conduit certains pays européens à annoncer l’abandon progressif de leur programme d’utilisation
de l’énergie nucléaire devrait exacerber encore plus l’attractivité du gaz naturel. 4 Par conséquent,
étant donné la forte croissance à venir de l’exploitation du gaz naturel dans le monde, son moindre

4. A cet effet, l’Allemagne a commencé à renégocier ses contrats d’importations de gaz russe.
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impact sur l’environnement et la richesse et complexité de l’économie gazière, il nous est apparu
intéressant d’étudier la problématique d’évolution des marchés gaziers dans les prochaines décen-
nies.

§ 0.2 Economie et géopolitique du gaz naturel

0.2.1 L’essor des marchés gaziers

La libéralisation des marchés du gaz naturel en Europe a débuté en 1999, en application
des directives européennes de 1996 et 1998. Initialement, cette ouverture ne concernait que les
consommateurs professionnels (ou les gros consommateurs). La directive européenne de juin 2003
l’a étendue à l’ensemble des acteurs du marché, en incluant les consommateurs particuliers. Cette
dernière directive est entrée en application le premier juillet 2007 et marque ainsi, la date symbo-
lique de la libéralisation complète du marché européen du gaz naturel.

Depuis la libéralisation des marchés de l’énergie en Europe, les échanges de gaz naturel n’ont
cessé de croître, favorisant ainsi l’emergence d’un marché européen connexe. L’apparition de nou-
veaux acteurs a permis un développement important des échanges de gaz naturel au niveau des
principaux hubs européens. Aussi, la réduction des zones d’équilibrage a favorisé les échanges entre
zones et la régulation de l’accès aux capacités de transport. A l’instar de ce qui s’est produit dans
le monde, un marché européen du gaz naturel s’est développé depuis quelques années, entraînant
une diversification des sources d’approvisionnement et des zones de consommation, ainsi qu’un
développement d’une infrastructure de transport et de stockage.

Plus généralement, le facteur principal qui a conduit à la création et au développement des
échanges mondiaux de gaz naturel est l’essor du Gaz Naturel Liquéfié (GNL). Ainsi, jusqu’au
début des années 1990, l’économie gazière était dominée par des échanges entre zones de produc-
tion/consommation dont le fonctionnement était fondé sur des relations bilatérales entre états.
L’infrastructure de transport était principalement constituée de gazoducs (ou pipelines), tuyaux
assurant le déplacement du gaz grâce à un différentiel de pressions. A titre d’exemple, la Rus-
sie exerçait (et continue d’exercer) sur l’Europe un pouvoir de marché conséquent, mû par une
abondance des réserves russes et une proximité géographique. Les terminaux de liquéfaction et
de regazification ont commencé à être exploités commercialement depuis 1964, le transport étant
assuré par des bateaux que l’on nomme méthaniers. Les premiers échanges commerciaux ont été
réalisés entre l’Algérie (le premier terminal de liquéfaction à des fins commerciales a été construit
à Arzew, Algérie en 1964) et l’Europe (Grande-Bretagne). A une échelle plus large, les échanges
de GNL sont restés, durant plusieurs décennies, confinés aux régions de consommation n’ayant
pas d’approvisionnements alternatifs par gazoducs (Japon, Corée du Sud, etc.). Cela est dû au
coût d’exploitation du GNL qui est relativement élevé par rapport à un transport par pipeline
(surtout au niveau de l’investissement puisqu’il nécessite la construction de terminaux de liquéfac-
tion et de regazification). Cependant, la déplétion des réserves dans les régions traditionnelles de
production et l’apparition des problèmes de sécurité d’approvisionnement ont créé les conditions
de l’emergence d’un marché mondial du gaz naturel, à partir des années 2000.
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La figure 3 donne des prévisions de l’évolution des échanges gaziers dans le monde (IEA 2008).
L’unité de volume est le Bcm (milliard de mètres cubes).
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Figure 3 – Evolution des échanges gaziers dans le monde.

Ainsi, selon l’AIE, les échanges en gaz naturel vont croître de 110% entre 2010 et 2030. 5 Bien
entendu, ce taux doit être comparé à celui relatif à l’évolution de la consommation sur la même
période : 52%. Ce résultat suggère par conséquent que le marché mondial du gaz naturel va progres-
sivement gagner en importance, mû par une demande croissante. Toutefois, puisque la ressource
est épuisable, ce développement ne se fera pas sans dangers. Le plus important concerne la sécurité
d’approvisionnement, surtout au sein d’une Europe fortement dépendante des approvisionnements
étrangers à cause de la baisse de sa propre production. L’émergence de nouveaux producteurs,
en particulier ceux exploitant le GNL et les gaz non-conventionnels, changera probablement la
donne énergétique et les pouvoirs de marchés des producteurs usuels. Ainsi, l’exploitation récente
du gaz de schiste aux Etats-Unis a modifié la tendance des prix de consommation et a rendu ce
pays exportateur net de gaz naturel.

5. La croissance des échanges par GNL sera de 180% et celle des échanges par pipeline de 50%.
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§ 0.3 Pouvoirs de marché et sécurité d’approvisionnement

Depuis l’exploitation du gaz naturel à des fins commerciales en Europe, son économie a souvent
été caractérisée par l’exercice de pouvoirs de marché au niveau de l’approvisionnement. Cela est
principalement dû à deux raisons : la concentration de la production et les monopoles historiques.

La répartition des réserves

Les réserves prouvées de gaz naturel sont réparties de manière très hétérogène dans le monde,
comme le montre la figure 4 (BP Statistical Review 2011).
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Figure 4 – Répartition des réserves prouvées de gaz naturel dans le monde.

La figure 4 montre que dix pays contiennent 75% des réserves mondiales de gaz naturel : la
Russie, l’Iran, le Qatar, le Turkménistan, l’Arabie Séoudite, les Etats-Unis, les Emirats Arabes
Unis, le Nigeria, le Venezuela et l’Algérie. En Europe, la situation est plus critique : les réserves
atteignent seulement 2250 Bcm, soit seulement cinq fois la consommation de l’année 2010. Ainsi,
l’amont de la chaîne gazière est caractérisé par le faible nombre de producteurs. Par conséquent,
ces producteurs ont intérêt à exercer un pouvoir de marché. En économie, l’exercice d’un pouvoir
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de marché signifie que certains acteurs, ici les producteurs, connaissent a priori la fonction de ré-
action des consommateurs à leurs décisions. Plus simplement, un producteur possède un pouvoir
de marché s’il connaît la fonction de demande des consommateurs et l’intègre dans son programme
d’optimisation afin de gérer sa production (entre autres paramètres). Ainsi, un producteur aurait
un certain intérêt à réduire sa production afin de faire monter les prix, ce qui serait dommageable
pour le consommateur.

Plusieurs études économiques (le plus souvent fondées sur la modélisation) ont confirmé ce
constat : il existe effectivement un exercice de pouvoir de marché en Europe, en amont de la
chaîne gazière (Holz et al., 2008).

Fonctionnement des marchés gaziers et monopoles historiques européens

La gestion de l’approvisionnement en gaz naturel en Europe a longtemps été assurée, au ni-
veau de plusieurs pays, par des compagnies publiques régulées. A l’instar des activités de GDF
(actuellement GDF SUEZ) ou Total en France et Ruhrgas (actuellement E.ON Ruhrgas) en Al-
lemagne, la production locale, l’approvisionnement auprès des producteurs, le transport ainsi que
la distribution du gaz naturel ont longtemps été assurés par des sociétés publiques, souvent en
situation monopolistique dans leur pays. Depuis la libéralisation des marchés de l’énergie (qui a
commencé en Grande-Bretagne dans les années 1990), les pouvoirs publics ont voulu introduire
plus de concurrence dans les marchés, en particulier ceux du gaz naturel, afin d’améliorer le bien-
être du consommateur. On s’attendait ainsi à converger progressivement vers une situation de
fluidité des échanges et de concurrence accrue en aval de la chaîne, niveau reliant les firmes locales
aux consommateurs. Ainsi, depuis l’ouverture des marchés à la concurrence (directive de 2003),
n’importe quel fournisseur de gaz naturel est potentiellement susceptible de pénétrer n’importe
quel marché de consommation, sans barrières à l’entrée. Toutefois, ce genre de pratiques se sont
peu développées en Europe pour des raisons qui tiennent au fonctionnement des marchés du gaz
naturel.

Actuellement, l’approvisionnement européen en gaz se fait principalement hors d’Europe. Les
plus grands fournisseurs de gaz naturel sont (par ordre décroissant de quantité fournie) : la Rus-
sie, la Norvège, l’Algérie, les Pays-Bas et la Grande-Bretagne. Le mode historique, antérieur à
la libéralisation, de fourniture est le suivant : une firme (ou pays) productrice de gaz naturel
contracte sur le long-terme avec la firme locale (que nous appelerons "trader") s’occupant d’as-
surer l’approvisionnement dans son pays de consommation. Les traders, tels que GDF SUEZ ou
Total, assurent aussi la production locale en gaz naturel (qui est parfois négligeable par rapport
aux importations). Les contrats long-terme fonctionnent de la manière suivante : le producteur
et le trader contractent sur un volume, un prix de vente/achat et une durée de validité (géné-
ralement une dizaine d’années). Le volume doit être échangé dans la mesure où si le trader ne
désire pas acquérir le gaz naturel, il devra tout de même le payer. Cette particularité du contrat
se nomme le Take-Or-Pay (TOP). Elle permet au producteur de couvrir ses risques d’investisse-
ments en production et en infrastructure de transport en lui assurant une vente minimale pour
son gaz. Parallèlement, le contrat long-terme (qui sera appelé LTC dans cette thèse, pour Long-
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Term Contract), assure au trader un approvisionnement sûr, ce qui lui permettra de répondre
à la demande des consommateurs. Bien entendu, ces contrats contiennent aussi des clauses de
flexibilité qui permettent au trader de prendre une part légèrement inférieure du volume total
contracté. De manière générale, nous dirons que les LTC permettent un partage des risques entre
l’importateur (risque de volume) et le producteur (risque de prix). Le mode de fonctionnement
des LTC précédemment décrit est le plus courant. Toutefois, Il existe d’autres types de contrats
en amont de la chane, tels que les depletion contracts, les interruptible contracts, les peak shaving
contracts, etc. Ces différentes sortes de contractualisations sont détaillées dans von Hirschhausen
et al., 2008 et Hubbard et Weiner, 1986.

Aujourd’hui, malgré la libéralisation des marchés, on constate que l’amont de la chaîne fonc-
tionne toujours selon la base de contrat long-terme. Ainsi, en 2010, la part des échanges LTC
a atteint 70% des échanges totaux en Europe (International Gas Union, 2011). Cela est princi-
palement dû à une volonté de couverture de risque, comme on l’a vu. Toutefois, les producteurs
à même de créer des parts de marché au niveau aval peuvent directement vendre leur gaz aux
consommateurs finaux, sans faire intervenir le trader local. Par exemple, on peut évoquer le cas de
certains producteurs importants, tels que Gazprom qui ont contracté avec de grands électriciens
européens, tels que E.ON. Ceci est une conséquence directe de la libéralisation. Cependant, les
coûts d’investissement dans le transport et la distribution sont si importants qu’ils constituent,
a priori, une barrière à l’entrée assez forte pour dissuader les nouveaux entrants. De ce fait, les
différents marchés de consommation sont encore caractérisés aujourd’hui par une concentration de
l’offre, qu’elle soit de la part des producteurs (au niveau amont) ou des traders. Cette situation est
donc elle aussi favorable à l’exercice d’un pouvoir de marché : en effet, les monopoles historiques
ont progressivement évolué en oligopoles.

(In)sécurité d’approvisionnement

La question de la sécurité d’approvisionnement en Europe est cruciale : elle se pose dès que
l’on constate que le continent est à plus de 50% dépendant des importations étrangères, en gaz
naturel. Une dépendance énergétique implique directement une fragilité géopolitique, que la Rus-
sie a exploité à deux reprises depuis l’année 2000. Deux crises politiques majeures ont opposé ces
dernières années la Russie à l’Ukraine, et a fortiori l’Europe, portant sur le transit du gaz naturel.
Elles ont abouti à une rupture d’approvisionnement laissant certains pays vulnérables face aux
difficultés d’un hiver particulièrement froid. En effet, la majorité du gaz russe à destination de
l’Europe passe par l’Ukraine qui bénéficie d’un tarif de transit. En effet, l’Ukraine impose un tarif
de transit de l’ordre de 1,09$/cm/100km de pipeline, ce qui réduit la marge des producteurs de
l’est. Or la Russie a à plusieurs reprises accusé l’Ukraine de récupérer, sans compensation, une
partie de l’approvisionnement européen et d’exercer un fort tarif de transit. Face au refus des
Ukrainiens de répondre aux exigences russes pour régler la question, la Russie a décidé d’inter-
rompre, en janvier 2006 et janvier 2009, tous ses approvisionnements transitant par l’Ukraine,
causant ainsi une forte pénurie de chauffage en Europe, pendant plusieurs semaines. En consé-
quence, certains pays d’Europe orientale tels que la Bulgarie, particulièrement dépendants des
importations russes et subissant un hiver rigoureux, se sont retrouvés dans une situation critique
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et ont dû fournir en urgence du bois de chauffage aux particuliers. Outre la volonté politique de
la Russie d’asseoir son hégémonie énergétique sur le continent, ses ambitions officielles étaient de
faire réagir l’Europe afin qu’elle la soutienne dans le règlement du conflit avec l’Ukraine.

L’une des solutions proposées conjointement par la Russie et l’Allemagne au problème ukrai-
nien consistait à financer la construction d’un gazoduc reliant directement les deux pays en tra-
versant la mer Baltique : il s’agit du pipeline Nord Stream dont la capacité de transport est de 55
Bcm/an et qui sera opérationnel à partir de l’année 2015.

L’avantage de l’exploitation de ce pipeline est qu’il permet de contourner l’Ukraine lors du
transit du gaz russe.

La principale autre mesure adoptée par l’Europe pour pallier cette insécurité d’approvisionne-
ment consiste en une diversification des sources d’importation. Ainsi, pour atténuer sa dépendance
par rapport au gaz algérien, le gouvernement espagnol a voté en octobre 1998 la "Loi Hydrocar-
bures" qui interdit aux traders de se fournir en gaz naturel à plus de 60% auprès d’un producteur.
Ainsi, cette loi contraint les fournisseurs locaux à diversifier leurs origines d’importations. D’autres
pays, tels que la France, ont également adopté cette stratégie de diversification. Sur une échelle
plus large, plusieurs pays européens ont soutenu le développement de nouvelles routes d’appro-
visionnement, notamment venant de l’Asie, telles que le nouveau pipeline NABUCCO qui reliera
directement les nouveaux producteurs de la mer Caspienne (comme l’Iran) à l’Europe et dont la
capacité de transport sera de 30 Bcm/an.

La substitution énergétique et le prix du pétrole

Jusqu’à présent, notre discussion a principalement porté sur les volumes de gaz naturel échan-
gés. Nous abordons à présent la question de la formation des prix. Une lecture rapide de l’évolution
du prix spot du gaz naturel nous pousserait à affirmer que celui-ci est fixé par le prix du pétrole.
La figure 5 montre l’évolution du prix du gaz naturel (prix NBP en $/Mbtu) et celui du Brent
(en × 10 $/baril) (BP Statistical Review 2011).

Ainsi, il apparaît clairement que les deux prix sont fortement corrélés. Toutefois, il serait hâ-
tif de conclure que le prix du pétrole définit celui du gaz car ceci ignorerait le fonctionnement
complexe du marché du gaz naturel. Cette corrélation s’explique par deux phénomènes : l’établis-
sement des contrats long-terme, au niveau de l’offre, et la substitution énergétique, au niveau de
la demande, notamment pour la production électrique.

– Avant la libéralisation, la détermination du prix du gaz naturel pour les consommateurs fi-
naux et au niveau des contrats long-terme se faisait grâce à la valeur Netback, pour certains
marchés. 6 Pour chaque secteur de consommation, la valeur Netback se calcule par l’estima-
tion du prix de la source d’énergie alternative au gaz naturel la moins chère. Les prix des
contrats en amont de la chaîne sont calculés une fois les coûts de transport, de distribution

6. L’utilisation de la valeur Netback a été introduite pour l’exploitation du gisement de Groningue.
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Figure 5 – L’évolution des prix du gaz et du pétrole en Europe.

et de stockage déduits.

Actuellement, la fixation du prix des contrats long-terme entre producteurs et traders est réa-
lisée sur la base d’une formule d’indexation sur le prix du pétrole. En effet, afin de permettre
au gaz naturel de rester compétitif par rapport aux énergies concurrentes, les producteurs
et traders ont préféré lier leur prix de contrat au prix du pétrole. Cela se fait grâce à une
formule de fixation du prix du contrat long-terme faisant intervenir le prix du pétrole. De
manière schématique, on peut considérer que le prix du contrat long-terme représente un
coût marginal d’approvisionnement pour les traders. Puisque ces derniers revendent le gaz
naturel aux consommateurs finaux, il devient facile de comprendre la corrélation gaz/pétrole
au niveau des prix : le prix spot du gaz naturel est, pour des raisons économiques, lié au
coût marginal d’approvisionnement au niveau des traders locaux. Ce dernier est lui même
lié au prix du contrat long-terme au niveau amont qui est indexé sur le prix des produits
pétroliers. Bien entendu, l’utilisation de la valeur Netback dans la détermination du prix du
gaz naturel permet également de rendre compte de la corrélation constatée.

Aujourd’hui, on commence à réfléchir à un autre mode d’indexation fondé sur le prix du
charbon. Toutefois, on constate que les échanges de court-terme, sans contrats LTC, gagnent
en importance. En outre, certaines analyses économiques, telles que celle de von Hirschhau-
sen et al., 2008, tendent à montrer que la durée des contrats long-terme serait en diminution,
pour les contrats récemment renouvelés. Ainsi, ces nouveaux contrats dureraient en moyenne
quatre années de moins. Par conséquent, il existe une autre explication économique inhé-
rente à la corrélation apparente.
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– Certains secteurs de consommation sont caractérisés par une forte substitution énergétique.
Cette dernière intervient lorsque les consommateurs ont la possibilité de varier, modulo
certaines inerties d’usage, la source d’énergie qu’ils consomment, en fonction des prix de
marché des différent combustibles auxquels ils ont accès. Le secteur industriel présente par
exemple de fortes substitutions énergétiques. Si de telles substitutions existent, elles sont
susceptibles de créer une concurrence entre les énergies, au sein même de la consommation.
Par exemple, une énergie chère deviendrait ainsi relativement moins utilisée. Au contraire,
une énergie peu coûteuse verrait sa consommation augmenter dans le temps. Ainsi, dans un
état d’équilibre, les prix des énergies concurrentes sont corrélés. Du point de vue purement
économique, cette explication invoque les élasticités croisées de court et de long-terme entre
les prix des différentes énergies.

Bien entendu, ces considérations sont à prendre avec précaution : en effet, certains secteurs
de consommation finale, tels que les transports, présentent très peu de substitution possible.
Ce secteur représente actuellement environ 20% (IEA, 2008) de la consommation totale en
France, ce qui laisse 80% de la consommation susceptible de supporter une substitution plus
ou moins forte. Aussi, l’estimation du coût de chaque énergie est complexe. Celui-ci doit faire
intervenir par exemple le prix de marché, les coûts relatifs d’investissement en capital et le
coût du CO2 qui permet de prendre en compte l’impact des politiques environnementales.
Cependant, la substitution énergétique permet également de comprendre la corrélation entre
le prix du gaz et celui des autres énergies concurrentes. Une augmentation du prix du pétrole
par exemple induirait une hausse de celui du gaz naturel (puisque la concurrence au niveau
de la consommation ferait que le substitut deviendrait plus cher).

§ 0.4 Motivations de ce travail de recherche

Résumons ce que nous avons déjà développé :

– La consommation énergétique est en constante croissance et la plupart des prévisions in-
diquent que cette tendence va se poursuivre dans les décennies à venir : +52% entre 2010
et 2030.

– Les études et analyses économiques prévoient que le gaz naturel jouera un rôle de plus en
plus important dans notre mix énergétique. Cela est dû à sa relative abondance (par rapport
au pétrole) et son faible taux d’emission de gaz polluants.

– Les échanges de gaz naturel sont en constante augmentation. Les prévisions estiment que ces
échanges croîtront de 110% entre 2010 et 2030. Cette situation est favorable à l’émergence
d’un marché mondial du gaz naturel.

– La production de gaz naturel est très concentrée : les dix plus grands producteurs de gaz
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possèdent plus de 75% des réserves mondiales. ce qui facilite l’exercice d’un pouvoir de mar-
ché en amont.

– La gestion de l’approvisionnement, du transport et de la distribution au niveau des pays
consommateurs a longtemps été effectuée par des firmes souvent en situation de monopoles
régulés. Aujourd’hui, avec la libéralisation des marchés, on constate que l’on est passé à une
situation oligopolistique.

– Les contrats long-terme entre producteurs et traders continuent de subsister dans un marché
libéralisé. Actuellement, la part LTC dans les échanges en Europe est de 70%.

– La libéralisation des marchés a eu pour effet de faire évoluer les monopoles historiques en
oligopoles. Cela est dû aux barrières d’entrée indirectement causées par les coûts de déploie-
ment. Ainsi, les marchés européens du gaz naturel sont dominés par les oligopoles, ce qui
est susceptibles d’induire des exercices de pouvoir de marché.

– La libéralisation des marchés a aussi complexifié la structure économique des marchés en
Europe. Ainsi, outre le phénomène structurel à double niveau représenté par la chaîne
producteur-trader-consommateur, il est possible aux producteurs de contourner leurs contrats
long-terme et de vendre leur gaz directement aux marchés spot où ils se retrouvent en concur-
rence avec les traders.

– L’Europe est particulièrement vulnérable face aux risques d’interruption d’approvisionne-
ments étrangers. La question de la sécurité d’approvisionnement est donc au cœur des pro-
blématiques de géoplitique gazière.

– La corrélation entre prix du gaz et prix du pétrole est un aspect important du marché gazier.
La substitution énergétique ainsi que les contrats long-terme sont donc des caractéristiques
importantes qu’il faut prendre en compte lorsqu’on tente d’analyser les marchés du gaz na-
turel.

Par conséquent, notre travail de recherche s’efforce de répondre aux questions suivantes :

1. Comment les problématiques de sécurité d’approvisionnement conditionnent-elles le com-
portement des traders dont le rôle est de choisir scrupuleusement les origines de leurs im-
portations ? Notre analyse doit prendre en compte la structure économique actuelle des
marchés : double pouvoir de marché, oligopoles et contrats long-terme par exemple. Plus
particulièrement, nous nous sommes intéressés aux impacts que peut avoir un risque de
rupture d’approvisionnement sur les caractéristiques du marché gazier en Europe : prix,
consommations et bien-être social notamment. Ainsi, nous nous sommes interrogés sur la
nécessité (ou non) de réguler le marché, en fonction du risque de rupture, à des fins d’amé-
lioration du bien-être. Concernant les régulations existantes, notamment celle de l’Espagne,
nous avons tenté de comprendre si elles assuraient l’optimalité du bien-être social et dans
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le cas contraire, nous avons cherché d’autres régulations à même de contrebalancer le risque
de rupture plus efficacement.

2. Dans un contexte de libéralisation, de suppression des clauses de destination et d’augmen-
tation de la concurrence, quelles sont les évolutions possibles du marché du gaz naturel en
Europe ? Comment les producteurs vont-ils faire face à l’épuisement de la ressource dans
les décennies à venir ? Comment vont donc évoluer les stratégies de production et comment
celles-ci vont-elles influencer les comportements de consommation et les prix ? Plus simple-
ment, nous nous sommes intéressés à la réalisation et à l’étude de scénarii d’évolution des
marchés du gaz naturel en Europe, afin d’en déduire une trajectoire temporelle de prix, de
consommations et de productions entre autres.

3. Comment risque d’évoluer la dépendance énergétique de l’Europe dans le futur et comment
va-t-elle conditionner la stratégie d’approvisionnement ? Dans le cas d’une augmentation
de la dépendance, comment cette dernière va-t-elle influencer les prix sur le marché et la
consommation ?

4. Comment peut-on prendre en compte la substitution énergétique dans une représentation
formelle des marchés du gaz naturel ? Plus spécifiquement, puisque la substitution éner-
gétique est due à une strategie de consommation, nous avons voulu la prendre en compte
au sein de la fonction de demande en gaz naturel et l’inclure dans un cadre plus général
de modélisation des marchés. Ainsi, nous avons cherché à rendre compte de la corrélation
entre prix du gaz/prix des énergies concurrentes en analysant et modélisant directement le
fonctionnement du marché tout en incluant la substitution dans la fonction de demande.

5. Les caractéristiques des contrats long-terme sont en général difficiles à obtenir via des don-
nées publiques, en particulier les prix, car ces contrats sont le fruit d’une négociation directe
entre producteurs et traders dont les modalités sont souvent tenues secretes. Ainsi, nous
avons voulu savoir si une approche s’appuyant sur la modélisation (en rendant les contrats
endogènes au modèle) pouvait conduire à une estimation des volumes et prix des contrats
long-terme entre chaque paire de producteur/trader. Plus généralement, nous avons voulu
comprendre comment ces contrats long-terme pouvaient évoluer dans un marché de plus en
plus libéralisé et dans quelle mesure ils permettaient de rentabiliser les différents investisse-
ments en infrastructure de production et de transport.

6. Comment la double application du pouvoir de marché, de la part des producteurs et des
traders, au niveau aval influence-t-elle le marché ? Il est évident que les producteurs pos-
sèdent un degré de liberté en plus, concernant la destination de leur gaz, par rapport aux
traders, puisqu’ils ont la possibilité de contracter sur le long-terme, mais également de cibler
directement le marché spot (des échanges court-terme). En quoi cette dissymétrie de pouvoir
de marché a-t-elle un impact sur l’économie gazière ?



16

7. Quelle est la relation entre les prix des contrats long-terme et les prix des marchés spots ?

8. Puisque le prix et la consommation du gaz naturel sont corrélés au prix du pétrole (entre
autres), comment la fluctuation temporelle du prix du pétrole influence-t-elle les caractéris-
tiques du marché, telles que les contrats long-terme, la consommation et les prix ?

Nous avons tenté de traiter ces problématiques à l’aide d’analyses économiques s’appuyant sur
la modélisation afin de pouvoir quantifier les phénomènes étudiés et prévoir leur évolution dans
le temps. Puisque les différents acteurs de la chaîne sont souvent confrontés à des contraintes de
gestion des quantités (capacités de production, de transport et de stockage, contraintes d’offre et
de demande), nous avons décidé de représenter la concurrence sur les marchés comme une concur-
rence de type Cournot.

Les principaux outils mathématiques que nous avons exploités sont les suivants : la théorie de
l’optimisation, la théorie des jeux non-coopératifs, les problèmes de Nash-Cournot généralisés et
les problèmes de complémentarité (Mixed Complementarity Problems ou MCP). En effet, nous
avons modélisé chaque protagoniste de la chaîne gazière comme un acteur rationnel dont le but
est d’optimiser son utilité (s’il est stratégique) ou le bien-être social (s’il est régulé ou compétitif),
d’où le recours à l’optimisation. Par ailleurs, les différentes interactions stratégiques (ou les jeux
d’acteurs) sont prises en compte grâce à une concurrence à la Cournot (les joueurs décident des
quantités et le prix en résulte). C’est à ce stade qu’intervient la théorie des jeux non-coopératifs,
puisque chaque acteur stratégique (exerçant un pouvoir de marché) tente d’optimiser son utilité en
essayant d’anticiper la réaction des concurrents à ses décisions. Ainsi, la formulation mathématique
de notre modèle gazier aboutit à un problème de complémentarité. Enfin, la prise en compte de
manière endogène des contrats long-terme nous a poussés à étudier les problèmes de type Nash-
Cournot généralisés.

§ 0.5 Etat de l’art et apports de la thèse

La question de la sécurité d’approvisionnement en Europe a largement été traitée en économie
de l’énergie. La plupart des travaux analysant cette problématique peuvent être divisés en deux
catégories : la première, qui est la plus abondante regroupe les études reposant sur des analyses
purement géopolitiques : Percebois, 2006, Lefèvre, 2010 et Kruyt et al., 2010. La deuxième catégo-
rie englobe les travaux s’appuyant sur une analyse microéconomique afin d’étudier et mesurer la
sécurité d’approvisionnement. Ce genre d’analyses appliquées au cas du gaz naturel en Europe ne
sont pas très nombreuses, les articles les plus importants étant Manne et al., 1986, Hoel et al., 1987
et Markandya et al., 2010. Par ailleurs, la plupart de ces contributions se fondent sur une descrip-
tion des marchés du gaz naturel en Europe qui ne prend pas en compte son évolution récente. En
effet, avant la libéralisation, les marchés gaziers européens étaient régulés pas les gouvernements.
Dans beaucoup de pays, la gestion de l’approvisionnement, du transport et de la distribution du
gaz étaient assurée par des firmes publiques, ou des monopoles régulés (tel qu’en France). Ainsi,
les modèles proposés par Manne et al., 1986 ou Hoel et al., 1987 étaient particulièrement adaptés
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à cette situation. A titre d’exemple, ces deux modèles supposent que les firmes ont pour objectif
d’optimiser le bien-être social sous des contraintes d’insécurité des importations.

Notre travail s’efforce de prendre en compte la situation actuelle des marchés gaziers. Ainsi,
nous avons voulu prendre en considération la libéralisation des marchés qui a conduit à une si-
tuation de concurrence imparfaite (tel qu’on l’a expliqué plus haut) et la contractualisation de
long-terme entre producteurs et traders. Par conséquent, nous avons développé un modèle statique
de concurrence oligopolistique où chaque acteur (trader) cherche à optimiser son profit en gérant
les origines de ses importations et en sachant qu’il existe des producteurs en amont capables
d’interrompre leurs exportations à tout moment, pour des raisons qui échappent à son contrôle
(terrorisme, crises politiques, problèmes techniques, etc.). Dans le modèle proposé, nous tentons
d’estimer la perte de bien-être des consommateurs, en cas de crise (interruption), grâce à une
distinction entre fonctions de demande de court et de long-terme. L’objectif de notre étude est de
comprendre et mesurer l’impact de l’insécurité d’approvisionnement sur les paramètres du mar-
ché : prix, consommation, production ainsi que le bien-être etc. Nous analysons les stratégies de
couverture de risque de la part des traders et nous cherchons des régulations efficaces des marchés
dans le cas où le risque d’insécurité est élevé.

La littérature contient pléthore de modèles mathématiques des marchés du gaz naturel ayant
des objectifs divers. Le tableau suivant fournit quelques caractéristiques de certains modèles exis-
tants. Nous y avons ajouté le modèle GaMMES que nous avons développé dans le cadre de la
thèse afin de pouvoir le comparer aux autres :
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La liste des modèles que nous avons indiquée n’est pas exhaustive. Toutefois, elle permet de
mettre en exergue les principales propriétés de la modélisation des marchés gaziers en général et
de comparer notre modèle aux précédents.

Ces modèles peuvent être séparés en deux catégories : ceux qui supposent qu’il n’y a pas
d’exercice de pouvoirs de marchés 7 et ceux qui justement les prennent en compte. Une situation
de non exercice de pouvoir de marché s’apparente à une concurrence pure et parfaite, configura-
tion de marché où les acteurs sont price-takers. Cette hypothèse est valide s’il existe un fort degré
d’atomicité au sein des acteurs qui les empêcherait d’influencer volontairement le prix du bien,
indépendamment des autres protagonistes du marché. Cette hypothèse est relativement valide si
l’on s’intéresse au marché américain du gaz naturel, par exemple. Toutefois, elle s’affaiblit lors-
qu’on modélise le marché européen qui est dominé par des oligopoles, comme on l’a constaté.

D’autres modèles ont été développés en concurrence imparfaite (les acteurs sont donc price-
makers) : ils permettent d’appréhender la structure économique actuelle en Europe. En outre, la
théorie économique nous enseigne que la concurrence pure et parfaite est un cas particulier de
l’oligopole. Pour passer d’une situation à l’autre, il suffit de rendre le nombre d’acteurs straté-
giques très grand.

Concernant les contrats long-terme, la plupart des descriptions de marché les négligent ou les
prennent en compte de manière exogène. Cependant, les problématiques que nous avons dévelop-
pées précédemment nous ont menés à tenter de rendre ces contrats endogènes (afin de pouvoir les
comparer, entre autres, aux différents prix spot). Par conséquent, notre travail fera en sorte que
les paramètres de ces contrats seront fournis en sortie de GaMMES.

Quant à la substitution énergétique, on constate qu’elle n’est pas encore prise en compte ac-
tuellement dans la modélisation des marchés, malgré l’importance qu’elle revêt pour les consom-
mateurs en particulier. Plus généralement, cette substitution peut contrebalancer le pouvoir de
marché des acteurs stratégiques car elle les forcerait par exemple à ne pas augmenter considé-
rablement le prix du gaz naturel, si le prix du substitut est faible. 8 Par conséquent, la prise en
compte de la substitution énergétique peut fortement changer l’économie du gaz naturel.

Au regard de ce que nous avons présenté, il nous est apparu que les innovations de notre travail
sont les suivantes :

– La question de la sécurité d’approvisionnement en Europe est traitée dans un cadre as-
sez large et général, pouvant s’appliquer à plusieurs pays vulnérables, où nous prenons en
compte la structure économique actuelle des marchés. Ainsi, nous avons pu comparer notre
étude à celles que l’on trouve dans la littérature. Nous nous sommes aidés des outils de
modélisation pour quantifier l’impact de l’insécurité d’approvisionnement sur les marchés et

7. Cette classe de modèles comporte les études technico-économiques dont le but est de déterminer les différents
coûts marginaux d’approvisionnement en gaz.

8. De manière similaire, la substitution énergétique peut exacerber le pouvoir de marché si le substitut est cher.
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les moyens stratégiques de la limiter. Ainsi, nous avons trouvé des conditions favorables à la
régulation du marché dans certains cas où les consommateurs deviennent particulièrement
vulnérables.

– Nous avons développé une approche exploitant des techniques de systèmes dynamiques afin
de prendre en compte la substitution énergétique dans la fonction de demande en gaz naturel.
Notre approche permet notamment d’appréhender des effets de concurrence entre énergies
dans la demande ainsi que des effets d’inertie de consommation liés aux investissements. En
particulier, nous avons réussi à introduire, au sein même de la fonction de demande en gaz
naturel, le prix du substitut (charbon ou pétrole).

– Nous avons utilisé cette fonction de demande dans un modèle dynamique d’équilibre par-
tiel de description des marchés du gaz naturel en Europe. Notre modèle, nommé GaMMES
pour Gas Markets Modeling with Energy Substitution, se veut réaliste dans la mesure où
la structure économique qu’il prend en compte est assez complexe et englobe les principaux
déterminants des marchés. La plupart des acteurs de la chaîne gazière sont représentés :
producteurs, traders locaux intermédiaires, consommateurs et opérateurs de transport et
de stockage. Les infrastructures de transport et de stockage sont modélisées ainsi que la
chaîne GNL. La production est répartie selon les différents champs d’exploitation et les in-
vestissements (augmentation de capacités) en production, transport et stockage sont pris en
considération de manière endogène par le modèle. La substitution énergétique est déduite
de notre approche de type systèmes dynamique. Les contrats long-terme liant producteurs
et traders sont modélisés de manière endogène également et le pouvoir de marché est donné
aux producteurs et traders indépendants. L’interaction stratégique est modélisée de manière
fine. En effet, les producteurs et traders se font concurrence à la Cournot et la dissymétrie
d’exercice du pouvoir de marché entre ces protagonistes est représentée. A notre connais-
sance, GaMMES est le premier modèle gazier à prendre en compte une structure économique
complexe en rendant endogènes les LTC et en considérant la substitution énergétique.

– La prise en compte de manière endogène de la contractualisation long-terme nous a conduits
à écrire notre modèle sous forme de problème de Nash-Cournot généralisé. Cette catégorie
de problèmes est particulièrement riche car elle englobe beaucoup de situations rencontrées
en économie industrielle (notamment les problématiques de concurrence imparfaite). Elle a
été introduite récemment en économie et à notre connaissance, aucun modèle gazier ne l’a
encore utilisée. Cette problématique nous a poussés à étudier la théorie fondamentale des
problèmes de Nash-Cournot généralisés et notamment à introduire les Inéquations et Quasi-
Inéquations variationnelles (VI et QVI). Nous avons en particulier trouvé un moyen simple
de résoudre ces problèmes, qui passe par la recherche d’une caractérisation de la solution de
type VI, en faisant intervenir des relations entre différentes variables duales. A cet égard,
cette thèse possède un apport sur le plan théorique.

– Puisque la substitution énergétique a été prise en compte dans notre modélisation, nous
avons choisi de l’exploiter pour comprendre l’influence des fluctuations du prix du pétrole
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sur les marchés gaziers. Pour ce faire, nous avons développé une extension stochastique du
modèle GaMMES, où la fluctuation des prix du pétrole est mise en avant. Par conséquent,
nous avons modélisé le prix du gaz naturel comme une variable aléatoire, dont la spécifica-
tion de la loi a été réalisée grâce à une étude économétrique. Ensuite, nous avons construit
l’arbre des scénarii possibles d’évolution du prix du pétrole et développé ainsi le modèle
stochastique. A notre connaissance, l’impact de la fluctuation des prix du pétrole sur l’évo-
lution des marchés gaziers est une nouveauté dans le domaine. Ainsi, il nous a été possible
de comparer les évolutions déterministes et stochastiques des marchés, notamment pour les
contrats long-terme, et à quantifier, via des outils mathématiques, l’importance de prendre
en compte l’aléa du prix du pétrole dans les décisions des différents acteurs de la chaîne.
Notre travail a mené à l’élaboration de S-GaMMES, un modèle dynamique et stochastique
de Nash-Cournot généralisé pour les marchés gaziers.

Notre étude s’est principalement concentrée sur le périmètre européen et sur l’horizon de
temps 2000-2035. Toutefois, pour des questions de temps de calcul, nous avons préféré restreindre
la description de la consommation au marché de l’Europe du nord-ouest, ce qui correspond à plus
de 80% des échanges européens de gaz.

§ 0.6 Structure de la thèse

Cette thèse est divisée de la manière suivante :

La première partie présente les outils mathématiques de base que nous avons utilisés dans
notre travail de recherche. Cette partie contient le chapitre 1 et développe les bases de la théorie
de l’optimisation (Lagrangien, conditions de Karush Kuhn et Tucker, dualité etc.), la théorie des
jeux non coopératifs (concurrence imparfaite et équilibres de Nash) et les problèmes de complé-
mentarité (MCP).

La deuxième partie s’intéresse à la sécurité d’approvisionnement en Europe et comprend les
chapitres 2 et 3. Le chapitre 2 s’efforce de fournir un cadre théorique à même de décrire le com-
portement réaliste d’un oligopole lorsqu’il est soumis à un risque de rupture d’approvisionnements
de la part de certains producteurs. Le chapitre 3 applique le modèle à trois pays européens. Le
premier cas tente d’expliquer les choix d’approvisionnement allemands dans les années 1980 et sert
de point de comparaison entre notre modèle et ceux développés précédemment. Le deuxième cas
s’inspire de la situation actuelle d’un pays fortement dépendant du gaz russe, à savoir la Bulgarie.
Une fois la sensibilité des paramètres de marché par rapport au risque de rupture étudiée, nous
avons cherché à proposer des moyens de réguler le marché à des fins d’optimisation de bien-être
social et des conditions de leur application, en fonction de la probabilité de rupture. Le troisième
cas tente de comprendre la régulation actuellement appliquée en Espagne afin de forcer les traders
à diversifier leurs sources d’importations. Une régulation alternative est proposée dans le but de la
comparer à la première et de savoir dans quelles circonstances (notamment en fonction du risque
de rupture) le régulateur doit choisir l’une ou l’autre dans le but de maximiser l’utilité sociale.
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Cette partie s’efforce de répondre à la question 1. Elle s’appuie sur l’article suivant : I. Abada, O.
Massol, 2011. Security of supply and retail competition in the European gas market. Some model-
based insights., Energy Policy 39 (2011), 4077-4088.

La troisième partie concerne la substitution énergétique et contient les chapitres 4 et 5. Le
chapitre 4 montre comment nous avons exploité une approche de type systèmes dynamiques pour
modéliser le comportement stratégique des consommateurs dont l’objectif est de choisir leur mix
optimal en fonction des prix de marché et de la demande fossile primaire. La calibration du modèle
y est discutée et les résultats sont fournis pour huit pays consommateurs. Le chapitre 5 exploite
notre approche pour définir, calculer et spécifier une fonction de demande de gaz naturel dyna-
mique qui englobe la substitution énergétique. On y montre en particulier comment le prix du
pétrole est intégré au sein de la fonction de demande et comment l’inter-temporalité de la consom-
mation est prise en compte.
Cette partie tente de répondre à la question 4. Elle s’appuie sur l’article suivant : I. Abada,
V. Briat & O. Massol, 2011. Construction of a fuel demand function portraying interfuel sub-
stitution, a system dynamics approach., Economix Working Paper, available at http ://econo-
mix.fr/fr/dt/2011.php, (article en cours de révision dans Energy Policy).

La quatrième partie développe le modèle déterministe GaMMES afin de décrire l’évolution
des marchés du gaz naturel. Elle comprend les chapitres 6, 7 et 8. Le chapitre 6 fournit la des-
cription économique des marchés et utilise les résultats de la troisième partie afin de décrire la
demande. Les programmes d’optimisation de tous les acteurs sont détaillés et expliqués. Aussi, ce
chapitre montre la manière dont nous avons rendu les contrats long-terme endogènes au modèle
et choisi une formalisation de type Nash-Cournot généralisé. Le chapitre 7 applique le modèle au
marché gazier de l’Europe du nord-ouest. Des prévisions de consommation, d’évolution de prix, de
production et de dépendance énergétique sont fournies pour l’horizon 2035. Les prix et volumes
des contrats long-terme y sont donnés, analysés et comparés aux prix spot dans les différents
pays. Afin d’exploiter la substitution énergétique offerte par notre modélisation, nous avons étu-
dié l’évolution du prix du gaz naturel par rapport au prix du pétrole lors d’une année de référence
donnée. Le chapitre 8 est purement théorique. Il définit et analyse les problèmes de Nash-Cournot
généralisés et les compare aux problèmes de Nash-Cournot standards. Une caractérisation ma-
thématique des équilibres est donnée dans les deux cas ainsi qu’une discussion sur l’unicité de la
solution d’équilibre. Finalement, un exemple simple d’un jeu à deux acteurs est présenté dans le
but de mettre en pratique les résultats théoriques préalablement établis.
Cette partie tente de répondre aux questions 2, 3, 5, 6 et 7. Elle s’appuie sur l’article suivant :
I. Abada, V. Briat, S. A. Gabriel & O. Massol, 2011. A Generalized Nash-Cournot Model for the
North-Western European Natural Gas Markets with a Fuel Substitution Demand Function : The
GaMMES Model., Economix Working Paper, available at http ://economix.fr/fr/dt/2011.php,
(article est en cours de révision dans Networks and Spatial Economics).

La cinquième et dernière partie introduit un aspect stochastique à GaMMES. Elle contient les
chapitres 9 et 10. Le chapitre 9 montre comment le prix du pétrole est rendu aléatoire sur la base
d’une étude économétrique que nous avons développée. Ensuite, l’arbre des scénarii est élaboré et
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le modèle développé dans sa forme extensive. Ici aussi, les différents programmes d’optimisation
sont détaillés et discutés. Le reste du chapitre se concentre sur des résultats théoriques démontrant
des relations générales entre les prix des contrats long-terme et les prix spot, dans un contexte
d’incertitude sur le prix du pétrole. Le chapitre 10 applique le modèle à l’Europe. Des prévisions
d’évolution du marché sont données pour les différents scénarii du modèle. Les paramètres des
LTC sont fournis et comparés aux résultats déterministes. Cela permet de comprendre comment
les producteurs et traders couvrent leurs différents risques dans un environnement aléatoire. Enfin,
une mesure de l’importance de prendre en compte le caractère aléatoire de la demande dans les
programmes d’optimisation des différents joueurs est founie et analysée.
Cette partie tente de répondre à la question 8. Elle s’appuie sur les articles suivants : I. Abada,
2011. A stochastic generalized Nash-Cournot model for the northwestern European natural gas
markets with a fuel substitution demand function : The S-GaMMES model. et I. Abada, 2011.
Study of the evolution of the the northwestern European natural gas markets using S-GaMMES.,
Chaire Economie et Climat Working Papers.

La conclusion revient sur les objectifs de la thèse et les moyens employés pour les atteindre. On
y trouvera un développement des points faibles de nos modèles ainsi que les extensions possibles
de notre travail.
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§ 1.1 Introduction

This chapter presents the fundamental mathematical and economic tools that will be used in
this thesis. The first part is dedicated to optimization theory, the second concerns non-cooperative
game theory and the last part is about complementarity problems and market structures modeling.

§ 1.2 Optimization

1.2.1 Introduction

Optimization is a very old subject that has undergone a radical change and has gained in in-
terest since the use of computers. Optimization concerns a lot of different fields such as economics,
robotics, logistics, signal processing, optimal control, etc. One typical example is the optimization
of a function over a space of finite dimension, let’s say Rn. This situation is the most frequent
in operations research (where linearity is, in most cases, a required feature). Another possible
situation is when the function to optimize depends on another function, such as the solution of a
standard differential equation. This is typically the case in robotics and automatics where the aim
is to look for the "optimal command." Basically, this situation corresponds to an optimization of
a function definded on a space of infinte dimension, such as C∞(Rn), the set of functions that are
infinitely differentiable over Rn. The last field we will evoke is the optimal control : the function
to optimize is defined on an infinite dimension space too, but the "variable" can be the solution
of a partial differential equation. This is interesting in optimal control theory and has some appli-
cations in the optimal conception of structures in mechanics, for example. Other situations where
the use of optimization is important are provided in Section 1.2.2.

More generaly, optimization problems can be divided into two types : the continuous variables
optimization and the integer variables optimization. The first one has a continuous definition
domain, most often Rn. The second one has a integer definition domain, generaly Zn. Integer
optimization problems may seem easier to solve because, intuitively, their domain is "smaller"
than the continuous optimization ones. However, this is false because looking for the continuous
solutions of optimization problems can exploit the objective function derivative properties. As we
will see later, the main optimality conditions of the optimization theory concern the continuous
variables optimization because of the use of the differential calculus theory.

1.2.2 Examples

This section presents some examples of the application of the branches of optimization.

1.2.2.1 The transport problem

This is the typical example of operation research and logistics. The idea is to optimize the
delivery of a good. A firm owns a set of storehouses indexed by i ∈ I and clients indexed by j ∈ J .
Each storehouse has a stock of the good si and each client wants a quantity dj . We suppose that



1.2. Optimization 31

the supply is greater than demand, so that the problem is feasible. The transportation unit cost
from i to j’s location is cij . The objective function to minimize is the total transportation cost
while cntrolling the amount that goes from i to j, xij . The constraints concern the supply at each
storehouse and the demand of each client. The problem can be written as follows :

Inf
∑

ij cijxij

s.t. ∀i ∈ I
∑

j xij ≤ si
∀j ∈ J

∑
j xij = dj

∀(i, j) ∈ I × J xij ≥ 0

This continuous optimization problem is a particular case of linear programming (LP) because
both the objective function and the constraints are linear functions of the variables xij . The
variables belong to a finite-dimension space.

1.2.2.2 The monopoly problem

This is a typical example derived from the industrial economics theory. Let us consider a
firm that produces a good needed in a demand market. The firm has to decide the optimal
quantity to produce x in order to optimize profit. The inverse demand function that characterizes
the consumers’ behavior in terms of consumption, regarding the good’s price, is f . If amount
x is brought to the market, the price will be set to p = f(x). We will assume the existence
of a technical production capacity constraint K. The production cost function is c. The firm’s
optimization progam can be written as follows :

Sup Π(x) = (1.2)
f(x)x− c(x)

s.t. x ≤ K
x ≥ 0

Obviously, solving the simple monopoly’s problem we have presented is straightforward. If we
assume that the profit Π is concave, we know that we have a unique solution (see Section 1.2.4).
We call m the optimum variable (if it exists) that maximizes Π over R and x∗ the solution of
(1.2). Figure 1.1 graphically solves the problem. It shows that (assuming that Π′(0) > 0) :

If m ≥ K, x∗ = K
If m ≤ K, x∗ = m

This continuous optimization problem is a particular case of non-linear programming (NLP)
because the objective function is non-linear. If the inverse demand function decreases linearly, the
monopoly problem is a particular case of quadratic programming, because function Π is quadratic.
The variable x is such that x ∈ R, a finite-dimension space.
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Figure 1.1 – A graphical solution of the monopoly problem.

1.2.2.3 The membrane vibration problem

We consider the vibration of an elastic membrane Ω ⊂ Rn in mechanics. Its movement can
be studied thanks to a differential equation given in equation 1.3a We denote by x the spatial
variable x ∈ Ω and f the force applied on the membrane f : Ω −→ Rn. ∂Ω denotes the domain’s
border, which is assumed fixed.

∀x ∈ Ω −∆u(x) = f(x) (1.3a)
∀x ∈ ∂Ω u(x) = 0

It is easy to demonstrate (using the variational formulation) that equation (1.3a)’s solutions
are exactly the solutions of the following optimization problem :

Inf E(v) =
∫

Ω |∇(u(x))|2dx−
∫

Ω fudx (1.4a)
s.t. v ∈ H1

0 (Ω)

where H1
0 (Ω) is the Sobolev space defined by the functions u such that u ∈ L2(Ω), ∇u ∈ L2(Ω)

(the derivative is considered in the sense of the distributions theory) and u = 0 over ∂Ω. Problem
(1.4a) is a mechanical energy minimization, over an infinite dimension (functional) space. Here
again, the optimization is continuous.
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1.2.2.4 The knapsack problem

We present here the most famous integer optimization problem. We consider a knapsack that
has a finite volume V and a set of objects I which need to be carried. Each object i ∈ I has a
weight wi and a volume vi. The idea is to minimize the total weight of the knapsack by selecting
which object to carry. The variable xi is such that xi ∈ {0, 1} and xi = 1 if object i is selected
whereas xi = 0 otherwise. The total weight carried in the knapsack is hence

∑
i xiwi and the total

volume
∑

i xivi. The optimization problem we need to solve is given below :

Inf
∑

i xiwi (1.5a)
s.t.

∑
i vixi ≤ V

s.t. ∀i ∈ I, xi ∈ {0, 1}

Solving the knapsack problem is simple, in practice. Let’s sort our objects such that w1 ≤
w2 ≤ ... ≤ wn and denote by x∗i the optimal solution. The first object to select is the lightest
one : i = 1. If there is a remaining capacity in the knapsack (i.e. V − v1 > 0), x∗1 = 1, otherwise
x∗1 = 0. The second object to consider is i = 2, if the volume constraint is still not binding :
V − v1 − v2 > 0, x∗2 = 1 otherwise x∗2 = 0 etc.

Obviously, since ∀i, xi ∈ Z, the knapsack problem is a particular case of integer optimization.

1.2.3 Definitions and notation

This section gives the principal notation, definition, and vocabulary that will be used in this
manuscript. As said before, an optimization problem can be written as follows :

Inf f(x) (1.6a)
s.t. x ∈ K ⊂ E

The set E is usually a vectorial space provided with a norm ||.||. The subset K will be called
the feasible region. Usually, this region is issued from a set of equality or inequality constraints.
If K = {Φ} (K is empty), we will say that the problem is infeasible. Function f : K −→ R
will be called the objective function. We will assume that it belongs to C1(E) (continuously
differentiable). The variable x will be called the decision variable (or decision variables in
case of a finite dimension superior than 2). We will denote by f∗ the infimum of f over K. If
∃x ∈ K such that f(x) = f∗, we will say that infimum is reached. In that case, the infimum is
actually a minimum and we will denote this by x∗. If we already know that the infimum will be
reached, problem (1.6a) can be rewritten as follows :

Min f(x) (1.7a)
s.t. x ∈ K ⊂ E

In the following explanations, definitions, and theorems, we will consider only minimization
problems. The maximization case can be solved using the following property :
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Inf f(x) = −Sup −f(x)
s.t. x ∈ K s.t. x ∈ K

Definition 1. x is a local minimum of f over K if x ∈ K and

∃η > 0 such that ∀y ∈ K, ||y − x|| ≤ η ⇒ f(y) ≥ f(x).

Definition 2. x is a (global) minimum of f over K if x ∈ K and

∀y ∈ K, f(y) ≥ f(x).

Obviously, in the optimization problems we are interested in (that can be generally described
thanks to problem (1.6a)), we look for global optima. The main difficulty is hence to get rid of lo-
cal optima because there is no simple theoretical result that allows one to numerically distinguish
between local and global minima.

The main property that will allow us to ensure that a local minimum is actually a global one
concerns the objective function f . This has to do with its graph’s shape, which must be convex.
First we need to define the convexity of the feasible region.

Definition 3. The set K is convex if

∀x, y ∈ K, ∀λ ∈ [0, 1], λx+ (1− λ)y ∈ K (1.8)

A convex set is such that each line segment that links each pair of points, belonging to the
set, remains in the set. Figure 1.2 shows the difference between a convex and a non-convex set.

Figure 1.2 – Convex and non-convex sets.

A convex function needs to be defined on a convex set.
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Definition 4. Let K be a convex set and f a function defined over K. f is convex over K if :

∀x, y ∈ K, ∀λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1.9)

Definition 5. Let K be a convex set and f a function defined on K. f is concave over K if :

∀x, y ∈ K, ∀λ ∈ [0, 1], f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y) (1.10)

A convex (concave) function is such that its graph is convex (concave). Figure 1.3 shows the
difference between a convex and a non-convex function.

Figure 1.3 – Convex and non-convex functions.

As will be seen in Section 1.2.4, the convexity is a very useful property that will allow us to
ensure that a local minimum is global. All the theoretical properties stated in Section 1.2.4 concern
convex objective functions of minimization problems. They can be generalized to concave
objective functions of maximization problems.

1.2.4 Existence and uniqueness properties

The first result we present is related to the finite dimension optimization. We remind that f
is assumed to be differentiable over K.

Theorem 1. If K is a closed and bounded set, problem (1.6a) has a solution

Démonstration. If K ⊂ Rn is closed and bounded, it is compact (finite dimension). f is differen-
tiable over K. In particular it is continuous. Hence, f(K) is a compact set and therefore closed
and bounded in R. The infimum is thus reached.
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Theorem 1 is an existence theorem. It guarantees the existence of a solution associated with
the optimization problem.

If K = Rn, which means that the optimization is carried out without constraints on a finite
dimension space, it is easy to characterize the optimum thanks to the following gradient theorem :

Theorem 2. If K = Rn and x is a local optimum, ~∇f(x) = ~0

The gradient of f is defined as follows :

~∇f(x) =


∂f
∂x1

(x)
∂f
∂x2

(x)

...
∂f
∂xn

(x)

 .

The optimization problem is therefore "easy" to solve. Indeed, solving equation ~∇f(x) = ~0
provides the candidates to the optimization problem’s solutions. We then need to select the optimal
solutions (global optima). This may be numerically difficult because a local optimum can be
optimal over a large subset of K. To bypass this difficulty, it may be interesting to use the
following theorem :

Theorem 3. If f is convex over the convex set K, a local minimum is global.

Démonstration. Let x be a local minimum of f over K and η be such that ∀y ∈ K such that
||y − x|| ≤ η, f(y) ≥ f(x). Let us suppose that ∃x′ ∈ K such that f(x′) < f(x) and x′ 6= x. We
know that ∃λ ∈ (0, 1) such that || (λx+ (1− λ)x′)−x|| ≤ η. Therefore f (λx+ (1− λ)x′) ≥ f(x).
However, by convexity of f , f (λx+ (1− λ)x′) ≤ λf(x)+(1−λ)f(x′) < λf(x)+(1−λ)f(x) = f(x),
which is absurd. x is hence a global optimum over K.

Theorem 3 ensures the uniqueness of the optimum, if it exists.

Theorem 4. f is convex if and only if
∀x, y ∈ K, f(y) ≥ f(x) + ~∇f(x).(y − x)

Theorem 5. If f is twice differentiable. f is convex and if and only if
∀x ∈ K the Hessian matrix of f , Hf (x) is positive semi-definite.

The Hessian matrix of f , is defined by the following :

∀x ∈ K, Hf (x) ∈Mn(R) and ∀i, j, Hf (x)ij =
∂2f

∂xi∂xj
(x)

or

∀x ∈ K, Hf (x) =


∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) ... ∂2f

∂x1∂xn
(x)

... ... ... ...
∂2f

∂xn∂x1
(x) ∂2f

∂xn∂x2
(x) ... ∂2f

∂x2
n

(x)
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Definition 6. A matrix M ∈Mn(R) is positive semi-definite if ∀x ∈ Rn, txMx ≥ 0.

The Schwarz theorem allows us to assert that the Hessian matrix is symmetric in Mn(R) and
is therefore diagonalizable. It is easy to demonstrate that a symmetric matrix is positive semi-
definite if and only if all its eigenvalues are nonnegative.

Theorem 6. (Euler Inequality) If f is defined over a convex set K and if x is a local minimum
of f then :

∀y ∈ K, ∇f(x).(y − x) ≥ 0 (1.11)

If f is convex and x ∈ K is a point that verifies (1.11), then x is an optimum of f over K.

Euler’s inequality presented in Theorem 6 is generally a necessary condition that characterizes
a local optimum. It also becomes sufficient if f is convex.

1.2.5 Duality, Lagrangian multipliers and KKT conditions

This section presents the most useful results of optimization because they allow one to cha-
racterize, in a simple way, the optimum. It starts with the definition of the Lagrangian. Let us
consider the following optimization problem which is a particular case of problem (1.7a) :

Inf f(x) (1.12a)
s.t. F (x) = 0

G(x) ≤ 0

where the mappings F and G are such that F : Rn −→ Rm and G : Rn −→ Rp. The inequality
G(x) ≤ 0 is a condensed notation for ∀i ∈ {1, 2..., p} , Gi(x) ≤ 0 and the equality F (x) = 0
is a condensed notation for ∀i ∈ {1, 2...,m} , Fi(x) = 0. This means that we have m equality
constraints and p inequality constraints. The Lagrangian L is a function defined over Rn×Rm×R+p

by the following :

Definition 7.

∀x ∈ Rn, λ ∈ Rm, µ ∈ R+p, L(x, λ, µ) = f(x) + λF (x) + µG(x) (1.13)

The link between problem (1.12a) and the Lagrangian is provided thanks to the following
lemma :

Lemma 1.
Inf{x∈Rn} Sup{Rm×R+p}L(x, λ, µ) = Inf{F (x)=0 & G(x)≤0}f(x)

The following problem :

Inf Sup L(x, λ, µ) (1.14a)
x ∈ Rn (λ, µ) ∈ Rm × R+p



38 Chapitre 1. Technical background.

is called the primal problem. Lemma 1 states that solving the primal problem gives the exact
solution to problem (1.12a).
It is easy to demonstrate the following inequality :

Inf Sup L(x, λ, µ) ≥ Sup Inf L(x, λ, µ)
x ∈ Rn (λ, µ) ∈ Rm × R+p (λ, µ) ∈ Rm × R+p x ∈ Rn

The following problem :

Sup Inf L(x, λ, µ) (1.15a)
(λ, µ) ∈ Rm × R+p x ∈ Rn

is called the dual problem. As it will be seen later, the dual and primal problems are correlated
(with some assumptions) in case of the existence of the optimum.

In order to present the conditions that will characterize the optimum, we first need to define
the constraint qualifications.

Definition 8. Let x be a feasible point such that G(x) ≤ 0. We denote by B(x) the set B(x) =
{i ∈ {1, 2...p} , Gi(x) = 0} of the binding (or active) constraints in x.

Note that B(x) = φ is empty if all the constraints are not binding in x.

Definition 9. Let x be a feasible point such that G(x) ≤ 0. We will say that the constraints are
qualified in x if there exists a direction u ∈ Rn such that ∀i ∈ B(x), ∇Gi(x).u < 0 or ∇Gi(x).u = 0
and Gi is affine.

Constraint qualification is an important property that will be used to characterize the opti-
mum. The definition given above is a particular (the most useful) case of constraint qualifica-
tions. More general constraint qualifications can be found in (3). In particular, if the inequality
constraints are affine, constraint qualifications always hold.

We first present the necessary conditions that guarantee the optimum. These are the Karush-
Kuhn-Tucker conditions

Theorem 7. (KKT necessary conditions) If constraint qualifications hold in x∗ and if x∗ is
optimal for problem 1.12a, then :

∃(λ∗, µ∗) ∈ Rm × R+p, ∇f(x∗) +

m∑
i=1

λ∗i∇F (x∗) +

p∑
i=1

µ∗i∇Gi(x∗) = 0

F (x∗) = 0, G(x∗) ≤ 0, µ∗.G(x∗) = 0.

The KKT conditions we presented in Theorem 7 are necessary conditions of optimality. They
require no assumptions on the objective function or the constraints (except their differentiability
and constraint qualifications). The following theorem gives the sufficient conditions.
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Theorem 8. (KKT necessary and sufficient conditions) We assume that f and G are
convex functions, F is affine and constraint qualifications hold in x∗. x∗ is optimal for problem
1.12a if and only if

∃(λ∗, µ∗) ∈ Rm × R+p, ∇f(x∗) +
m∑
i=1

λ∗i∇F (x∗) +

p∑
i=1

µ∗i∇Gi(x∗) = 0

F (x∗) = 0, G(x∗) ≤ 0, µ∗.G(x∗) = 0.

In that case, the primal and dual problems have the same solution, which is (x∗, λ∗, µ∗).

We can therefore write :

Inf Sup L(x, λ, µ) = Sup Inf L(x, λ, µ)
x ∈ Rn (λ, µ) ∈ Rm × R+p (λ, µ) ∈ Rm × R+p x ∈ Rn

= L(x∗, λ∗, µ∗)

Theorem 8 is very useful because it provides necessary and sufficient conditions that charac-
terize the optimum.

It is important to highlight the inherent assumptions required in the KKT conditions :
– the objective function must be convex.
– the inequality constraints need to be defined thanks to convex functions and the equality

constraints thanks to affine functions.
– constraint qualifications.
In this thesis, these conditions will always be met. In particular, most of our

optimization programs maximize profits and we will always demonstrate that the
objective functions are concave. Our constraints are linear and therefore convex and
constraint qualifications always hold. The KKT conditions are thus necessary and
sufficient conditions for optimality.

Example 1. Let’s solve the following maximization problem :

Sup f(x1, x2) = x1

s.t. g1(x1, x2) = x1 + x2 − 1 ≤ 0
g2(x1, x2) = −x2 ≤ 0

In this particular example, the decision variable is a vector of R2. The constraint function G is
such that G(x1, x2) = (g1(x1, x2), g2(x1, x2)), n = 2 and p = 2. The objective function f is linear
and in particular convex. The function G is linear, too. Hence, constraint qualifications hold. The
KKT conditions are, in this example, necessary and sufficient for optimality. The dual variable
µ = (µ1, µ2) is such as µ ≤ 0 and we must solve the following system :
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∂f
∂x1

(x) + µ1
∂g1

∂x1
(x) + µ2

∂g2

∂x1
(x) = 0

∂f
∂x2

(x) + µ1
∂g1

∂x2
(x) + µ2

∂g2

∂x2
(x) = 0

µ1 ≤ 0
µ2 ≤ 0
g1(x) ≤ 0
g2(x) ≤ 0
µ1g1(x) + µ2g2(x) = 0

or

1 + µ1 = 0
µ1 − µ2 = 0
µ1 ≤ 0
µ2 ≤ 0
x1 + x2 − 1 ≤ 0
−x2 ≤ 0
µ1(x1 + x2 − 1) = 0
µ2x2 = 0

The optimal solution is (x1, x2) = (1, 0) and (µ1, µ2) = (−1,−1).

§ 1.3 Non-cooperative game theory

1.3.1 Introduction

Game theory is a mathematical way to study the interaction of a certain number of players
where each actor’s fate depends on what he does and what the others do. This situation is often
referred to as "strategic interaction." Intuitively, each player, in order to optimize his utility, will
have to anticipate the decisions of the others. The economic rationality is a common hypothesis to
the game theory frame. The oligopoly is a particular application of game theory. Let us consider
a set of producers of a homogenous good needed in a demand market. Each player has to choose
the quantity to produce in order to maximize his profit. His decision variable will influence the
global amount produced and therefore the market price. Consequently, he has the ability not only
to influence his profit, but also all the other producers’ payoff.

Economists commonly consider that game theory was founded in 1944 in the book "Theory of
games and economic behaviour" (10) by von Neumann and Morgenstern. There were some pre-
cursory works, in particular those of Antoine-Augustin Cournot in 1838, who studied the duopoly
outcome. von Neumann and Morgenstern studied situations where the benefit of one player is
equal to the loss of the others. This situation is called a "zero sum game". In 1951, Nash generali-
zed Cournot’s ideas of the duopoly and von Neumann and Morgenstern’ work to define and study
the equilibrium of a variable sum-game. The applications of his theory started to emerge in the
1970s especially in industrial economics, where it allowed the modeling of imperfect competition
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where market power is exerted.

It is important to note that the game theory principally relies on three assumptions :
– Each player strives to optimize, rationally, his payoff.
– Each player knows that all the other players do the same.
– Each player knows exactly the game rules and frame (number of players, their possible

actions, etc.).

1.3.2 Definitions and notation

It is common to distinguish between two kinds of games :
– Cooperative games.
– Non-cooperative games.
In a cooperative game, a set of players can form coalitions and act as a unique player. Their

decision variables are correlated. On the contrary, no coalition can be formed when the game
is non-cooperative. In that case, each player has a certain number of actions, called strategies
that influence both his and the other player’s payoff. A game can be described in a strategic or
extensive form. When the description is strategic, all the strategies are known by all the players
and each player has the same information about the influence of each other player’s actions over
the payoff. Therefore, each player has to select a strategy, in order to optimize his payoff, given
this information. When the game is extensive, it can be defined thanks to a tree, where each node
represents the status of the game at a given moment, i.e., the player who has to play, his possible
strategies, and the information he has. The final payoff can be calculated at the level of the tree’s
leaves.

Each player’s possible action that influences the payoff is called a strategy. A set of pure
strategies is a set where each strategy is chosen with certainty. On the opposite, a set of mixed
strategies is a set where each strategy is played, randomly, with a given law probability.

Non-cooperative game theory is very useful for modeling the behavior of oligopolistic economic
agents, who can influence each other’s profit while exerting market power. It can also be used to
represent international negotiations between governments, electoral competition, etc. In this thesis,
non-cooperative game theory will allow us to model the strategic interactions of gas chain players
who can exert market power (producers, independent traders etc.).

1.3.3 Strategic games, definition and notation

In this thesis, we will consider only the situation where the number of players is finite N . In
this chapter, the set of players will be denoted by P = {1, 2...N}. For each player p ∈ P , we define
the set of possible strategies Sp. The joint set of all possible strategies is S = ΠpSp. The product
Π is a notation for the Cartesian product S1 × S2... × SN . For each player p ∈ P , we define the
payoff fp, as a function of S. Player p’s payoff is such that fp : S −→ R. This payoff is a function
of the variable s ∈ S, which means that fp depends on the the joint strategies (of all the players),
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or that each player can influence all the other players’ payoff.

For a two-player game where S is finite, we can represent the game thanks to two matrices
M1 and M2. If player 1’s (respectively player 2) strategies set is

{
s1

1, s
1
2...s

1
n

}
(
{
s2

1, s
2
2...s

2
m

}
), then

M1 and M2 are in Rn×m, M1(i, j) = f1(s1
i , s

2
j ) and M2(i, j) = f2(s1

i , s
2
j ), as shown in figure 1.4.

Figure 1.4 – A two-player strategic game.

Example 2. Figure 1.5 gives the payoff matrix of the Rock-Paper-Scissors game. There are two
players and the set of strategies is S1 = S2 = {Rock, Paper, Scissors}. Each strategy of S =
S1×S2 leads to a couple of gains, written in parenthesis. The left member is the first player’s gain
whereas the right member is the second player’s payoff.

Figure 1.5 – The Rock-Paper-Scissors game.

One can notice that in the Rock-Paper-Scissors game, the sum of the players’ payoffs is
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always 0, no matter the strategies chosen by the players. This can be rewritten as follows :
∀s ∈ S,

∑
p fp(s) = 0. This remark leads us to the following definition :

Definition 10. A constant-sum game is a game where :

∃C ∈ R, such as ∀s ∈ S,
∑
p

fp(s) = C (1.18)

A zero-sum game is a game where :

∀s ∈ S,
∑
p

fp(s) = 0 (1.19)

A constant-sum game is the typical example of a sharing game situation, where the gain C
must be shared between the players, regarding the strategies they decide to go for. The zero-sum
game is the winner/loser situation (in the case of two players), where the gain obtained by one
player is exactly the loss of the other.

Let us now consider the two-player game given in figure 1.6. Each player has two possible
strategies, a and b.

Figure 1.6 – A two-player game.

If player 1 selects strategy a, then player 2 must choose strategy b, because it is the one that
maximizes his payoff. Similarly, if player 1 tries strategy b, then player 2 must also select strategy
b, for the same reason. No matter what player 1 chooses, player 2 should always go for strategy
b. We will say that b is a dominant strategy for player 2. Strategy b is also a dominant strategy
for player 1. To correctly define the notion of dominant strategy, it is better to use the following
notation : if s ∈ S is a joint strategy and p a player, we will denote by S−p the joint set of the
other players : S−p = Πj 6=pSj and we will write s = (sp, s−p) where sp ∈ Sp is the strategy wanted
by p and s−p the joint strategy decided by the others.

Definition 11. Strategy s∗p is a dominant strategy for player p if

∀s−p ∈ S−p, ∀sp ∈ Sp, fp(sp, s−p) ≤ fp(s∗p, s−p) (1.20)
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A dominant strategy for one player is a strategy he needs to play in order to optimize his
payoff, no matter what the other players do.

1.3.4 Equilibria definition

It is reasonable to assert that for the situation presented in figure 1.6, the outcome of the game
will be (b,b), where each player plays his dominant strategy. The corresponding payoff is (2,2).
This introduces the notion of equilibrium. This remark leads to the following definition :

Definition 12. (The dominant strategies equilibrium) A joint strategy s∗ ∈ S is a dominant
strategies equilibrium if :

∀p ∈ P, s∗p is a dominant strategy for p (1.21)

or similarly :
∀p ∈ P, ∀s−p ∈ S−p, ∀ sp ∈ Sp, fp(sp, s−p) ≤ fp(s∗p, s−p) (1.22)

In the game given in figure 1.6, (b, b) is an equilibrium in dominant strategies. In the Rock-
Paper-Scissors game, there is no dominant strategy for any player. Therefore, the existence of a
dominant strategies equilibrium is not always ensured. This is principally due to the fact that
games having dominant strategies are actually "pseudo-games" 1 where the outcome is straight-
forward. It may be interesting to weaken the definition of the quilibrium of a non-cooperative
game.

Definition 13. (The Nash-Cournot equilibrium) A joint strategy s∗ ∈ S is a Nash-Cournot
equilibrium if, starting from that strategy, no player has an incentive to change his strategy in
order to increase his payoff.

∀p ∈ P, ∀sp ∈ Sp, fp(sp, s∗−p) ≤ fp(s∗p, s∗−p) (1.23)

It is straightforward that an equilibrium in dominant strategies is a Nash-Cournot equilibrium
and there is no other possible Nash-Cournot equilibria.

Let’s consider the two-player game given in figure 1.7. Each player has two strategies {a, b}.

It is easy to note that this game cannot have possible Nash-Cournot equilibria and therefore
has no dominant strategies equilibrium. Thus, one can conclude that the existence of a Nash-
Cournot equilibrium is not always ensured. This is also the case of the uniqueness. 2 This is one
motivation of the introduction of mixed strategies. A mixed strategies equilibrium describes the
situation where each player has the possibility to choose his strategy with a given probability. Each
player’s problem is to find the optimal probabilities associated with his strategies set, in order to
maximize the payoff, while trying to take into account, by anticipation, his opponents’ actions.

1. A pseudo-game is a game where the players always have a "winning strategy", no matter what the opponents
do.

2. It is easy to note that a game whose payoffs are equal regardless of the joint strategy chosen by the players
will lead to multiple Nash-Cournot equilibria.
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a

p
layer 1

player 2

(-3,-3) (0,-2)

a b

p
layer 1

(-2,0) (-1,-1)b

Figure 1.7 – A two-player game.

Such situations are not used in this thesis where we focus mainly on the Nash-Cournot equilibria
characterization, in a deterministic strategies choice. More details and advantages regarding the
mixed strategies equilibrium can be found in (10). 3

§ 1.4 Oligopolistic markets and mixed complementarity pro-
blems

1.4.1 Introduction

An oligopoly is a market situation where a small number of firms compete in order to sell a
specific product. If their number is small enough, they can become price makers and exert market
power. Market power is the economic action of a firm that can influence its profit by reducing
the quantity of the product it brings to the market in order to force the price up. Such a si-
tuation characterizes the European natural gas markets. Indeed, the current European natural
gas trade is dominated by oligopolies in the upstream. Since the production is very concentrated
geographically, market power can be exerted by the different producers, in the downstream. The
conventional natural gas producing countries that sell in Europe are : 4 Russia, Algeria, the United
Kingdom, Norway, the Netherlands and Quatar (LNG). Their exports represent more than 90%
of the European natural gas consumption. Since their number is not large, they may have an
incentive to exert market power.

Mathematically speaking, an oligopoly is often modeled by considering the strategic inter-
actions between the producers, who compete a la Cournot. A Cournot competition represents

3. Such advantages include for instance more simple results on the existence or uniqueness of the equilibria.
4. The list is not exhaustive. It includes the biggest producers (in volume).
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the situation where the producers have to decide their optimal volumes, or quantities, they will
bring to the market. The price is hence an output of this interaction. On the contrary, a situation
where the producers fix the price (as a decision variable) is called a Bertrand competition. In both
cases, the consumers are modeled thanks to their demand or inverse demand function, which can
be seen as their reaction function. Considering the inverse demand function is necessary in the
Cournot competition case. It relates the market price to the total volume decided by the producers.

As we will see later, an oligopoly can be studied thanks to non-cooperative game theory where
the market outcome will be characterized by a Nash-Cournot equilibrium. Mathematically, such
a situation is formulated using a mixed complementarity problem.

The different economic market structure descriptions can be summarized in the following
figure :

The market competition

Perfect competition Imperfect competition

Monopoly Oligopoly

Price, Consumption, Production, Costs etc.

Cooperative Non cooperative

Simultaneous play Non Simultaneous play
Stackelberg competition

Cournot competition
(quantities)

Bertrand competition
(prices)

Figure 1.8 – Possible market structure modeling.

The competition can either be perfect (price-taking producers) or imperfect (price-making
producers). In an imperfect competition context, some actors can influence a market parameter
(in most situations the price) by changing their actions (production, for instance) in order to
increase their profit. Such a situation is not possible in a perfect competition market (when the
price is regulated, for instance). When there is market power, it can be exerted by one or more
players.
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1.4.2 A simple oligopoly

Let us present, as an example, a simple interaction between gas producers, under non-negativity
constraints. The set of producers is I and each producer i ∈ I will have to decide its optimal out-
put xi to sell to the consumers. These consumers have a welfare maximization program that links
the gas price p to the quantity consumed q by the inverse demand function, which will be denoted
by f . f is a decreasing function. To simplify the calculations, we will assume that it is linear :
f(q) = a− bq where a and b are positive. b 6= 0 reflects the fact that the demand is elastic to the
price. A situation where b = 0 induces that the demand is inelastic, or fixed exogenously by the
consumers. The unit production marginal cost of a producer i is constant : ci.

p = f(q) = a− bq (1.24)

Producer i’s profit maximization program is given by the following :

Max Πi = (a− b
∑

j∈I xj)xi − cixi
s.t. xi ≥ 0∑

j∈I xj denotes the total quantity q of gas brought to the consumers. Because of the term
a− b

∑
j∈I xj , producer i’s payoff Πi depends not only on his decision variable xi but also on the

other producers’ decision variables xj 6=i. This situation can be seen as a non-cooperative game. The
players are the producers and each player’s strategy set Si is R+. The Nash-Cournot equilibrium
is the market situation where the quantities x∗i are such as :

∀i ∈ I, x∗i ∈ R+ and ∀i ∈ I, Πi(xi, x
∗
j 6=i) is optimal when i produces x∗i (1.25)

Since the inverse demand function is linear, it is easy to notice that each producer’s objective
function is concave with respect to his decisions variables. In other words, taking the other pro-
ducers’s decision variables as exogenous in his optimization program, each producer deals with
a concave profit function. Since the constraints are all linear, constraint qualifications hold and
the KKT conditions (or the first-order conditions) are necessary and sufficient to characterize the
optimum. Therefore, if λi are the dual variables associated with the non-negativity constraints,
we have to look for the primal and dual variables x∗i and λi such that :

∀i ∈ I, ∂Π
∂xi

(x∗)− λi = 0 (1.26)
∀i ∈ I, x∗i ≥ 0 (1.27)
∀i ∈ I, λi ≤ 0 (1.28)
∀i ∈ I, λix

∗
i = 0 (1.29)

These equations are often rewritten by getting rid of the non-negativity constraints dual va-
riables. This leads to the following formulation : looking for the primal variables x∗i such that :



48 Chapitre 1. Technical background.

∀i ∈ I, ∂Π
∂xi

(x∗) ≤ 0 (1.30)
∀i ∈ I, x∗i ≥ 0 (1.31)
∀i ∈ I, ∂Π

∂xi
(x∗)x∗i = 0 (1.32)

or, in a more condensed notation :

∀i ∈ I, 0 ≤ xi ⊥ ∂Π
∂xi

(x∗) ≤ 0 (1.33)

The ⊥ sign is the orthogonality sign. It means that the product of the two corresponding terms
is nought.

Equation 1.33 is the basic instance of a mixed complementarity problem, that will be presented
later on. This orthogonality condition is often called the slackness condition. If we use the linear
formulation of the inverse demand function, equation 1.33 becomes :

∀i ∈ I, 0 ≤ x∗i ⊥
(
a− b

∑
j x
∗
j − ci − bx∗i

)
≤ 0 (1.34)

If ∀i ∈ I, a > (n+ 1)ci −
∑

j cj , then the Nash-Cournot equilibrium solution to equation 1.34 is
such that :

x∗i =
a+

∑
j cj − (n+ 1)ci

(n+ 1)b
(1.35)

The consumption is

q∗ =
na−

∑
j cj

(n+ 1)b
(1.36)

and the price

p∗ =
a+

∑
j cj

(n+ 1)
(1.37)

The first observation one can draw from the oligopoly study is that this situation is more ge-
neral than the pure and perfect competition frame. Indeed, if the players are symmetric (i.e., all
the players support the same cost c : ∀i, ci = c), the price converges toward c when the number of
strategic players is big enough. The economic theory shows that the pure and perfect competition
price is always equal to the marginal production cost c, otherwise, the producers would trigger a
price war that would decrease the price to the marginal cost (Bertrand’s paradox). The second
observation to draw from our study is the following : the market price (quantity) induced by
a strategic interaction is higher (lower) than the pure and perfect competition price (quantity).
This is a result of the market power exercice : the producers have a strong incentive to reduce the
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volumes to force the price up, because they know they can influence the price.

To introduce mixed complementarity problems, let us write the general formulation of an oli-
gopoly : the set of players is I. Each player has a set of decision variables that can be summarized
in one vector variable xi ∈ Rn. The global decision vector x is x = (x1, x2...xN ). Each player faces
feasibility constraints of the form : gi(xi) ≤ 0 and hi(xi) = 0. His payoff is Πi(x). This notation
holds an implicit assumption which is the following : As opposed to the payoffs, the players do
not influence each other’s feasibility set. Such a situation is referred to as the Standard Nash-
Cournot game, as opposed to the Generalized Nash-Cournot game, where the players have
the possibility to change, via their decision variables, the other players’ constraints sets. Genera-
lized Nash-Cournot (or GNC) games will be presented in chapter 8.

Player i’s profit maximization program is given by the following :
Max Πi(x)
st gi(xi) ≥ 0 (λi)

hi(xi) = 0 (µi)
xi ≥ 0

The dual variables (vector variables) are written in parenthesis. If the profits Π are concave
functions of the vector variables xi (regardless of the other variables x−i ) and constraint qualifica-
tion holds, then the KKT conditions are necessary and sufficient to characterize the optima. The
Nash-Cournot equilibrium is given by the following equations :

∀i ∈ I, 0 ≤ xi ⊥ (∇xi(Πi)(x) + λi∇xi(gi)(xi) + µi∇xi(hi)(xi)) ≤ 0 (1.38)
∀i ∈ I, 0 ≥ λi ⊥ gi(xi) ≤ 0 (1.39)
∀i ∈ I, free µi hi(xi) = 0 (1.40)

This is a typical formulation of a mixed complementarity problem.

1.4.3 Complementarity Problems

A Non-Linear Complementarity Problem (or NCP) is a mathematical class of problems that
can be formulated by the following :

Definition 14. (MCP) Given a point-to-point mapping F : Rn −→ Rn and n1, n2 ∈ N such as
n1 + n2 = n, we want to solve the following problem :
Find x ∈ Rn1 and y ∈ Rn2 such that :
∀i ∈ 1, ...n1, Fi(x, y).xi = 0
∀i ∈ 1, ...n1, xi ≥ 0
∀i ∈ 1, ...n1, Fi(x, y) ≥ 0
∀j ∈ 1, ...n2, Fn1+j(x, y) = 0
∀j ∈ 1, ...n2, yj free
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The previous equations can be re-written using the ⊥ sign :
∀i ∈ 1, ...n1, 0 ≤ xi⊥Fi(x, y) ≥ 0
∀j ∈ 1, ...n2, free yj , Fn1+j(x, y) = 0

If the function F is linear, the problem is called a Linear Complementarity Problem (LCP).
A Mixed Complementarity Problem (MCP) is a more subtle problem where the variables xi can
be constrained by other than 0 upper and lower bounds. More particularly, if we introduce new
bounds ui and li, we have to replace the equation ∀i ∈ 1, ...n1, 0 ≤ xi⊥Fi(x, y) ≥ 0 by the
following :

if xi = li Fi(x, y) ≥ 0
if li < xi < ui Fi(x, y) = 0
if xi = ui Fi(x, y) ≤ 0

Considering equations (1.17a), it is straightforward that a standard optimization problem,
whose solution can be obtained thanks to the KKT conditions, is a particular case of MCPs. Si-
milarly, a non-cooperative game’s Nash-Cournot equilibrium, whose strategy sets are continuous,
is also a particular case of MCPs. A market where strategic interactions are exerted can therefore
be modeled as an MCP.

Figure 1.9 gives the different market structure situations that can be modeled in a comple-
mentarity form.

The market competition

Perfect competition Imperfect competition

Monopoly Oligopoly

Price, Consumption, Production, Costs etc.

Cooperative Non cooperative

Simultaneous play Non Simultaneous play
Stackelberg competition

Cournot competition
(quantities)

Bertrand competition
(prices)

Figure 1.9 – Market structure situations that can be modeled thanks to MCPs.
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All the natural gas markets models we develop in this manuscript will be presented in a
complementarity form, using the KKT conditions.
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§ 1.5 Conclusion

This chapter presents the main mathematical and economic tools that will be used in the
manuscript : optimization theory, non-ccoperative game theory and mixed complementarity pro-
blems (MCP).

First we defined general optimization problems and presented the main theorems that ensure
the existence/uniqueness of the optimal solution. The KKT conditions allow one to characterize
easily the solution. The second part of the chapter focuses on non-cooperative game theory that
allows us to take into account strategic interactions in economic structures modeling. We have
defined in particular Nash-Cournot equilibra that may characterize imperfect competition markets
outcomes. Finally, we applied optimization and non-cooperative game theories to standard imper-
fect competition markets modeling, in order to find necessary and sufficient conditions allowing
us to calculate the Nash-Cournot equilibrium. This led us to define and study mixed complemen-
tarity problems.

All these notions will be used in our natural gas markets modeling.
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A theoretical approach.

§ 2.1 Introduction

The security of energy supply is all but a new concern for energy importing countries. However,
this concern has certainly been rising in importance since the 1970s. It is not anticipated that this
trend is going to stop as an increasing dependence on imported energy is expected in the coming
decades (12). Among the different energy sources, natural gas constitutes a particular case that
attracts a lot of attention.

In this part, though we explicitly focus on the European situation, the framework developed
herein remains general and can be adapted to analyze the situation of large importing countries
(such as Japan, South Korea, Taiwan, China, India, to name but a few) without loss of generality.
Nowadays, there are several factors at work which explain the rekindling debate on the security
of gas supplies in those countries. Firstly, on the supply side : a growing reliance on imports over
longer distances is observed and a significant increase in the concentration of foreign supplies is
expected for some regions like Europe (4). Secondly, speculation about the future behavior of the
Gas Exporting Countries Forum (GECF) refer to a possible cartelization (17). Thirdly, the recent
supply interruptions observed in a number of OECD regions (11) suggest that, whatever the causes
(international tensions, terrorism or technical hazards impacting unreliable infrastructures), low
but positive probabilities of interruption have to be considered as likely risks. And, last but not
least, natural gas plays an ever-increasing role in the energy mix : in most OECD countries, na-
tural gas is the fastest growing fuel in the power generation mixes. Given the rigidities of power
generation in the short-run, this growing interdependence between gas and electricity also raises
concerns about both the security and the reliability of electricity supplies (11).

Before going further, we need to discuss how the downstream part of the gas industry usually
manages the possible shortfall in upstream gas. Possible remedies include : large-scale commercial
storage, strategic "stockpiles" (if any), re-routing of existing gas flows, increased production from
other suppliers that may compensate the shortfall of others. In any case, these instruments might
be unavailable. For example, local geological conditions can impede the construction of large un-
derground gas storages (e.g., Belgium), capacity constraints on existing transmission networks
can prevent the suitable re-routing of existing gas flows (e.g., South Eastern European countries),
local production can be inexistent (e.g., Bulgaria). Until now, strategic stockpiling, a well-known
measure implemented to increase the security of oil supplies ((20) ; (18)), has not been viewed as
a workable solution in the case of natural gas supplies ((11), pp. 67-83). Now, the possibility to
create some kind of precautionary storage is currently being discussed in Europe. However, given
the costs of these measures, it is not certain that the stored volumes will be sufficient to fully
replace the disrupted supplies. As a result of these disruptions, retailers may have no alternative
but to pass along the shortfall to end-users through selective interruptions. In this chapter, we
analyze how these disruptions influence the retailers’ contracting behavior since they can try to
minimize the impact of those interruptions using diversified import sources.

Because of this perceived vulnerability, the security of gas supplies has inspired a huge amount
of literature that can be roughly divided into two categories. The first one is by far the largest and
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gathers all the contributions dominated by purely geopolitical concerns. 1 The second category
uses a microeconomic framework to analyze energy security. Apart from some rare contributions
(e.g., (15) ; (9) ; (16)), the literature dedicated to the particular case of the gas industry is not
tremendously developed. Moreover, most of these contributions refer to a now outdated insti-
tutional context. Until the 1990s, the European natural gas industry was subject to government
regulations and controls. In most countries, regulated state-owned or state-controlled corporations
were responsible for most of the purchase, transport, and sale of natural gas to the distributors. 2

As far as economic analysis is concerned, the decisions of those firms regarding supply security
were captured in (15) or (9). From an economic policy perspective, this previous organization
was suspected to provide a "cosy arrangement" : import contracts did not matter because the
rate-of-return regulation provided a guarantee that costs would be met and, hence, the guarantor
would not be potentially stranded (7).

Following the UK’s liberalization and privatization reforms of the late 1980s (e.g., (23) ; (19)),
a complete transformation of the regulatory regime started in Continental Europe in the early
2000s. Non-discriminatory access provisions to the gas infrastructures (transportation, storage,
and LNG terminals) were introduced so as to guarantee equal opportunities to all players (10). As
a result, competition emerged among importers, now privately-owned firms. These firms, named
retailers, purchase various inputs (gas from local and foreign upstream producers, transport ser-
vices and services necessary to meet fluctuations in demand) and sell gas to end-users. Customers
are no longer committed to any particular retailer, creating the conditions for a competitive rivalry
among these firms.

This reform suggests a thought-provoking research question : does competition among gas
retailers influence their choices of inputs ? Framed differently, it simply asks for an investigation
of retailer’s contracting behavior in a gas market dominated by long-term import contracts. How
do the retailers’ contracting choices influence the market outcomes (gas price, social welfare in the
importing market, retailers profits, etc.) regarding the degree of supply insecurity.

In this part, we provide an extension of the models developed by (15) and (9). In these
contributions, the authors study the decisions taken by a representative central gas buyer whose
objective was to maximize the expected utility of gas consumption net of the purchaser cost of
buying gas. The objective functions used here explicitly take into account possible interruptions
whose occurrences are captured thanks to perceived probabilities. Both long- and short-run issues
were jointly considered. The costs attached to each of these disruption states were valued thanks
to short-run consumer surplus concepts while both energy purchases and consumptions under nor-
mal conditions were related to the long-run demand curve. Both papers provided a very effective
formulation but captured the essence of a now outdated institutional arrangement. Compared to
these early papers, we explicitly model retailers as profit-maximizing firms engaged in a Cournot
competition. This chapter presents and justifies the theoretical framework developed for analyzing
their import diversification strategies. To illustrate the possibilities offered by this model, three

1. For example, several recent articles propose measures of energy security ((21) ; (14) ; (13)).
2. In some countries (France, for example), a legal import monopoly was even granted to one particular firm.
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empirical illustrations based on real case studies are successively presented and commented on
chapters 3. In the first example, a historical analysis of the German situation in the early 1980s
is provided. In the second, the case of South Eastern Europe is studied to analyze the possible
disruptions of Russian imports and the consequences on the importer’s behavior. In the third one,
a comparison between two kinds of market regulations in Spain is provided in order to quantify
their impact on the social welfare.

The same notation will be used in chapters 2 and 3.

§ 2.2 Formulation of the problem

2.2.1 Preliminary remarks and notations

As this chapter explicitly addresses the particularities of the Continental European gas indus-
try, some definition is needed to justify the assumptions chosen in our theoretical model. In this
work, we assume a Cournot competition among the natural gas retailers of a given country and
we study a hypothetical long-run equilibrium. To be more specific, the model corresponds to a
static long-run equilibrium in which costs reflect a typical year.

Moreover, our analysis is focused on long-run aspects. The gas infrastructure required to supply
gas to end-users is not explicitely modeled. This may be interpreted as assuming a fully accessible
gas infrastructure without bottlenecks. This assumption may perfectly reflect European gas infra-
structure conditions in the long-run, when short-run regulatory and investment issues are resolved.
Thus, the retailer’s costs can be summarized as the total cost of the natural gas purchased from
the different upstream producers.

We will use these notations :

i index for retail firms in the country under study,
I the set of retailers in the country under study,
j index for upstream gas producers,
J the set of upstream gas producers.

Here we assume that all possible supply disruption states can be enumerated and we simply
note Ω the (finite) set of all these random events named ω. For simplicity, the particular state ω of
no-disruption is named 0. Whatever the disruption state ω, its occurrence can be appraised thanks
to a probability θ(ω). Obviously, we have

∑
ω∈Ω θ(ω) = 1. We also assume that a consensus exists

in the country on both the definition of the discrete set Ω and on the value of the probability
of all the different events. Thus, those probabilities constitute common knowledge for the retai-
lers. This assumption seems reasonable as a consensus is generally observed in most importing
countries regarding the disruptive nature of the various importing schemes. Therefore, we do not
model either the individual firms’ subjective perception of the disruption risk, or the difference
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between real risks and risk perceptions. From a practical perspective, applied procedures like the
one presented in (2) can be used to evaluate those probabilities.

We now have to explain how a retailer i ∈ I acquires its gas. We assume that there are no who-
lesale markets and the volumes purchased are supposedly entirely obtained thanks to pre-existing
bilateral contracts. At first sight, this assumption might look surprising since the pro-competitive
move of the early 2000s was expected to be accompanied by the rapid development of wholesale
spot markets in Continental Europe (10). But, this emergence has been far slower than expected
and the long-term bilateral arrangements are still dominant. The need for a transition period
to phase out pre-existing oil products indexed long-term contracts is not a sufficient ground to
explain the continuing pre-eminence of these long-term contracts, and industrial observations sug-
gest that retailers are still ready to engage in long-term bilateral trade. Despite early barriers to
entry concerns that motivated an in-depth sectoral analysis by the European Commission (5),
those long-term arrangements are now fully admitted by the European authorities and all juri-
dical actions against long-term contracts have been withdrawn. 3 According to gas experts, the
dominance of long-term supplies is fading in western Europe but this affirmation does not hold
for Eastern Europe where the upstream market structure is much more concentrated. Hereafter,
we focus on the case of Eastern European gas markets.

In this study, we do not model the competitive interactions among suppliers who compete in
both price and quality of their supplies (in this context, quality would be the security of their
supplies). As a result, we assume that the upstream prices of natural gas are set exogeneously. 4

Our assumptions are based on the results of the sectoral inquiry led by the European Commission
(5). Firstly, gas prices may differ across sources j ∈ J as evidence suggests that price indexation
formulas used in long-term contracts can differ from one producer to another ((5), p. 103, fig. 32).
Secondly, the European Commission noted that price indexation formulas are quite homogeneous
among buyers located in a given region : either the UK, western or Eastern Europe ((5), p. 104, fig.
33). Thus, we assume no-discriminatory pricing : the price of a given source j ∈ J is unique and
proposed to all the potential buyers i ∈ I. Lastly, this inquiry clarifies the price provisions used
in these bilateral long-term arrangements. In these contracts, the price of gas is settled thanks to
predetermined indexation formulas that establish a direct linkage with the wholesale spot price of
oil products. Given the limited short-run interactions among gas and oil products, we can assume
that a disruption of gas supplies has no impact on the prices of oil products and hence on gas
prices. Moreover, oil products price uncertainty is not modeled here. Thus, upstream prices are
assumed to be constant across all the possible disruption states. In sum, upstream prices can be
viewed as an exogeneously determined vector of prices (pj)j∈J , where each component corresponds
to the price pj proposed by the producer j.

The amount of gas purchased by the retailers i from the producer j is named x0
ij . This quantity

3. In fact, the conclusions of this sectoral analysis were published just after the first Russo-Ukrainian dispute.
Thus, they emphasize the capability of long-term contracts to provide a workable solution to the well-known "hold
up" problem caused by ex post opportunism on the supply side.

4. A complete discussion on the fixation of this contractual price can be found in the interesting collection of
papers presented in (6).
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corresponds to the volume of gas supplied by j to i under a no-disruption state. For a retailer,
this quantity can obviously be considered as a decision variable.

Under a given disruption state ω ∈ Ω, the subgroup of producers whose supplies are disrupted
is named Sω. The quantity of gas delivered to a retailer i by a gas producer j under a particular
disruption state ω ∈ Ω is equal to xωij = (1− δSω(j))x0

ij where δSω(j) takes the value 1 if the gas
producer j belongs to the collection of disrupted producers Sω and 0 otherwise. We observe here
that the disruption state index δSω(j) attached to the producer j does not depend on i, which
means that a disruption from this producer corresponds to a total disruption of all the volumes
purchased by the different retailers. Stated differently, this means that there is no discrimination
among retailers : if a producer decides to cut its supplies and stop deliveries to an infrastructure
then those supplies are simultaneously cut for all the retailers. This assumption implies that either
for technical or geopolitical reasons, all retailers are affected to the same degree by the disruption.
It is important to note that our framework assumes that there is no supply-side response to a
disruption : the occurrence of a disruption does not modify the bahavior of the non-disrupted
producers. In particular, we do not model the flexibility provisions that can partially relieve the
buyers’ "Take or Pay"’ obligations.

To simplify, the total amount of gas purchased and consumed under a given disruption state
ω ∈ Ω is named xω =

∑
(i,j)∈I×J x

ω
ij . In particular, x0 is the total volume of gas purchased under

a no-disruption state. Similarly, we note xωi =
∑

j∈J x
ω
ij the total amount of gas purchased by a

given retailer under the state ω.

Added to that, two inverse demand functions are needed. In the following, we first stick to
a general formulation and denote : f(k) the long-run willingness to pay for the gas where f is
twice differentiable and f ′(k) < 0, and g(k, q), the short-run willingness to pay for quantity q,
parametrically depending on the long-run consumption k. We assume that g(k, q) is twice diffe-
rentiable with ∂g/∂k > 0 and g(k, k) = f(k), (∀k ∈ R+∗). Indeed the short-run willingness to
pay for the long-run quantity is equal to the long-run willingness. In the rest of the chapter k
(respectively q) will denote the long (respectively short)-run quantity of gas. We also use a dumb
variable t to denote the long- or short-run volume when needed in an integral. The description of f
and g is general, a particular specification of the inverse demand functions will be detailed later on.

2.2.2 A formal representation of disruption costs

In this study, we assume that gas retailers only sign firm supply contracts with their custo-
mers. Moreover, we assume that the retail price of gas cannot be adjusted in the case of a sudden
short-run disruption of gas supply (cf. the previous presentation of the rigidities of the natural gas
industry). Besides, consumers are supposed to ignore the possible occurrence of sudden disrup-
tions. Therefore, they assume that the total contracted amount of gas x0 will be delivered. Should
there be an interruption in deliveries, we assume that a retailer is required to make compensa-
tion payments to its disrupted customers (for example, with claims). As we are dealing with brief
events, the compensation has to take into consideration the limited responsiveness of the short-run
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demand. Thus, the corresponding consumer unease can be approximated thanks to the short-run
inverse demand function. For a disruption state ω, the total disrupted quantity is x0−xω and the
corresponding consumers surplus variation is equal to :

∫ x0

xω g(x0, t)dt.

Of course, retailers are free to decide their upstream supply mixes. The composition of the
input mix may thus vary from one retailer to another. In the event of a disruption, requiring the
virtuous retailers to pay for the consequences of risky choices made by others would obviously
create an incentive for the retailers to select the lowest cost, higher risk choice of input. Such a
mechanism is both unjustifiable and unfair. For each disruption case, each retailer’s payment to
consumers is thus assumed to be set in proportion to its own responsibility in the total disruption.
Formally, it means that under a disruption state ω ∈ Ω\ {0}, a given retailer i incurs a positive
disruption cost DCi(x0, ω) equal to the payment required to its disrupted consumers :

DCi(x
0, ω) =

∑
j∈J

(x0
ij − xωij)

x0 − xω

∫ x0

xω
g(x0, t)dt (2.1)

Besides, we assume that a retailer is not required to pay the producers involved in Sω for the
disrupted volumes of gas observed under a state ω ∈ Ω\ {0}. Under that particular state, retailer
i’s profits are thus equal to the profits earned under the no-disruption state named 0, minus the
disruption costs DCi(x0, ω) plus

∑
j∈Sω

pjx
0
ij .

2.2.3 The model

This section presents the agents’ objectives. We reiterate that we need two inverse demand
functions. The first one, f(k) is the long-run willingness to pay for the gas. The second, g(k, q) is
the short-run willingness to pay for quantity q, parametrically depending on the long-run consump-
tion k. In the following, we use a dumb variable t to denote the long- or short-run volume when
needed in an integral.
Consumer : here, the decisions of the end-users are based solely on the retail price of gas na-
med P ?. We assume that gas end-users strive to maximize the value received from consumption
minus the payments to retailers, assuming they cannot affect P ?. Besides, they do not take into
account the propensities of possible sudden disruptions. This assumption seems consistent with
the industrial reality since most end-users completely ignore the details of the supply mix decided
by the retailers and know almost nothing about the origin of the natural gas they are burning. As
a result, their decisions cannot consider these disruption states. This behavior is thus represented
by :

CONS(P ?) : Max

∫ k

0
f(t)dt− P ?k

{k}
k ≥ 0
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If the problem has an interior solution it is characterized with levels of consumption k by :
f(k) = P ?.
Gas retailer : here, we model the contracting behavior of a risk-neutral firm. To keep the model
simple, we will not consider the case of a risk-averse firm. Thus, its optimization problem is to
choose a purchase policy (x0

ij)j∈J under a no-disruption state so as to maximize its expected profit
across all possible disruption states. Since we do not model possible recourse actions in case of dis-
ruption, the only decision variables are the contractual long-term volumes decided by the retailers.
RETAILERi :

Max Π̄i(x
0
ij , (x

0
lj)l 6=i) =

∑
j∈J

(
f(x0)− pj

)
x0
ij −

∑
ω∈Ω\{0}

θ(ω)

DCi(x0, ω)−
∑
j∈Sω

pjx
0
ij

{
x0
ij , j ∈ J

}
x0
ij ≥ 0 (∀j ∈ J)

To simplify, the retailer’s i expected profits can hence be rewritten as follows : Π̄i(x
0
i ) = A+B+C

where :

A =
∑
j∈J

(
f(x0)− pj

)
x0
ij (2.2)

B = −
∑

ω∈Ω\{0}

θ(ω)DCi(x
0, ω) (2.3)

C =
∑

ω∈Ω\{0}

θ(ω)
∑
j∈J

pjx
0
ijδSω(j) (2.4)

The partial derivative of Π̄i with respect to the decision variable x0
ik is given in Appendix 1.

If the problem has an interior solution, the associated KKT conditions are :

For x0
ik : 0 ≤ x0

ik ⊥ ∂Π̄i

∂x0
ik

(x0
i ) ≤ 0 (2.5)

where the derivative
∂Π̄i

∂x0
ik

(x0
i ) is given in Appendix 1. Once the KKT conditions are written, it is

possible to solve the model and find the traders’ strategic import choices.

§ 2.3 The model’s application

The framework at hand seems suitable for capturing the key elements of some of the situations
observed in the European natural gas industry. To illustrate this capability, it is worthwhile to
choose a particular functional form for the long- and short-term inverse demands. In this section,
we present some illustrations based on an iso-elasticity assumption for both the short-run and the
long-run inverse demand functions. The long-run (respectively short-run) price elasticity is named
ε0 (respectively ε1).
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2.3.1 The iso-elasticity assumption

Here we follow (15) and (9) by assuming that, in the long-run, the inverse demand function is
f(k) = ak

− 1
ε0 where a is a constant parameter and k represents the long-run consumption amount.

As a result, the short-run demand function associated with this particular long-run consumption
k is given by g(k, q) = ak

1
ε q
− 1
ε1 where q is the amount of natural gas effectively consumed in the

short-run and ε is a parameter defined so that :

∀k ∈ R g(k, k) = f(k). (2.6)

Thus, we have
1

ε
=

1

ε1
− 1

ε0
(2.7)

We also assume that the long-run inverse demand is more elastic than the short-run one, i.e.,
ε0 > ε1.
After some algebraic developments, we derive the KKT conditions for each retailer i :

∀k ∈ J, 0 ≤ x0
ik ⊥(α+ β + γ + η) ≤ 0 (2.8)

where
α = x0 − 1

ε0
x0
i (2.9)

β = −pk (1−Θ(k))
x0

(
1+ 1

ε0

)
a

(2.10)

γ = −x0

(
1
ε1

)
ε1
ε1−1

1
ε

∑
ω∈Ω

θ(ω)
x0
i − xωi
x0 − xω

(
x0

(
− 1
ε1

+1
)
− xω

(
− 1
ε1

+1
))

−x0

(
1
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(
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)
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− 1
ε1
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η = −x0

(
1
ε1

+1
)

ε1
ε1−1

∑
ω∈Ω\k∈Sω

θ(ω)
(x0 − xω)− (x0

i − xωi )

(x0 − xω)2

(
x0

(
− 1
ε1

+1
)
− xω

(
− 1
ε1

+1
))

−x0

∑
ω∈Ω\k∈Sω

θ(ω)
x0
i − xωi
x0 − xω

.

(2.12)

Here, Θ(k) is simply
∑
{ω∈Ω,k∈Sω} θ(ω), the overall probability that producer k cuts its supplies.

This setting allows us to study some interesting situations observed in the European natural
gas industry. The coming chapter present some of these case studies.
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A theoretical approach.

§ 2.4 Conclusion

The main goal of this chapter is to study the impacts on the natural gas market of supply
disruption risks. For that purpose, we develop a static model (over a typical period of one year)
based on a Cournot game between different retailers who buy gas from possibly risky producers
and bring it onto the market. The previous models found in the literature do not take into account
the current economic situation of the energy markets in Europe because they assume a pure and
perfect competition structure. Since their liberalization, an oligopolistic description that takes into
consideration market power exerted through the gas chain is more suitable to study the European
natural gas markets. In our model, the upstream market is represented as follows : the retailers
sign long-term contracts with producers (e.g., Gazprom) that fix the gas selling price. We take into
account the recent market liberalization by assuming that all the retailers have the same access
to transport means. We also suppose that producers sell their gas at the same price to all the
retailers. In the downstream market, the retailers’ interaction is modeled by a Cournot game, with
an assumption of market transparency, when all the actors maximize their expected profit, taking
into consideration specific disruption costs they have to pay to consumers in the event of supply
interruption from risky producers. Disruption costs can be quantified by introducing a short-run
demand function. We were able to study in details some particular western European markets by
making an iso-elasticity assumption on the long- and short-run inverse demand functions.

The following chapter presents some of the possible applications of our model.



- Chapitre 3 -

Security of supply and retail competition in the
European gas market. Cases studies.

67



68Chapitre 3. Security of supply and retail competition in the European gas market. Cases studies.

§ 3.1 Introduction

The previous chapter presented a Nash-Cournot model in order to understand and study the
natural gas trade under disruptions risks. This model has been applied to three concrete situations
in Europe. The first one focuses on the German natural gas market of the 1980s, where Ruhrgas
had the possibility to import gas from the USSR and Norway. Knowing the geopolitical climate
of that period (cold war), we have assumed that Norway is a secure producer whereas the USSR
a risky one, who can interrupt its gas supplies with time. Our theoretical framework is therefore
well suited to describe such a situation. A social welfare and firms’s profit analysis are carried
out in order to understand Ruhrgas’s strategic behavior in that time. The second case study is of
particular interest for the current southwestern Europe gas situation. The Bulgarian gas market,
which is mainly dependent on the Russian supplies, can be described thanks to our model, where
Russia is perceived as a risky supplier. We derive in particular interesting conclusions regarding
the necessity to regulate the market, via volumes control, as a function of the disruption proba-
bility for social welfare optimization concerns. The last case study concerns the current Spanish
market regulation : for supply diversification purposes, the Spanish government imposes on each
gas trader not to buy from any producer more than 60% of the total amount purchased. Howe-
ver, with the Medgaz project, the Algerian gas exports toward Spain are expected to increase
significantly in the forthcoming decades, which will probably bring the market to its regulation
limits. Our model has been applied to describe such a regulation in Spain, taking into account
the dominance of the Algerian supply.

In this chapter, we will use chapter 2’s notation.

§ 3.2 Case 1 : The German situation in the 1980s

The study (9) is the first work to analyze the diversification issue in Continental Europe before
the liberalization reforms described earlier. But even if we limit ourselves to the situation observed
during the mid-1980s, there could be some doubt on the ability of this model to fully represent the
situation observed in the Federal Republic of Germany (FRG), the largest gas importing country
in Europe at that time. In (9), a representative gas buyer decides jointly its purchase of gas and
its long-run capacity level so as to maximize the expected utility of gas consumption net of the
purchaser cost of buying gas. Such an argument seemed reasonable for countries where price regu-
lation consciously limited the profitability of monopoly importers. As was the case for Distrigaz in
Belgium or Gaz de France ((22), p.99). But in the FRG, Ruhrgas AG, a privately-owned firm, was
not explicitly regulated and earned comfortable profits. 1 As mentioned above, these early models
posited a quasi-virtuous behavior for the importer, an assumption that hardly captures Ruhrgas’s

1. Ruhrgas returned a net profit of between 16% and 19% of its own capital between 1984 and 1988. Those
profit levels were particularly comfortable compared to those exhibited by both Distrigas and Gaz de France ((22),
p.99).
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past behavior. 2 A profit-maximizing behavior looks more appropriate to model Ruhrgas at that
time.

In the following, we study the decisions made by Ruhrgas in the early-1970s regarding future
imports planned for the 1980s. At that time, Ruhrgas knew that the small volumes of natural gas
produced in the FRG and the much larger volumes of gas imported from the Netherlands would
be insufficient to serve the future demand. Those volumes had already been purchased under
pre-existing long-term bilateral agreements and were considered as both known and fixed in the
coming decade. Thus, imports from two resource-rich countries, Norway and the USSR, had to be
considered to serve this future demand. Here, we assume perfect foresight and apply the previous
model to analyze Ruhrgas’s decision. Ruhrgas’s objective was to select its import policy so as to
maximize its expected profit for a typical year in the 1980s.

We assume that there is only one large retailer, I = {1}. For simplicity, the index i = 1 is
dropped in the following formulas. The volumes coming from either the Netherlands or the local
FRG production are assumed to be kept constant whatever the circumstances and are simply
named l. The supplies from these two sources located within the EEC were perceived as secure.
Both are thus characterized by a zero probability of a disruption. Hence, the Ruhrgas decision
can be simplified as choosing the imported volumes (xj)j∈J from a set of two sources J = {1, 2}
where Norway is indexed 1 and the USSR is indexed 2. We assume that both for Norway and the
USSR, there is a non-negligible risk of disruptive behavior. We denote by θ1 (respectively θ2) the
disruption probability of Norway (respectively the USSR) and p1, p2 the prices charged by these
producers. For Ruhrgas, the optimization problem is :

Max Π̄(x1, x2)
x1 ≥ 0 x2 ≥ 0

where

Π̄(x1, x2) = f(x0 + l)(x0 + l)− p1x1 − p2x2 − θ1(1− θ2)

∫ x0+l

x2+l
g(x0, t)dt

−θ2(1− θ1)

∫ x0+l

x1+l
g(x0, t)dt− θ1θ2

∫ x0+l

l
g(x0, t)dt

+θ1(1− θ2)p1x1 + θ2(1− θ1)p2x2 + θ1θ2(p1x1 + p2x2)

(3.1)

x1 (resp. x2) is the quantity bought by the retailer from Norway (resp. the USSR) and x0 = x1+x2.
The local production costs are assumed to be well-known. Hence, the variable l is not a decision
variable. In the iso-elasticity context, we can easily calculate Π(x1, x2).

2. Ruhrgas’s prices were so high at that time that BASF, the largest gas user in Germany, decided to actively
search for alternative supplies to bypass the monopoly. This situation led BASF to create an alternative gas
retailer, Wingas (established as a joint-venture with the Russian Gazprom), and led them to play a major role in
the construction of an import infrastructure between Russia and Germany (24).
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Π̄(x1, x2) = µ(x0 + l)
− 1
ε0

+1

+ν(x0 + l)
1
ε

(
θ1(1− θ2)(x2 + l)

− 1
ε1

+1
+ θ2(1− θ1)(x1 + l)

− 1
ε1

+1
+ θ1θ2l

− 1
ε1

+1
)

−(1− θ1)p1x1 − (1− θ2)p2x2

(3.2)

where

µ = a

(
1− (θ1 + θ2 − θ1θ2)

ε1
ε1 − 1

)
(3.3)

ν = a
ε1

ε1 − 1
. (3.4)

We can show that the profit is a strictly concave function of the variables x1 and x2
3. Hence the

uniqueness of the solution is guaranteed, because the feasibility set is convex.
The profit’s gradient depends on the variables as follows :

∂Π̄
∂x1

(x1, x2) =
(

1− 1
ε0

)
µ(x0 + l)

− 1
ε0

+ν
ε (x0 + l)

1
ε
−1
(
θ1(1− θ2)(x2 + l)

− 1
ε1

+1
+ θ2(1− θ1)(x1 + l)

− 1
ε1

+1
+ θ1θ2l

− 1
ε1

+1
)

+ν(x0 + l)
1
ε

(
1− 1

ε1

)
θ2(1− θ1)(x1 + l)

− 1
ε1 − (1− θ1)p1

(3.5)

∂Π̄
∂x2

(x1, x2) =
(

1− 1
ε0

)
µ(x0 + l)

− 1
ε0

+ν
ε (x0 + l)

1
ε
−1
(
θ1(1− θ2)(x2 + l)

− 1
ε1

+1
+ θ2(1− θ1)(x1 + l)

− 1
ε1

+1
+ θ1θ2l

− 1
ε1

+1
)

+ν(x0 + l)
1
ε

(
1− 1

ε1

)
θ1(1− θ2)(x2 + l)

− 1
ε1 − (1− θ2)p2.

(3.6)

We cannot find simple analytical expressions of the optimal imports x1 and x2 to guarantee
a maximum benefit for the German company. Hence, we have to use numerical means to solve
our two-dimensional problem. Let’s assume for instance that θ1 = 0, which is to say that the
Norwegian supply is secure and θ2 > 0. It would be interesting to study the economic conditions
that make the German retailer choose its supplies exclusively from the secure supplier. These
conditions obviously take into account the relative gas prices and the disruption probability. We
can derive from this situation simple conditions that ensure the equilibrium gas amount to be
xeq1 > 0 and xeq2 = 0. In that situation, using the KKT theorem, we can derive that :

3. The demonstration is numerical and uses the following values : ε0 = 1.2, ε1 = 0.3. The use of these values
will be justified later.
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(x0 + l)eq = (x1 + l)eq

∂Π̄
∂x1

(xeq1 , x
eq
2 ) = 0

∂Π̄
∂x2

(xeq1 , x
eq
2 ) ≤ 0.

(3.7)

Hence, we can calculate xeq1 and find conditions on the parameters θ2, p1 and p2 so that xeq2 = 0 :

xeq1 + l =

(
p1

a
(

1− 1
ε0

)
)−ε0

l ≤

(
p1

a
(

1− 1
ε0

)
)−ε0

(1− θ2)
(
p1 − p2

(
1− 1

ε0

))
≤ p1

ε0

(3.8)

Therefore, if the Norwegian supply is assumed to be secure and the local demand such as l ≤(
p1

a
(

1− 1
ε0

)
)−ε0

, no Soviet gas is to be brought to FRG if (and only if) :

p2 >
p1

1− 1
ε0

the Soviet Gas is too expensive or

p2 ≤ p1

1− 1
ε0

and θ2 > θlim2 = 1− p1

ε0
(
p1−p2

(
1− 1

ε0

)) the Soviet supply is too risky. (3.9)

We can now run some numerical simulations for a given set of values for the problem’s parameters.

Here, the following values were used : ε0 = 1.2, ε1 = 0.3, a = 10 and l = 0.04 in arbitrary units.
The values of the long- and short-run elasticities are those used in (15).

To keep the discussion general, this numerical study has been conducted using arbitrary units
for the prices and volumes.

Figure 3.1 gives the evolution of θlim2 over the Norwegian gas price p1 for p2 = 5 in arbitrary
units. This function increases with the price p1, for it may become interesting to buy risky gas if
the secure option becomes very expensive.

Figure 3.2 gives the evolution of the amounts xeq1 and xeq2 over θ2 for p1 = 6, p2 = 2, in arbi-
trary units. θ1 takes the value 0. It is reasonable to assume that the secure gas is more expensive
than the insecure one. Otherwise Germany would not have any incentive to purchase the riskiest
gas. 4

For θ1 = 0, we notice that if the probability of a Soviet disruption remains moderate (θ2 <
0.12), then the Soviet gas becomes attractive and has a higher share in the Ruhrgas supply mix.

4. Obviously, the validity of this assertion is subject to the availability of an appropriate transmission infra-
structure. This point lies beyond the scope of this study that assumes no infrastructure constraints.
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Whereas, if θ2 > 0.12, the cost of the possible disruptions induces a relative shift towards the
Norwegian gas and the Soviet gas becomes too risky (xeq2 = 0). In that situation, the amount
bought from Norway no longer depends on the disruption probability θ2.

Figure 3.3 represents the dependence of the gas price in the FRG market on the disruption
probability of the Soviet gas θ2 for θ1 = 0, p1 = 6, and p2 = 2.
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Figure 3.3 – Evolution of the price over θ2 (arbitrary units). p1 = 6, p2 = 2, θ1 = 0.

Obviously, the price charged by the retailer increases with θ2 to balance the possible impact
of any gas disruption and reduce its inherent costs. Besides, for θ2 > 0.12, the retailer does not
buy anymore gas from the USSR and there is, in that case, no risk of disruption. Hence, the price
in the market no longer depends on θ2. However, one can wonder whether it would be better for
Ruhrgas to deal with risky producers if their selling price is low. Therefore, it may be interesting
to study the impact of disruption on the retailer’s profit and on the social welfare observed in the
FRG. The social welfare obtained in West Germany WFRG can be measured as the sum of the
surplus obtained by the German consumers Sc and the profit obtained by the sole retailer :

WFRG(x1, x2) = Sc(x1, x2) + Π̄(x1, x2) (3.10)
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where the consumer surplus is :

Sc(x1, x2) =
∫ x0+l

0 f(t)dt− f(x0 + l)(x0 + l) (3.11)

Therefore :

WFRG(x1, x2) = a
1

ε0 − 1
(x0 + l)

1− 1
ε0 + Π̄(x1, x2). (3.12)

The retailer’s profit is given by expression (3.2).

Figure 3.4 shows how the retailer’s profit and the social welfare evolve with θ2 when p1 = 6,
p2 = 2 (arbitrary units) and θ1 = 0.
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Figure 3.4 – Evolution of the profit and social welfare over θ2 (arbitrary unit). p1 = 6, p2 = 2
(arbitrary units), θ1 = 0.

The profit decreases with the disruption probability, which suggests that it is better for the
retailer to deal with secure gas suppliers. This preference is also suitable for the consumer : the
social welfare decreases with the disruption probability.

It is now time to make a comparison between our model and the situation studied in (15).
In this paper, Ruhrgas is described as a social welfare-maximizing firm. We can easily study this
situation in our iso-elasticity framework : the retailer optimization program is given as follows :
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Max WFRG(x1, x2) = a
ε0−1(x0 + l)

1− 1
ε0 + Π̄(x1, x2)

x1 ≥ 0, x2 ≥ 0
Π̄(x1, x2) ≥ 0.
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Figure 3.5 – Evolution of the profit and social welfare over θ2 (arbitrary unit). p1 = 6, p2 = 2
(arbitrary units), θ1 = 0, welfare-maximizing agent.

Figure 3.5 gives the evolution of Ruhrgas’s profit Π̄ and the social welfare WFRG over the
Russian disruption probability θ2. Here, we notice that the retailer’s profit is always equal to
0 and social welfare decreases with the disruption probability. Therefore, since it is known that
Ruhrgas earned a significant profit in the 1980s ((22)), it is more reasonable to model its behavior
as a profit-maximizing firm, as we did thanks to our study.
Figure 3.6 gives the evolutions of the equilibrium quantities xeq1 and xeq2 over the disruption pro-
bability θ2 in the social welfare maximizer framework. The main difference one can notice in
comparison to the profit-maximizing situation is that there is no threshold effect. Indeed, there is
always some risky gas which is imported even if the disruption probability is high. However xeq2
decreases with θ2.

An interesting lesson can be derived from this analysis : the import behavior of a tightly re-
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gulated monopoly significantly differs from the one chosen by a profit-maximizing one.
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Figure 3.6 – Evolution of the xeq1 and xeq2 over θ2 (arbitrary unit). p1 = 6, p2 = 2 (arbitrary
units), θ1 = 0, welfare-maximizing agent.

§ 3.3 Case 2 : The Bulgarian situation

During the Russo-Ukrainian gas dispute of January 2009, the transit of Russian gas to Europe
was cut for nearly two weeks. By far the most serious consequences were observed in the Balkans
where some countries experienced an emergency situation, with parts of the population unable to
heat their homes. On top of the intense emotion created by this quasi humanitarian crisis, this
event reactivated a debate on the regulatory reforms needed for those countries.

In the Balkans, the regulatory framework of the natural gas industry is undergoing radical re-
forms with the aim of implementing the EU legislation on energy and competition. 5 A separation

5. This is the explicit goal of the Southeast Europe Energy Community Treaty that came into force on July 1,
2006.
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between regulated infrastructure-related activities and retail activities similar to the one currently
at work in Western Europe is expected.

Some pertinent insights for the natural gas market can be obtained from our model. Until
now, the Bulgarian gas industry has been dominated by Bulgargaz Plc, the state-owned gas com-
pany, which holds a monopoly on the transmission and distribution of natural gas throughout the
country.

There is currently increasing concern about potential threats to the security of gas supply for
this country in the coming decade. In fact, Bulgaria is characterized by a huge dependence upon
imports from a single large supplier (Russia) and the country’s gas demand is expected to grow
strongly alongside its economic transition. As a result, there is a sound debate about the pos-
sibility of creating new import infrastructures that would connect Bulgaria and other Southeast
European countries to new sources of gas located either in the Caspian area or in Western Europe.
Given the huge uncertainties attached to these projects, it is worthwhile to consider a benchmark
scenario based on a continuing total dependence on Russian imports.

Thanks to the previous model, this case is relatively easy to analyze as follows. Here, we
assume that n retailers are competing to serve the Bulgarian gas market. These firms have a
reduced choice and can only purchase their gas from a unique producer : Gazprom, the Russian
gas company. Hence, with our notations, the sets I and J are I = {1, 2, ..., n} and J = {1}. Let’s
denote by xi the amount of natural gas bought by the firm i. x0 denotes also the total quantity
sold by the producer x0 =

∑n
i=1 xi and θ the probability that Russia cuts its production, either

for technical, economical or political reasons. The price charged by the producer is p, the elasticity
values for the short- and long-run demands are respectively ε1 = 0.3 and ε0 = 1.2. 6 Besides, we
give arbitrary values for the other exogeneous parameters : a = 1 and p = 1 in arbitrary units. We
assume that in case of disruption, there are some force majeure provisions that allow the import
of gas from neighboring countries. We will denote by c this minimum gas quantity in Bulgaria in
the event of disruption. The maximization problem can thus be written for each firm i :

Max (f(x0)− p)xi − θ xix0

∫ x0

c
g(x0, t)dt+ θpxi

xi ≥ 0
(3.13)

We denote by Π each firm’s profit : Π(xi) = (f(x0)− p)xi − θ xix0

∫ x0

c
g(x0, t)dt+ θpxi.

Assuming that the natural gas demand takes an iso-elastic functional form, we have

Π(xi) = ax
− 1
ε0

0 xi

(
1− θ ε1

ε1 − 1

)
+ θa

ε1
ε1 − 1

c
− 1
ε1

+1
xix

1
ε
−1

0 − p(1− θ)xi (3.14)

6. The review of empirical studies presented in (9) supports this assumption of an elasticity value greater than
one for the long-run price elasticity of the natural gas demand in a European country.
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To simplify our expressions, we call

α = a

(
1− θ ε1

ε1 − 1

)
(3.15)

β = θa
ε1

ε1 − 1
c
− 1
ε1

+1 (3.16)

The first-order conditions calculation gives :

∂Π

∂xi
(xi) = αx

− 1
ε0
−1

0

(
x0 −

xi
ε0

)
+ βx

1
ε
−2

0

(
x0 +

(
1

ε
− 1

)
xi

)
− p(1− θ) (3.17)

We can show that the function Π(xi, xj , j 6= i) where the variable is xi and xj , j 6= i are consi-
dered constant is concave. The uniqueness of an optimum for each firm is thus guaranteed. The
demonstration of the profit’s concavity is given in Appendix 6.

Appendix 2 gives the technical study of the dependence of the gas volume and price in the
Bulgarian market over the problem’s parameters.

Figure 3.7 gives the evolution of the natural gas price in the market, over the number of re-
tailers n, for θ = 0.15 and c = 0.4 in arbitrary units.

As expected, the price decreases with the number of retailers as stringent competition leads
to cheaper products and smaller profits. We notice that the price converges towards a finite value
p∞, that can be calculated. For this purpose, we need to study the convergence of the sequence
nxeq(n) when n −→∞. This study is carried out in Appendix 3.

Figure 3.8 shows how p∞ evolves with θ for c = 0.4 (arbitrary unit). We already know that in
the case of completely secure supply (i.e. θ = 0), the standard pure and perfect competition study
allows us to assert that the market price converges towards the producer’s price p when n is large
enough. Our model arrives at the same conclusion : indeed, when θ = 0, we can easily calculate
p∞(0) = p.

The conclusion we can draw from the pure and perfect competition situation is quite inter-
esting : if the alternative imports capacity is low enough (which is quite realistic for the current
Bulgarian situation) and the number of trading firms is large, insecure supplies make the gas
retail price higher than the import price, which obviously decreases the consumers utility, even if
consumers are compensated if disruption occurs. This indicates that, added to the "oligopolistic
margin", there exists a "security margin" charged by the retailers to compensate the disruption
costs they have to support in the event of supply failure. This "security margin" increases with the
disruption risk θ. This study illustrates how the disruption costs are passed along to consumers :
the consumer surplus is thus a decreasing function of the disruption risk.

As far as retailers’ profit is concerned, we can prove that the industry’s total expected profit
is nought and does not vary with θ, in the pure and perfect competition situation. A formal proof
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of this result is given in Appendix 5. Therefore, the total revenue derived from the nonnegative
difference between import and retail price is exactly equal to the expected total disruption cost. As
a result, the national welfare of this importing country is a decreasing function of the disruption
probability θ.

Figure 3.9 gives the evolution of the price over the disruption probability θ for n = 6 and
c = 0.4 in arbitrary units.
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Figure 3.9 – Evolution of the gas price in the market (arbitrary unit) over θ. n = 6 and c = 0.4
in an arbitrary unit.

The price increases with the probability θ because if the supplier is not secure, the retailers
need to charge a high natural gas price in order to ensure their long-run profit, so that they can
compensate the loss due to any disruption, which can occur quite frequently.

Let’s study now the impact of any disruptive behavior on the gas amount imported to the
Bulgarian market. We also study the possibility of controlling the market by a national gas re-
gulator. In this study, we assume the existence of an efficient social welfare maximizing regulator
that has a perfect information on contract prices, disruption probabilities, and disruption costs. 7

Among the large set of possible regulatory instruments (e.g., imposing the firms to hold some

7. Thus, we do not model the principal-agent interactions between the regulator and the regulated firms.
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precautionary storage), we focus on a possible regulatory intervention on the firms’ contracting
decisions. More specifically, let’s assume that a possible regulation fixes a maximum amount X
bought by each retailer i, in order to optimize the expected social welfare (shared between the
retailers and the consumers).

We denote by W the total social welfare :

W = Wconsumers +Wretailers

where

Wconsumers =
∫ x0

0 f(t)dt− f(x0)x0 Consumer surplus

Wretailers =
∑n

i=1

(
(f(x0)− p)xi − θ xix0

∫ x0

c
g(x0, t)dt+ pθxi

)
Retailers’ profits (3.18)

Under the iso-elasticity assumptions, we can calculate analytically welfare W if the quantity of
gas bought by each retailer xi is x (the equilibrium is symmetric, see Appendix 2) :

W (x) = τn
− 1
ε0

+1
x
− 1
ε0

+1
+ βn

1
ε x

1
ε − np(1− θ)x (3.19)

where

τ = a

(
ε0

ε0 − 1
− θ ε1

ε1 − 1

)
(3.20)

β = θa
ε1

ε1 − 1
c
− 1
ε1

+1
. (3.21)

Figure 3.10 represents the evolution of the welfare over the quantity bought by each retailer x
for θ = 0.15, n = 6, and c = 0.4 in arbitrary units.

We notice that there is an optimal amount xmax to be bought by each retailer to ensure a
maximum welfare. We will now compare this quantity to the one imported by the retailers if they
were to interact freely without any regulation. Figure 3.11 gives the evolution of xmax and xeq over
θ for n = 6 and c = 0.4 in arbitrary units. We notice that there is a specific disruption probability
θlim, that depends only on the inner-market characteristics (i.e. ε0, ε1, n, c, a and p) such as :

if θ ≤ θlim xeq ≤ xmax
if θ > θlim xeq > xmax

(3.22)

The main conclusion to draw from this study is the following : to optimize the social welfare,
a regulator should fix a maximum amount X sold by Gazprom to the Bulgarian retailers only if
the risk of disruption is high : θ > θlim. In that case, the maximum amount X must be xmax(θ).
No regulation should be imposed if the producer is not too risky (i.e. θ ≤ θlim) for any restriction
on the gas amount would decrease the social welfare.
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Figure 3.10 – Evolution of the social welfare over x (arbitrary units). θ = 0.15, n = 6, and
c = 0.4 (arbitrary units).
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At this stage of our model, it is interesting to study the evolution of the probability θlim, that
is the regulation determining factor, over the alternative import capacity amount c. Economically
speaking, it is easy to predict that this probability increases with c. Indeed, if the alternative gas
import capacity is high in the event of an emergency, it is possible to tolerate frequent disruptions,
without any regulation. Figure 3.12 represents the evolution of θlim over the capacity c, for n = 6,
p = 1 and a = 1 in arbitrary units.
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Figure 3.12 – Evolution of θlim over c (arbitrary unit). n = 6.

We notice that the probability θlim converges, for large capacities towards a finite value θ∞
that depends only on ε0, ε1, a and p. In our example, θ∞ ≈ 0.5. The main conclusion to draw is
that for very risky producers (θ > θ∞), a regulation of import volumes must always be imposed
in order to optimize the social welfare regardless of the alternative import amount c.

§ 3.4 Case 3 : The Spanish situation

In order to diversify the supply origins of gas and hence limit the disruption risks in the mar-
ket, in 1998, the Spanish government passed the Hydrocarbon law, that is, a quota regulation that
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imposes on each Spanish gas trader not to buy from any producer more than 60% of the total
amount purchased. To our knowledge, Spain, with the aim to reduce its energetic dependence on
the Algerian imports, was the first European country (since the 90s) to vote such a regulation. As a
consequence, this regulation lead to a supply diversification during the 90s and Spain signed many
LNG contracts with different producers : Lybia, Nigeria, Quatar etc. As a result, the Algerian
gas share in the Spanish consumption reached 43% in 2006 (11), which makes, a priori, the 60%
rate useless. However, with the Medgaz project, a pipeline linking Algeria to Spain which is in
construction, the Algerian gas exports towards Spain are expected to increase significantly in the
forthcoming decades. To our knowledge, there are very few studies that have proposed theoretical
works in order to analyze the Spanish regulation and predict its consequences on the consumers.
Therefore, it can be meaningful to propose a model-based analysis able to describe the Spanish
gas market trade regulation, taking into account the dominance of the Algerian supplies. The goal
of this section is to predict, in the case of an important increase of the Algerian share market
the evolution of the Spanish natural gas market under its specific regulation and to see whether
different regulations could have a better impact on social welfare.

3.4.1 The models

In this section, we propose an extension of the model developed earlier. Supply interruptions
are taken into consideration thanks to a subjective probability of disruption, which is apprecia-
ted by the traders while choosing their strategic amount imports. In case of any interruption, a
disruption cost is imposed on the traders in order to compensate their customers, who are tech-
nologically dependent on gas supplies for their usual consumption. In this study, we intend to
compare two sorts of market regulations. The first one imposes a disruption cost on the traders in
any crisis situation, whereas the second one imposes for each trader a maximum importing rate
from any producer, which is the Spanish regulatory regime.

We will divide the gas Spanish imports into two categories : standard natural gas, mainly
imported from Algeria (index 2) and LNG brought from western Africa, Libya, Quatar and Egypt
(index 1). Historically, there have been very few supply disruptions of LNG imports to Spain,
principally because of the diversity of their origins. Therefore, we will assume in first approximation
for our model that there is no risk of disruption in the LNG supplies. On the contrary, we will
suppose that the Spanish will to become less dependent on the Algerian gas imports corresponds,
for the Spanish strategic choices, to the existence of a non negligible disruption probability θ
from Algeria, either for political, economical or technical reasons. Actually, the historical Algerian
supply interruptions have been rare and concerned only the gas imports towards Italy. To further
simplify our model, we will assume the existence of one big Spanish trader-firm (Gaz Natural)
that owns a high share market, controls the transport and distribution networks and that is very
slightly affected by the actions of the other traders. We denote by x1 the LNG gas amount bought
by Gaz Natural and x2 the natural gas amount bought from Algeria. x0 = x1 + x2 is the total
gas quantity brought by Gaz Natural to the market. We will assume an iso-elastic form for both
the long- and short-run (inverse) demand functions : ε0 (resp. ε1) is the long (resp. short) run
elasticity. We will assume also that ε0 > ε1 ((15)). The long-run inverse demand function gives
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the evolution of the charged price in the Spanish gas market over the quantities provided :

price(x0) = f(x0) = ax
− 1
ε0

0

The constant a must be calibrated on the Spanish gas market. The short-run demand function
g(x0, t) is the consumers’ willingness to buy quantity t in case of disruption if the long-run regime
corresponds to the consumption of an amount x0, taking into consideration the addiction to the
gas technology, which happens to be very heavy to replace (especially when one notices that supply
disruptions usually last just a few weeks).

g(x0, t) = ax
1
ε
0 t
− 1
ε1

We assume that the Spanish gas demand is characterised as follows : ε0 = 1.2 and ε1 = 0.3. In
the upstream part of the gas trade, it is natural to assume that the prices differ depending on the
sources, taking into acount the production costs and transports. This situation is quite realistic
since gas trade remains dominated by bilateral long term contracts. In these contracts, the price
of gas is settled thanks to predetermined indexation formulas that establish a direct linkage with
the oil products prices (Netback value). We assume that these gas prices remain unaffected by
short disruptions. We denote by p1 (resp. p2) the LNG mean price (resp. the Algerian natural
gas). We assume that the Spanish inner gas production is negligible compared to its imports.

– The first regulation we intend to describe imposes for the traders a disruption cost to be
provided to the customers, in the event of delivery interruption. As in our model described
in chapter 2, to estimate this cost, we will use the short-run demand function and calculate
the consumer’s surplus variation in case of disruption : if the producer i interrupts its supply,

the disruption cost associated is
∫ x0

x0−xi
g(x0, t)dt. The spanish natural gas trader decides

the amounts bought x1 and x2 in order to optimize its expected profit Π :

Π(x1, x2) = f(x0)x0 − p1x1 − (1− θ)p2x2 − θ
∫ x0

x1

g(x0, t)dt

We will call this regulation the compensation regulation.
– The second regulation fixes a rate α (the Spanish case corresponds to α = 0.6) such as
x1,2 ≤ α(x1 + x2). The rate α is determined so that the total social welfare is maximum,
giving the prices p1 and p2 and the disruption probability θ.
This is the Spanish regulation.

The main difference between the two models corresponds to a conceptual divergence between
the customers’ compensation in case of disruption. The compensation regulation imposes a disrup-
tion cost compensation and leaves Gaz Natural free to choose its imported amounts to maximize
its expected profit. The obvious consequence is that the trader will naturally prefer dealing with
secure producers, even if they sell at a high price. The Spanish regulation initially constrains the
amounts xi and the trader no longer compensates the customers in case of disruption. The consu-
mers’ supply security relies directly on the imports’ origins diversity. Both models are static :
they study the market over a typical period of one year, where the parameters p1,2, θ, ε0,1 and a
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are considered constants and exogeneous to the models. In particular, we have used the following
values : ε0 = 1.2 and ε1 = 0.3.

The compensation regulation has been studied in detail in chapter 2. Hence, we only give the
results obtained and the conclusions drawn about the social welfare in order to compare it with
the current Spanish regulation.

3.4.2 The Spanish regulation

In the Spanish market, the trader’s optimization program is the following :

Max Π(x1, x2)
x1 ≥ 0
x2 ≥ 0
x1 ≤ α(x1 + x2)
x2 ≤ α(x1 + x2)

where the profit is :

Π(x1, x2) = f(x0)x0 − p1x1 − p2x2 = ax
− 1
ε0

+1

0 − p1x1 − p2x2

Since ε0 ≥ 1, the profit is a concave function of the variables x1,2. Hence, the existence and
uniqueness of an optimal amount (xeq1 , x

eq
2 ) is guaranteed .

The parameter α belongs to [0.5,1]. A situation with no regulation corresponds to α = 1.
Since the Spanish government assumes Algeria to be a risky producer (i.e. θ > 0), it is natural to
suppose that p1 > p2 (the Algerian gas is cheaper), which is a realistic hypothesis. In the absence
of regulation, the trader will buy all his gas from Algeria. Therefore, we deduce that the optimal
amount xeq2 is such as the constraint x2 ≤ α(x1 +x2) is saturated (KKT Theorem). Therefore, we
can search the optimum amount on the line xeq1 = 1−α

α xeq2 :

xeq2 =

(
p1( 1−α

α )+p2

a
(

1− 1
ε0

)
)−ε0

α1−ε0

xeq1 =

(
p1( 1−α

α )+p2

a
(

1− 1
ε0

)
)−ε0

α−ε0(1− α)

(3.23)

The regulator fixes the rate α to optimize the social welfare. On the one hand, a market
situation where α ≈ 0.5 constrains the trader too much and reduces its profit. On the other hand,
α ≈ 1 allows Gaz Natural to buy its gas exclusively from Algeria, which reduces the customers’
welfare because of the possible supply interruptions. We conclude that, economically speaking,
there is an optimal value for α that ensures a maximum social welfare, shared between the trader
and the consumers. The social welfare W can be written as follows :

W = Πtrader + Sconsumers
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where Πtrader is the trader’s profit and Sconsumers is the expected consumers’ welfare. The consu-
mers’ welfare values

∫ xeq0
0 f(t)dt−f(xeq0 )xeq0 if the supply is provided and

∫ xeq0
0 f(t)dt−

∫ xeq0
xeq1

g(xeq0 , t)dt−
f(xeq0 )xeq0 otherwise. As a result, the expected customer welfare is given by :

Sconsumers =

∫ xeq0

0
f(t)dt− θ

∫ xeq0

xeq1

g(xeq0 , t)dt− f(xeq0 )xeq0

and the total social welfare is :

W = −p1x
eq
1 − p2x

eq
2 + axeq0

− 1
ε0

+1
(

ε0
ε0 − 1

− θ ε1
ε1 − 1

)
+ θa

ε1
ε1 − 1

xeq0
1
ε xeq1

− 1
ε1

+1 (3.24)

where xeq1 and xeq2 has been calculated in equation (3.23).

For our numerical applications, we give arbitrary values for the parameters : p1 = 6, p2 = 2
and a = 1 in arbitrary units.

Figure 3.13 gives the evolution of the social welfareW , in an arbitrary unit, over the regulation
rate α, for θ = 0.05. As expected, we notice the existence of an optimum rate αopt that ensures a
maximum welfare. Hence, a regulator should fix a rate α such as α = αopt(θ).

Figure 3.13 – Evolution of the social welfare over α (arbitrary unit). θ = 0.05.

Figure 3.14 gives the evolution of the optimal rate αopt over the disruption probability θ. We
can easily demonstrate that if Algeria is assumed to be as secure an exporter as LNG suppliers,
the optimum welfare is reached when α = 1, or when no quota control is imposed, which is quite
intuitive.
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Figure 3.14 – Evolution of the optimum rate over θ.

The interpretation of figure 3.14 is as follows : If Algeria has a risky behavior, the regulation
should be very stringent (α −→ 0.5) to prevent consumers from the impacts of disruption. Hence,
αopt decreases with θ.

At this stage of our study, it is interesting to compare between the two kinds of regulations
we introduced in section 3.4.1. The only criterium of differenciation we can use that is common to
both models is the total social welfare. Figure 3.15 gives the evolution of the social welfare in both
situations. The red curve represents the welefare when the traders have to pay a disruption cost
(the compensation regulation) whereas the blue one represents the welfare, when the regulator
fixes a rate αopt in the market (the Spanish regulation).

We notice the existence of a probability limit θlim such as : if Algeria is not very risky θ ≤ θlim,
the Spanish regulation is better than the compensation regulation, whereas if Algeria has a risky
behavior θ ≥ θlim, the compensation regulation becomes better for the social welfare than the Spa-
nish regulation. In our example, for p1 = 6, p2 = 1 and a = 1 in arbitrary units, the probability
limit θlim is 0.26.

In conclusion, we will say that the main goal of this section is to study the Spanish gas trade
under the Hydrocarbon law, which fixes a quota control on the foreign imports brought to the
market. Indeed, in order to reduce the Spanish energetic dependence upon the Algerian gas sup-
plies, the Spanish government imposes, for each retailer, not to buy from any gas producer more
than 60% of the total amount purchased. With the Medgaz project and the possible increase of
the Algerian share in the Spanish imports, this quota regulation is expected to play an important
role in the Spanish retailers’ strategic choices of their supply sources and to have major impacts
on the social welfare. These consequences are studied in this section.

The current Spanish quota restriction is compared to another kind of regulation. The latter
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Figure 3.15 – Evolution of the social welfare over θ, for both types of regulation.

leaves the traders free to choose their sources of supply but imposes a compensation cost to
be paid to the customers in case of supply interruption. Thanks to our model, we are able to
deduce conditions on the Algerian disruption probability θ that give a preference, for social welfare
optimization matters, to one of the regulations over the other.
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§ 3.5 Conclusion

The main goal of this chapter is to apply our model to realistic past and current situations of
the western European gas markets.

The German gas market of the 1980s, which is represented by the interaction between one
major retailer, Ruhrgas AG, who brings gas to the end-user market and two major producers,
Russia and Norway, has been accurately described by our model. We have shown in particular
that if the Russian gas becomes too expensive or too risky, (compared to the Norwegian gas, which
is supposed to be safe) with bounds that can be precisely determinated and that depend only on
the inner market characteristics, no Russian gas would be brought to Germany by Ruhrgas AG
as this would decrease its profit. We also show that the price charged by Ruhrgas in the German
market would increase with the disruption probability.

The Bulgarian gas market is also a case analyzed thanks to our model. We assume the exis-
tence of a certain number of retailers that buy gas mostly from one risky producer : Gazprom.
The main conclusions we can draw from our study are the following : Firstly, the gas price in the
market, in case of pure and perfect competition, is higher than the producer’s price, which is the
pure and perfect competition gas price in the market if Russia is considered to be a safe supplier.
This indicates that, added to the "oligopolistic margin", there exists a "security margin" charged
by the retailers to compensate the disruption costs they have to support in the event of supply
failure. This "security margin" increases with the disruption risk. Secondly, we show that, under
some specific assumptions on the local force majeure supplies, the pure and perfect competition
price increases with the Russian disruption probability. Finally, we show the existence of a thre-
shold probability such as if the disruption probability is greater than the threshold, it is better
for the overall social welfare to regulate the market (by means of quantities control) and not leave
the actors to interact freely.

In order to reduce the Spanish energetic dependence upon the Algerian gas supplies, the Spa-
nish government imposes, for each retailer, not to buy from any gas producer more than 60% of
the total amount purchased. With the Medgaz project and the possible increase of the Algerian
share in the Spanish imports, this quota regulation is expected to play an important role in the
Spanish retailers’ strategic choices of their supply sources and to have major impacts on social
welfare. These consequences are studied in this chapter. The current Spanish quota restriction is
compared to another kind of regulation. The latter leaves the traders free to choose their sources of
supply but imposes a compensation cost to be paid to the customers in case of supply interruption.
Thanks to our model, we are able to deduce conditions on the Algerian disruption probability θ
that give a preference, for social welfare optimization matters, to one of the regulations over the
other.

The results of this part are obtained by assuming the predominance of disruption costs in a
firms’ decisions, thereby a negligible role is thus given to the alternative crisis management tech-
niques : strategic withdrawal from existing natural gas storages, alternative short-term imports,
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re-routing of existing gas flows, increased production from other suppliers that may compensate
the shortfall of others. Following the impressive disruptions that occurred in Eastern Europe,
concerns about the security of supply are now back at the top of the policy makers’ agenda. The
identification of the optimal measures to be implemented in the short-run to cope with a disrup-
tion is still an on-going issue. As a result, future research could expand the framework discussed
in this part in order to identify optimal crisis management policies.
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§ 3.6 Appendix 1

In this appendix, we calculate the partial derivative of Π̄i with respect to the decision variable
x0
ik. This derivative is the sum of three terms : ∂A

∂x0
ik
, ∂B
∂x0
ik

and ∂C
∂x0
ik

with :

∂A

∂x0
ik

= f ′(x0)
∑
j∈J

x0
ij + f(x0)− pk (3.25)

∂C

∂x0
ik

= pk
∑

{ω∈Ω\{0},k∈Sω}

θ(ω) (3.26)

The partial derivative of B with respect to x0
ik, is a little bit more subtle to calculate. In fact,

the collection of events ω has to be separated in two subsets depending on whether the particular
producer k cuts its supplies under the state ω or not. We can write :

∂B

∂x0
ik

= −
∑

{ω∈Ω\{0},k /∈Sω}

θ(ω)
∂DCi(x

0, ω)

∂x0
ik

−
∑

{ω∈Ω\{0},k∈Sω}

θ(ω)
∂DCi(x

0, ω)

∂x0
ik

(3.27)

Let’s consider a particular producer k and buyer i. The distinction among the two cases is
important since the partial derivative of DCi(x0, ω) with respect to x0

ik takes a different literal
expression in the two cases. If under a given state ω ∈ Ω\ {0}, the particular producer k cuts
its supplies (i.e. k ∈ Sω), then the amount x0

ik is both present in the overall disrupted volumes
(x0−xω) as well as in i’s disrupted purchases

∑
j∈J(x0

ij−xωij). In the other case (when k does not
cut its production), both the overall disrupted quantities (x0 − xω) and

∑
j∈J(x0

ij − xωij) become
independent on the variable x0

ik. Moreover, in the latter case, the integral boundaries can be
manipulated so as to avoid any dependence on x0

ik.
If k ∈ Sω,

∂DCi(x
0, ω)

∂x0
ik

=∑
(l,j)∈I×J

(
x0
lj − xωlj

)
l 6=i

(x0 − xω)2

∫ x0

xω
g(x0, t)dt+

∑
j∈J

(
x0
ij − xωij

)
x0 − xω

(∫ x0

xω

∂g

∂k
(x0, t)dt+ f(x0)

)
(3.28)

Whereas if k /∈ Sω, we have a simpler expression :

∂DCi(x
0, ω)

∂x0
ik

=

∑
j∈J

(
x0
ij − xωij

)
x0 − xω

(∫ 0

xω−x0

∂g

∂k
(x0, t+ x0)dt

)
.

(3.29)
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§ 3.7 Appendix 2

In this appendix, we theoretically solve the retailers’ optimization problems given in formula-
tion 3.13 of section 3.4.
Market transparency is an inherent assumption to our model (i.e. we assume that the n retailers
have the same knowledge of the market in terms of prices and probability of disruption). Further-
more, mathematically speaking, we notice that the optimization problem 3.13 is symmetric for all
the retailers. Consequently, we can already predict that the Nash-Cournot equilibrium is reached
when all the amounts xi are equal. Hence, let’s call xeq the equilibrium quantity bought by each
retailer and use the first-order condition to find it. We can deduce an implicit function that gives
xeq (i.e. a relation between xeq and the problem’s parameters) from expression 3.17 :

αn
−1− 1

ε0

(
n− 1

ε0

)
x
− 1
ε0

eq + βn
1
ε
−2

(
1

ε
− 1 + n

)
x

1
ε
−1

eq − (1− θ)p = 0 (3.30)

Actually, it is not possible to find general analytical expressions of the solution for (3.30). We
will use numerical means to solve it. However, we can already predict that equation (3.30) has a
unique solution. Indeed, ∀n ∈ N∗ the function

gn : x −→ αn
−1− 1

ε0

(
n− 1

ε0

)
x
− 1
ε0 + βn

1
ε
−2

(
1

ε
− 1 + n

)
x

1
ε
−1 − (1− θ)p

is strictly decreasing on R∗+ and realizes a bijection from R∗+ to R.
If we assume that an equilibrium is possible, we can calculate the price of the product in the
market and study its dependence on the disruption probability θ and the number of retailers n.

price = a(nxeq)
− 1
ε0 (3.31)

§ 3.8 Appendix 3

This appendix studies the price bahavior in the pure and perfect competition context p∞.
Let’s denote ρn = nxeq(n). Using equation 3.30 we deduce that ρn is the unique solution of

fn(ρn) = α

(
1− 1

nε0

)
ρ
− 1
ε0

n + β

(
1
ε − 1

n
+ 1

)
ρ

1
ε
−1

n − (1− θ)p = 0

Let’s call f the function : R∗+ −→ R

f : x −→ αx
− 1
ε0 + βx

1
ε
−1 − (1− θ)p

f is a decreasing function and realizes a bijection from R∗+ to R. Let’s call ρ = f−1(0) the unique
solution of the equation f(x) = 0 and let’s show that ρn −→ ρ. Indeed, we have fn(ρn)−f(ρ) = 0.
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Hence ∀n ∈ N∗ :

α

(
ρ
− 1
ε0

n − ρ−
1
ε0

)
+ β

(
ρ

1
ε
−1

n − ρ
1
ε
−1

)
=

1

n

(
α

ε0
ρ
− 1
ε0

n + β

(
1

ε
− 1

)
ρ

1
ε
−1

n

)
(3.32)

We can show easily that ∃M ∈ R∗+ such as ∀n ∈ N∗ |ρn| < M (that is to say the sequence ρn

is boundned). Using equation 3.32, we conclude that α
(
ρ
− 1
ε0

n − ρ−
1
ε0

)
+β

(
ρ

1
ε
−1

n − ρ
1
ε
−1

)
−→ 0

when n −→∞. Hence :

f(ρn) −→ f(ρ)

f being a continuous bijective function, f−1 is also a bijective continuous function and we conclude
that ρn = f−1(f(ρn)) −→ f−1(f(ρ)) = ρ.
Finally, we can write the price limit p∞ :

p∞ = aρ
− 1
ε0 (3.33)

Using relation αρ−
1
ε0 + βρ

1
ε
−1 = (1− θ)p, we can calculate

dρ
dθ

(θ) =
−p+ ε1

ε1−1aρ
− 1
ε0 − ε1

ε1−1ac
1− 1

ε1 ρ−
1
ε
−1

− 1
ε0
αρ
− 1
ε0
−1

+ β
(

1
ε − 1

)
ρ

1
ε
−1

=
−1

θ

1

− 1
ε0
αρ
− 1
ε0
−1

+ β
(

1
ε − 1

)
ρ

1
ε
−1

(
p− aρ−

1
ε0

)
.

(3.34)

If we assume that the force majeure imports capacity c is low enough, such as c <
( p
a

)−ε0 ε ε1
1−ε1
1 =

1.67
( p
a

)−ε0 , we can show (see Appendix 4) that

∀θ ∈ [0, 1] p ≤ aρ(θ)
− 1
ε0 . (3.35)

Hence, in this situation we conclude that ∀θ ∈ [0, 1] dρ
dθ (θ) ≤ 0, or

∀θ ∈ [0, 1]
dp∞
dθ

(θ) ≥ 0. (3.36)

On the contrary, if c >
( p
a

)−ε0 ε ε1
1−ε1
1 , we show that (see Appendix 4) :

∀θ ∈ [0, 1]
dp∞
dθ

(θ) ≤ 0. (3.37)

§ 3.9 Appendix 4

In this appendix, we show the properties stated in Appendix 3 :
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if c <
(p
a

)−ε0
ε

ε1
1−ε1
1 then ∀θ ∈ [0, 1] p ≤ aρ(θ)

− 1
ε0

and if c >
(p
a

)−ε0
ε

ε1
1−ε1
1 then ∀θ ∈ [0, 1] p ≥ aρ(θ)

− 1
ε0

– We assume c <
( p
a

)−ε0 ε ε1
1−ε1
1

Let’s suppose that ∃θ0 ∈ [0, 1[ such as p ≥ aρ(θ0)
− 1
ε0 . Using equation 3.34, we have dρ

dθ (θ0) >
0. We define θ1 as follows :

θ1 = sup
{
θ ∈ [θ0, 1[ /

dρ
dθ

(θ) > 0

}
and let’s show that θ1 = 1. If θ1 < 1, since the function θ −→ ρ(θ) is continuously derivable,
we can conclude that dρ

dθ (θ1) = 0. Using equation 3.34 we find that p = aρ(θ0)
− 1
ε0 . However,

we know that ∀θ ∈ [θ0, θ1[ dρ
dθ (θ) > 0. Hence, the function θ −→ ρ(θ) is strictly increasing

on the set [θ0, θ1[ and ρ(θ1) > ρ(θ0). We already have p ≥ aρ(θ)
− 1
ε0 . Thus we find

p ≥ aρ(θ0)
− 1
ε0 > aρ(θ1)

− 1
ε0 = p (3.38)

which is absurd. Then θ1 = 1 and we conclude that dρ
dθ (1) > 0 or

p > aρ(1)
− 1
ε0 . (3.39)

We can quite easily calculate ρ(1) :

ρ(1) = cε
ε1
ε1−1

1 (3.40)

and using the condition c <
( p
a

)−ε0 ε ε1
1−ε1
1 , we find that :

aρ(1)
− 1
ε0 > p (3.41)

which is absurd, regarding equation 3.39.

Hence :

∀θ ∈ [0, 1] p ≤ aρ(θ)
− 1
ε0 (3.42)

– We assume c >
( p
a

)−ε0 ε ε1
1−ε1
1

Hence, aρ(1)
− 1
ε0 < p and dρ

dθ (1) > 0. We intend to show that ∀θ ∈ [0, 1] aρ(θ)
− 1
ε0 < p. If

we assume that ∃θ0 ∈ [0, 1[ such as aρ(θ0)
− 1
ε0 ≥ p, we call θ1 the probability :

θ1 = inf
{
θ ∈ [θ0, 1[ /

dρ
dθ

(θ) ≥ 0

}
. (3.43)
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Here again, since the function θ −→ ρ(θ) is continuously derivable, we have dρ
dθ (θ1) = 0 .

However, we know that ∀θ ∈ [θ0, θ1[, dρ
dθ (θ) ≤ 0. Hence, ρ(θ1) < ρ(θ0). However, we already

have :

p = aρ(θ1)
− 1
ε0 > aρ(θ0)

− 1
ε0 ≥ p (3.44)

which is absurd. Thus our conclusion.

§ 3.10 Appendix 5

In this appendix, we show that the retailers’ profit in the Bulgarian market is equal to 0, in
the situation of pure and perfect competition. We will use the notation of Appendix 3.
The retailer’s total profit is :

Πtot =
∑
i

Πi = nΠ(xi) (3.45)

where the individual profit Π(xi) is given in equation 3.14. Hence :

Πtot = αρ
− 1
ε0

+1
+ βρ

1
ε − (1− θ)pρ (3.46)

where α and β have been defined in section 3.4 and the variable ρ in Appendix 3.
We already know (Appendix 3) that ρ is such that f(ρ) = 0, where the function f is defined in
Appendix 3. It is easy to notice that :

Πtot = ρf(ρ) (3.47)

Therefore :
Πtot = 0 (3.48)

Thus our conclusion.

§ 3.11 Appendix 6

In this appendix, we show that the retailers’ profit are concave functions of their decision
variables. The demonstration uses the following values : ε1 = 0.3 and ε0 = 1.2.
Retailer i’s profit is given in equation 3.14. We have to demonstrate that the profit Πi is concave
regarding the volume xi and considering the other volumes xj , j 6= i as exogenous.
Πi is twice differentiable and :

∂Πi

∂xi
(xi) = − α

ε0
x
− 1
ε0
−1

0 xi + αx
− 1
ε0

0 + β

(
1

ε
− 1

)
x

1
ε
−2

0 xi + βx
1
ε
−1

0 − (1− θ)p

and
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∂2Πi
∂x2
i

(xi) = α
ε0

(1 + 1
ε0

)x
− 1
ε0
−2

0 xi + β
(

1
ε − 1

) (
1
ε − 2

)
x

1
ε
−3

0 xi

−2 α
ε0
x
− 1
ε0
−1

0 + 2β
(

1
ε − 1

)
x

1
ε
−2

0

The last expression can be rewritten as follows :

∂2Π

∂x2
i

(xi) =
α

ε0
x
− 1
ε0
−2

0

(
(1 +

1

ε0
)xi − 2x0

)
+ β

(
1

ε
− 1

)
x

1
ε
−3

0

((
1

ε
− 2

)
xi + 2x0

)
We know that α ≥ 0, β ≤ 0, xi ≥ 0, x0 ≥ 0, 1 + 1

ε0
≤ 2 and 1

ε ≥ 2. Therefore : since xi ≤ x0,

then
(

1 + 1
ε0

)
xi ≤ 2xi ≤ 2x0. Besides,

(
1
ε − 2

)
xi + 2x0 ≥ 0. Finally, we have :

∀xi ≥ 0, ∀xj ≥ 0, j 6= i,
∂2Πi

∂x2
i

(xi) ≤ 0

Thus our conclusion.
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§ 4.1 Introduction

Concerns about the natural gas sector are now back on top of policy makers’ agenda. The
reasons for this renewed interest are numerous and include : a rapid globalization of the natural
gas trade (43), the rising share of gas technologies in the power generation sector inducing, in both
Europe and Asia, an increased dependence on foreign sources (16), and the recent emergence of a
Gas Exporting Countries Forum that is often depicted as an embryonic cartel (21).

Unsurprisingly, this context has triggered a renewed interest for energy economics models
aimed at analyzing this industry. In particular, several partial equilibrium models in the vein of
those pioneered in (22) have recently been proposed to represent the imperfect competition among
gas producers ((4), (8), (15)). Besides the policy-oriented analyses provided in these articles, these
detailed numerical models can be very useful for corporate planning purposes. For example, a firm
that considers an investment in a large and lumpy gas transmission infrastructure may take advan-
tage of these powerful tools to assess the relative appeal of various alternative routes by comparing
the long-run impacts of the proposed infrastructure on the markets’ outcome. Despite their great
merits, 1 these models are not exempt from flaws. One of their most striking problems is connected
with the relatively rudimentary treatment of the demand side, which is usually oversimplified to an
affine inverse demand function. Indeed, a recent meticulous assessment of these models underlines
that these contributions rely either on somewhat obsolete information on gas demand function or
on more or less arbitrary calibration ((35), p.12). As the outcomes of a market equilibrium model
based on the Cournot oligopoly theory are indubitably impacted by the price elasticity of the
demand (41), some further investigations are clearly required to obtain a more satisfactory func-
tional specification of the demand for natural gas. Such a functional form will have to take into
account both the substitutability of natural gas by other fuels and the adjustment dynamics of
consumption in reaction to fuel prices. This statement provides the motivation for this thesis’ part.

Energy demand modeling has become a very productive activity since the 1970s. Indeed, a
very large literature has approached the question using econometric analyses. As far as interfuel
substitution is concerned, we can distinguish between early empirical specifications based on, for
example, discrete choice models as in (19), and models predicted in theory where a flexible func-
tional form is aimed at being estimated in coherence with standard microeconomic assumptions
(profit or utility maximizing behavior, 0-degree homogeneity of the demand function, symmetry,
law of demand, etc.) as in, for example, (12), (31), (6), or (42). Notwithstanding the immense va-
lue of these statistical approaches, it must be acknowledged that putting theory to work to model
energy demand can turn out to be far from a sinecure because of numerous practical considerations
(cf. the informed list reported in (44)). For example, practitioners may be compelled to adopt a
more simplified dynamic specification to model short- and long-run effects than those recommen-
ded by theoretical arguments based on an assumed dynamic optimization behavior (44). This type
of consideration may turn out to be problematical if the obtained demand model is aimed at being
embedded within a decision-support tool designed to serve the needs of users (corporate planners

1. For example, they capture a very detailed representation of the supply side of the natural gas industry
including : transmission network, production constraints, etc.
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and executives) who may have forgotten some of their statistical education and could feel uncom-
fortable with a modeled dynamics that hardly mimics their a priori mental representation of a
putty-clay type of dynamics. To increase their confidence with the model’s validity, modelers can
look for an approach that endeavors to build on their detailed understanding of the gas industry.
Given the strong record of applications of system dynamics for strategic modeling purposes ((38),
(23)), this technique constitutes an appealing methodology.

Numerous system dynamics-based models have been developed for energy planning purposes.
A non-exhaustive list includes : (i) the models originating from research initiated at Dartmouth
College in the late 1970s and then refined during nearly two decades to support energy policy
analyses conducted by the US federal administration ((26), (27), (28), (45)), (ii) the broad ap-
proach of (36) that analyzed the US energy transition with an integrated energy-economy model
and the extended climate-economy model of (10), (iii) the numerous models surveyed in (11) that
are aimed at informing electric utility policies and (iv) the models dedicated to the oil and/or gas
industries such as (7), (29), (5) and (32).

Since the 1980s, an impressive stream of research that encompasses all the facets of natural
resources (economic, management, policy) has been conducted in Norway. As far as natural gas
is concerned, the affluence and diversity of this "Norwegian school" is well exemplified in (14).
Amusingly, this book that contains the Cournot equilibrium model of (22) mentioned above also
includes (47), a putty-clay model of OECD-European industrial energy demand that presented a
very good explanation of historical fuel substitution during the period 1960-1983. In a subsequent
study (25), it has been shown that this framework can also provide a very good fit to an histori-
cal time-series of fuel choices in OECD-European electricity production. In this contribution, we
propose to take advantage of this system dynamics methodology to select and estimate a more
satisfactory demand function aimed at being implemented in an imperfect competition model (1).
To do so, an updated version of this system dynamics-based model is first presented and reca-
librated to check the capability of this approach to explain the substitutions between the three
main fuels : oil, coal and natural gas. The model is then simulated to generate data that depict
the dependence of fuel consumption over fuel prices. Based on these "pseudo data", an interesting
functional form is proposed to model the demand function for natural gas, that can be generalized
to the three fuels.

This part is organized as follows : chapter 4 provides a brief review of the methodology pre-
sented in (47) and (25). The results obtained with a calibrated model are also given, for different
countries. In chapter 5, the system dynamics model is put to work to construct an adapted de-
mand function. This demand function will be used in natural gas markets modeling, presented
later in this manuscript.

The same notation will be used in chapters 4 and 5.
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§ 4.2 The model

In this section, we briefly review the model detailed in (47). This model aims at predicting the
consumption of coal, oil and natural gas observed at time t using both the historical and current
values of fuel prices, and the history and current value of the overall demand for hydrocarbon
fuels. In this model, the dynamics of interfuel substitution involves a distinction between the flow
of freshly installed equipment, and the stocks of existing equipment that is represented by two
vintages of capital. The model is based on a putty-clay framework and assumes that the choice
of fuels can be freely adjusted ex ante, whereas no substitution is possible ex post. Thanks to this
decomposition, the model captures the irreversibility associated with the decision to install and
operate a durable burning equipment.

To begin with, table 4.1 clarifies the model boundaries and divides the variables and parame-
ters into those endogenous and those exogenous to the model :

Table 4.1 – An overview of the model boundaries.

Endogenous Exogenous
Investment in new burning equipment Total energy consumption

Fuel shares in newly installed equipment Fuel market prices
Installed burning capacity per fuel option

Capacity utilization factors of installed equipment
Consumption of the various fuels

To simplify, the fuel options are indexed by an integer i and the fuel option coal (respectively
oil, and natural gas) is labeled 1 (respectively 2, and 3). The fuel shares in the new burning
equipment installed at time t are assumed to be determined by the relative cost of the three fuel
options. The total cost Ci of fuel option i is given by the following formula :

Ci =
CCi
PBTi

+OOi +
Pi +QCO2i.PCO2

Ei
− PRi , (4.1)

where CCi is the capital cost, PBTi is the associated payback time, OOi denotes the operating
cost (fuel and carbon cost excluded), Pi is the fuel price, PCO2 is the price of CO2 if any, QCO2i

is the CO2 emission factor of fuel i, Ei is the burner efficiency, and PRi is a premium, that is, a
parameter that reflects the miscellaneous unmodeled features of fuel i such as flexibility, availabi-
lity, consumption inertia, etc. In (47) and (25), the price of CO2 has not been taken into account.
Thus, our approach is, to some extent, more general.

The share si of fuel option i in the new burning equipment is determined by the relative cost
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of the three fuel options. The following multinomial logit model is used :

si =
e−αCi∑
i e
−αCi

, (4.2)

where α is a (nonnegative) parameter, and Ci are the total costs defined in (4.1). By construction,
the obtained shares satisfy ∀i, si ∈ [0, 1] and

∑
i si = 1. In addition, the share si is, ceteris pari-

bus, a decreasing function of the fuel price Pi. Besides, one may notice that shares are determined
on the basis of differences in total costs and thus differences in the values of the premiums. As
these are adjustable parameters, it may be easier to determine a reference point : hereafter, the
premium for coal PR1 has thus been set equal to 0. It is also interesting to underline that the
presence of exponents in the logit formula tends to accentuate the differences in total costs as
they are converted into fuel choices. A small value of α translates into equal shares for all fuels,
whereas a large value of α indicates that minor differences in total cost lead to major differences
in the resulting fuel shares. 2 Actually, the validity of this logit model conceptually presupposes a
"macroscopic" perspective, meaning that the energy system under scrutiny must contain a large
enough number of individual decision-makers.

In this model, capital is measured in units of capacity to burn fuels (that is, in energy unit
per unit of time). Thus, the total investment I represents the overall capacity of new burning
equipment. The total investment in new equipment associated with the fuel option i is denoted Ii
and satisfies :

Ii = siI. (4.3)

We can now detail the dynamics of fuel substitution. As mentioned above, a vintaging structure
is used to portray the aging process of installed equipment. Here, two vintages of capital are
kept track of. A more precise description of the aging process should consider more vintages, or
continuous aging. However, (47) justifies this choice of a 2-vintages representation by the lack of
precise data, and the fact that the model’s behavior seems insensitive to the number of modeled
vintages. Accordingly, two stock variables are defined for each fuel option i : the capacity of
recently installed equipment, the "new" ones KNi, and those of the older ones KOi. Investment
in new burners Ii increases the capacity of the new equipment. New equipment becomes old after
a use of half the lifetime Ti. If, as in (47) (p. 99), a "fairly wide distribution of lifetimes" can be
assumed, the flow variable associated with the transformation of new equipment into old ones can
be assumed to be equal to 1

Ti/2

th of the overall capacity of new-burners KNi. Similarly, an old
equipment is scrapped after a use of Ti

2 and the flow of scrapped old equipment DOi is assumed

2. In (25), an informed interpretation is given for α : if the total costs follow a Weibull distribution, α is inversely
proportional to the standard deviation of this distribution.
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to be equal to KOi
Ti/2

. With these assumptions, the dynamics can be formulated as follows :

dKNi

dt
= Ii −

KNi

Ti
2

, (4.4)

dKOi
dt

=
KNi

Ti
2

− KOi
Ti
2

. (4.5)

A simple interpretation of these equations can be provided. For each fuel i at time t, the
change in the overall stock of new equipment with respect to time is given by the inflow of new
equipment associated with investment Ii, and the outflow caused by aging (that is, the equipment
that is no longer new and has to be reallocated into the old category). Similarly, the temporal
variation of the stock of old burners results from : the inflow of these previously new equipment,
and the outflow corresponding to the scrapping of old equipment.

The next step is to model the dependence between the flow of total investment I and the
overall stock of existing equipment. We can first define Ki = (KNi + KOi) the total capacity
of installed burning equipment with fuel option i, and K the total capacity of installed burning
equipment : K =

∑
iKi.

At time t, the overall capacity of scrapped equipment is :

DO =
∑
i

DOi =
∑
i

KOi
Ti
2

. (4.6)

Let’s call ED the overall demand for the three fuels at time t, which is an exogenous parameter
in this model. Common sense suggests that investment in new equipment should be related in
some way to the observed discrepancy between demand and the installed capacity of existing
equipment. As this adjustment is usually not instantaneous, (47) introduces the parameter TI,
the time to adjust investments that "determines how fast investments adjust simulated capacity
toward exogenous demand." Accordingly, the total investment has to be modeled as an increasing
function of ED−K

TI . In addition, investment has to be connected to the total scrapping of old
equipment DO to allow a regeneration of the stock of equipment. To model these interactions,
(47) postulates the following formula that defines the total investment as a function of these
parameters :

I = DO.f

(
ED −K
TI.DO

)
, (4.7)

where f is a piecewise continuous function that has the following expression :

f(x) = x+ 1 if x ≥ 0 ,

f(x) = ea.x if x < 0 ,
(4.8)

where a is a nonnegative parameter. We can observe that, if the total demand ED is equal to
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the installed capacity K (that is, ED = K), the investment will be large enough to compensate
for the scrapped equipment DO (f(0) = 1). If ED > K, investments cause a net rise in the
stock of installed equipment (f(x) > 1 if x > 0). If ED < K, some positive investment values
can be obtained. However, since I < DO, they will cause a net drop in the installed capacity
(f(x) < 1 if x < 0). In the case ED < K, the chosen functional specification differs slightly from
the affine one used in the original model ((47), fig. 2). This change is guided by the desire to
implement a robust formulation to extreme condition testing (30). With an affine specification,
a very large drop in demand ED could result in a negative investment value, that is, the pre-
mature scrapping of "new" equipment (especially those with the most desirable fuel option). To
remedy this, an exponential specification is implemented to insure a nonnegative investment value.

One then has to determine the capacity utilization to allow the model to track exogenous
energy demand in case of large downward variations (compared to total scrapping DO). Capacity
utilization U is simply defined as :

U =
ED

K
. (4.9)

Here, capacity utilization is assumed not to be fuel specific as the same capacity utilization
figure is posited for the three fuels :

∀i, Ui = U . (4.10)

As a result, the simulated demand for fuel i, denoted D̂i, is :

D̂i = UiKi = ED
Ki

K
. (4.11)

Contrary to (47) and (25), we do not model installed plants with multi-firing capability that,
in the short-run, are able to switch from one fuel to another and back again in response to price
signals. In this model, all the installed equipment is thus supposed to be inflexible with respect
to fuel choice. The decision to abandon this part of the original model was guided by market
observations that suggest a phase-out of fuel switching capability in industrial plants after the
1980s. (39) and (40) provides an informed discussion on the causes of this phase-out based on the
extra-cost and inconvenience associated with the maintenance of a multi-firing capability, and the
progressive tightening of emission limits on the burning of fossil fuels.

To summarize, the model (equations (4.1)-(4.11)) corresponds to a system of non-linear diffe-
rential equations. The associated initial conditions will be detailed in the next section. Because of
its complexity, this system has to be simulated with numerical techniques (Euler’s method).

§ 4.3 Numerical resolution

This section presents the numerical scheme we have used to solve the model. The time scale
has been divided into N + 1 time-steps t0, t1...tN , where tj+1− tj is constant and equal to h = T

N ,
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[0, T ] being the study’s horizon. If X is a variable that depends on time, we denote by Xj the
value of X at tj : Xj = X(tj). If N is big enough (or h small enough), the term

Xj+1 −Xj

h

is a good approximation of X’s derivative at tj : ∂X∂t (tj).

Equations (4.4) and (4.5) can therefore be approximated by the following :

KN j+1
i −KN j

i

h
= Iji −

KN j
i

Ti
2

, (4.12)

KOj+1
i −KOji
h

=
KN j

i
Ti
2

−
KOji
Ti
2

. (4.13)

Equations (4.12) and (4.15) constitute a numerical (Euler’s) scheme to solve partial differential
equations. The investment Iji is obtained using relations (4.3) and (4.7) :

Iji = sji DO
j f

(
EDj −Kj

TI DOj

)
(4.14)

and thanks to (4.3) and (4.6), we can write Iji ’s explicit dependence on KN j
i and KOji and plug

it in (4.12) and (4.13) :
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KOj+1
i = KOji + h

(
KN j

i
Ti
2

−
KOji
Ti
2

)
. (4.18)

If the differential equations’ initial conditions are known, i.e., KN0
i = KNi(t = 0) and KO0

i =

KOi(t = 0), then it is possible to solve, recursively, equations (4.17) and (4.18) and calculate KN j
i

and KOji , ∀j ∈ {0, 1...N + 1}.We can prove that the numerical solution converges towards the
exact solution when the time-step h is small enough. Mathematically, this can be written by :
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∀i, ∀j, KN j
i −→ KNi(tj) when h −→ 0 (4.19)

∀i, ∀j, KOji −→ KOi(tj) when h −→ 0 (4.20)

§ 4.4 Calibration and results

In this section, we present the data used in our simulations and detail the calibration of the
model before discussing the obtained results.

4.4.1 Context

The national energy contexts (domestic resource endowment, composition of the industrial
sector, energy policies and energy taxation regimes, etc.) vary greatly from one industrial country
to another and national specificities play a non-negligible role in the fuel consumption patterns
observed in the industrial sector. Accordingly, a country-level perspective has been adopted to ana-
lyze the cases of eight industrial countries that are members of the International Energy Agency
(IEA) : Canada, France, Germany, Italy, Japan, South Korea, the UK and the USA. The hy-
drocarbon fuel consumption of their industral sectors are the largest among IEA members and,
in 2008, collectively represented 79.6% of the overall industrial fuel consumption of all the IEA
member countries (17).

In this study, we aim at analyzing the adjustment to the relative fuel prices that occurred du-
ring the period 1978-2008. 3 This sample period covers the second oil shock, the oversupply-based
counter shock associated with the collapse of oil prices that started in 1986 and, more recently, the
high-oil price regime that began in late 2003 and unfolded until 2008. During these last 30 years,
there has been a net decline in the energy intensity in these eight economies. With exception of
South Korea where a net rise in the fuel demand of the industrial sector has been observed, the
overall amount of fuel consumption in the energy sector has either diminished (Europe and USA)
or has been maintained (Canada, Japan). In terms of fuel substitution, the share of coal remained
steady whereas gas consumption increased sharply at the expense of oil (17).

4.4.2 Data and model calibration

The data employed in this study consists of time series gathered from the IEA. The fossil fuel
consumption data - measured in toe - are those listed in the "Total Industry" category in the IEA
World energy balances under the headings "Coal and coal products", "Oil products" and "Gas"
(17). Similarly, the price data refer to the national end-use prices in US dollar reported in (18)
under the headings "Steam coal", "High sulfur fuel oil" and "Natural gas". 4 All prices are given

3. The non-inclusion of the earlier period has been imposed by practical considerations on data availability.
Indeed, the IEA no longer provides time series on end-user prices for the period 1960-1977.

4. For periods with missing price data, end-use prices have been reconstructed using the indices of energy prices
by sector reported by the IEA.
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in 2008 US$/toe. In South Korea, natural gas consumption began just after the commencement
of gas imports in 1987. In that country, an infinite price of natural gas was hence assumed for the
period 1978-1986.

We can now detail the model’s calibration. In (47) and (25), a Bayesian approach is used
where most of the parameters’ values are derived from direct observations (costs, efficiency of the
burners, etc.) and educated guesses (the coefficient for the logit specification α). Some parameters
(especially those pertaining to preferences and the initial values of the stocks), are then revised
thanks to an iterative procedure aimed at improving the fit between simulated and historical
behavior. Arguably, such an iterative procedure may somehow involve some subjectivity (30).
To remedy this, an automatic calibration (AC) procedure is applied to minimize the deviation
between a simulated outcome and historical data. According to (30), a parsimonious approach
should guide the practical implementation of AC. Accordingly, the use of AC has been restricted
to "the smallest possible calibration problems." In line with Moxnes’ Bayesian approach, a priori
information has thus been used for the observable parameters (costs, efficiency of the burners,
etc.) and the AC procedure has been applied to solely adjust the value of the most uncertain
parameters (initial values of the stocks, α, etc.).

Our assumptions are based on (47) (table 2) and are summarized in table 4.2 (Note : the CO2

emission factors are drawn from (17) :

Table 4.2 – Cost assumptions for the industrial sector.

Year Coal Oil Gas
Capital costs CCi ($/utoe a per year) all 410 200 200
Payback time PBTi (years) all 5 5 5
Other operating costs OOi ($/utoea per year) all 70 40 40
Burner efficiencies Ei 1978-1982 70 75 75
(% useful) 1983-2008 71 76 76
Lifetime of burners Ti (years) all 25 25 25
CO2 emission factor QCO2i (tCO2/toe) all 3.881 3.207 2.337

a. Hereafter, utoe is used to denote useful toe.

In addition, the parameters associated with the investment function have to be defined. The
coefficient a in the function f defined in equation (4.8) has been set equal to 0.231, a value inter-
polated from the exteme left point in (47) (Fig. 2). Besides, the time to adjust total investments
TI is assumed to be equal to 1 year because, contrary to the 1960s (Moxnes used 0.25 year), we
can reasonably posit that industrial investment during the period 1978-2008 was not primarily
guided by "building ahead of demand" motives.
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We can now detail the main features of the AC procedure. Here, we rely on the model reference
optimization (MRO) method described in (30). We first specify an error function capable of
measuring the distance between the observed and simulated behavior as a function of the model’s
parameter values. For each fuel i, a fuel-specific distance can be evaluated with the absolute
error, that is, the sum of the absolute discrepancies between historical Dt

i and estimated D̂t
i fuel

consumption. The model’s error function is thus defined as the sum of these three fuel-specific
distances :

e =
∑
i

∑
t

|Dt
i − D̂t

i | . (4.21)

We note that this function gives an equal weight to each fuel and each observation no matter
when it was recorded. Using the model’s equations above, it is possible to specify the error e as
a multivariate function of the parameters to be estimated, namely the nonnegative values of the
initial stocks

(
KO0

i

)
i
and

(
KN0

i

)
i
, the nonnegative coefficient for the logit specification α, and

the premiums for both oil PR2 and natural gas PR3 (PR1 is set equal to 0$/toe).

Following (30), the AC procedure is then specified as an optimization problem : finding the
parameter values that minimize this distance subject to feasibility constraints (the non-linear
equations presented in the preceding section). The optimization problem at hand is a nonconvex,
nonlinear mathematical program that can be successfully attacked by modern global solvers. 5

Table 4.3 reports the parameters’ values obtained thanks to the AC procedure, for the countries
studied.

Table 4.3 – Calibrated values of the parameters.

Initial capacities alpha Premiums
(Mtoe/year) (utoe/$) ($/utoe)

KN0
coal KO0

coal KN0
oil KO0

oil KN0
gas KO0

gas α PRoil PRgas
Canada 3.63 0.58 - 13.56 13.95 - 0.0073 55.1 140.2
France 8.35 - - 20.33 6.17 - 0.0220 0.0 119.0
Germany 13.35 34.90 - 30.83 - 23.16 0.0112 - 317.7
Italy 3.52 - - 19.56 8.14 - 0.0107 105.5 229.0
Japan 14.95 22.01 - 98.02 5.57 - 0.0047 -5.8 124.1
Korea 2.74 - 10.31 0.00 - - 0.0128 -80.7 48.0
UK 9.13 - - 16.68 13.92 - 0.0087 352.2 400.3
USA 59.35 - 11.56 116.39 - 176.90 0.0304 -25.2 99.0

From these calibration results, several facts stand out. First, the initial stocks of new burners
in 1978 suggest that, with the exception of Korea, the installed oil burning capacities mainly

5. Here, the LINDOGlobal optimization procedure is applied.
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consist of old burners, revealing a limited investment in oil burning appliances in the previous
years. This finding looks coherent with the oil diversification policies initiated after the first oil
shock. Then, (47) and (25) underlines that the multinomial logit model used for the investment
shares involves an implicit assumption : that the total costs follow a Weibull distribution. Thus,
α the coefficient for the logit specification is inversely proportional to σ the standard deviation of
the cost distribution : (σ = π

α
√

6
). According to the obtained values, the standard deviations of

total costs range from $42.2 per useful toe in the USA to $270.0 per useful toe in Japan. Finally,
the relatively large values of the natural gas premiums (compared to the oil ones) reveal a strong
preference regarding that fuel in investments. Several features of natural gas can justify this pre-
ference, such as the wish to diversify energy sources in oil-importing economies after the two oil
shocks, and the cleanliness of natural gas at a time of raising environmental concerns.

4.4.3 Results and validation

The validation of a system dynamics model usually involves two dimensions : (i) structural
validity, and (ii) behavioral validity. The purpose of the former is to check whether the implemen-
ted structure constitutes, or not, an adequate representation of the phenomenon to be modeled,
whereas the aim of the latter is to compare the model generated behavior to the observed behavior
((3), (33)).

In this study, the modeling framework is derived from a classical approach and is thus firmly
grounded in previous knowledge. Nevertheless, a meticulous check of its structural validity is
carried out. The model at hand has a moderate complexity which considerably eases these veri-
fications (logical coherence of the set of modeled equations, the dimensional consistency of each
equation, the robustness against extreme parameter values, etc.). Following a recommendation
in (33), this model was also submitted to the judgment of a group of practitioners (corporate
planners, executives) and academics whose research is focused on energy issues. All these assess-
ments confirmed the logical soundness of this model built to capture the main drivers of the fuel
substitutions dynamics. Accordingly, we can feel confident in the model’s ability to "generate the
right behavior for the right reasons."

Concerning behavioral validity, figure 4.1 and figure 4.2 show both the historical and simula-
ted demand behavior for the eight countries. A visual inspection of these plots suggests that the
calibrated models satisfactorily capture the history of fuel consumption in these countries.

In addition, some quantitative tools for the analysis of fit are reported in table 4.4. The root
mean square errors (RMSE) measure the magnitude of the errors. To ease comparisons across se-
ries/countries, a normalized measure of these errors is also presented : the mean absolute percent
error (MAPE). According to these findings, the fit to historical behavior is quite good, particu-
larly for Canada, Italy and Japan. The large MAPE figure obtained for South Korea’s industrial
gas demand can be explained by the formulation chosen for the AC procedure. Indeed, our ob-
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Figure 4.1 – Historical and simulated consumption behavior of industrial annual fuel demand
in France, Germany, Italy and the UK.
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Figure 4.2 – Historical and simulated consumption behavior of industrial annual fuel demand
in Canada, Japan, South Korea and USA.
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Table 4.4 – Error analysis of the model.

MAPE RMSE UM US UC
(%) (ktoe) (%) (%) (%)

Canada Coal 5.4% 232 0.1% 3.5% 96.4%
Oil 4.9% 557 0.0% 9.4% 90.6%
Gas 2.4% 574 0.1% 1.2% 98.8%

France Coal 14.5% 1045 0.1% 30.1% 69.7%
Oil 8.4% 1244 3.8% 68.7% 27.5%
Gas 5.7% 891 5.3% 0.1% 94.6%

Germany Coal 15.5% 3002 0.0% 1.9% 98.1%
Oil 12.0% 2230 0.1% 23.8% 76.1%
Gas 6.2% 1250 0.3% 2.5% 97.2%

Italy Coal 9.5% 385 3.9% 16.7% 79.4%
Oil 9.9% 865 1.1% 2.0% 97.0%
Gas 6.9% 924 3.2% 1.9% 94.9%

Japan Coal 5.4% 1700 0.8% 0.1% 99.0%
Oil 3.5% 1553 2.6% 0.6% 96.8%
Gas 6.8% 400 5.7% 4.3% 90.0%

Korea Coal 22.4% 781 7.6% 6.6% 85.8%
Oil 8.2% 927 1.9% 12.7% 85.3%
Gas 63.2% a 721 1.5% 31.3% 67.2%

UK Coal 21.4% 950 2.6% 24.9% 72.5%
Oil 7.8% 693 0.5% 12.9% 86.6%
Gas 6.0% 916 1.3% 15.7% 82.9%

USA Coal 8.3% 3783 1.6% 3.4% 95.0%
Oil 15.3% 6519 5.5% 3.3% 91.2%
Gas 4.0% 6066 3.0% 0.0% 97.0%

a. In Korea, gas consumption began in 1987. To avoid a division by 0, this figure
corresponds to the period 1987-2008.
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jective function pays attention to absolute differences between historical and simulated values,
whereas the MAPE is a relative average normalized measure. For Korea, the MAPE is heavily
twisted by the presence of large relative errors during the decade 1987-1997. During that period,
gas consumption was ramping up in South Korea and the resulting consumed volumes remai-
ned small relative to the generated error. For the UK, most of the discrepancies are observed on
the gas and coal series between 1996 and 2003, a period of very low gas prices underpinned by
increased competition and upstream developments in the North Sea. During that period, many
market observers documented a "dash for gas" causing the premature scrapping of coal burning
equipment replaced by gas-fired ones, a behavior that has not been modeled here. Arguably, the
observed discrepancies between the simulated and historical series for both gas and coal provide
an order of magnitude of the amplitude of this unmodeled phenomenon. For Germany, the model
poorly explains the oil and coal consumption monitored in the 1980s. For Germany, the model
hardly explains oil and coal consumption in the 1980s but performs significantly better in the
subsequent period. Several explanations can be proposed for this poor performance including (i)
the possibility of under-optimal fuel choices in GDR industries prior to German reunification, (ii)
the unmodeled subsequent modernization of these industries, (iii) the possibly debatable quality
of the "reconstructed" energy statistics for the aggregate country in the 1980s (especially those
on energy prices), and (iv) the unmodeled coal-friendly policy conducted in West Germany that
resulted in a net rise in coal consumption between 1979 and 1983 ((34)).

In addition, the Theil inequality statistics detailed in (37) provide a useful decomposition of
the mean square errors in terms of bias (UM ), unequal variation (US), and unequal co-variations
(UC). In most cases, the largest share of the MSE can be ascribed to UC the imperfect covaria-
tion component of the Theil inequality statistics. The low bias and variation components of these
statistics indicate that the errors are unsystematic, meaning that the models can replicate the
observed behaviors.

These results together with the graphical representations suggest that the model does a good
job of tracking the observed interfuel substitutions.
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§ 4.5 Conclusion

The extent to which alternative fuels can substitute for natural gas in the industrial sector is
an issue of substantial interest to both energy policy analysts and corporate planners alike. It has
recently been underlined that most of the large-scale representations of the natural gas industry
embed a rudimentary representation of the demand side.

To remedy this, a revisited version of the system dynamics model proposed by (47) is put
to work to analyze fuel choices in the industrial sector. This model emphasizes the role of prices
in analyzing interfuel substitutions and captures the dynamic adjustment of demand to relative
fuel prices using a vintaging structure. Using data on eight of the OECD countries for the period
1978-2008, we found that this model can satisfactorily replicate past patterns of fuel consumption.
These performances make the model an appealing tool to examine fuel substitution possibilities
in industrial energy demand.

This approach has been used in order to calculate the demand function for natural gas, taking
into account the possible fuel substitution. The results are presented in the next chapter.
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§ 5.1 Introduction

The system dynamics model presented in chapter 4 offers great appeal for the prospective
analysis of industrial energy demands. Given the poor representation of the demand side included
in most natural gas market models, one could thus wish to embed this system dynamics-based
model within a partial equilibrium model of the natural gas markets. Unfortunately, all these
models require the formal specification of a single-equation function of the demand for natural
gas. In this section, this system dynamics-based representation is put to work to construct such a
single-equation demand function.

Hereafter, the reference year is assumed to be t0 = 2008 (the calibration presented in chapter
4 focuses on the period [1978,2008]) and we analyze the future annual consumption of a given fuel,
in one of the countries listed above, in year t > 2008. For the sake of clarity, we detail the case
of natural gas consumption in Canada but this approach is general and can be used to model the
industrial demand of any two other fuels in any country. In addition, we assume the availability
of an exogenous scenario that details the evolution of future total final fossil energy consumption
and both coal and oil domestic prices in any future year t > 2008.

In this chapter, we will use chapter 4’s notation.

5.1.1 Modeling next year’s demand

To begin with, we focus on the first future year (that is, t0 +1 = 2009) and detail the construc-
tion of a single-equation demand function for that year. To do so, a series of simulations of the
system dynamics model are conducted with, ceteris paribus, various values of the 2009 price of
natural gas. Using a large sample (1000 values) of possible 2009 gas prices regularly drawn over a
wide range, we can generate a large data set that depicts the instantaneous change in the quantity
of natural gas demanded in 2009 as a function of the 2009 price of that fuel.

As an illustration, figure 5.1 depicts the results of a series of numerical simulations conducted
for the case of Canada with the following exogenous parameters : FPcoal(2009) = 165$/toe (coal
price in 2009), FPoil(2009) = 1030$/toe (oil price in 2009), and ED(2009) = 30Mtoe (total final
energy consumption in 2009).

These "pseudo data" can in turn be used to estimate the parameters of a single-variable, single-
equation, demand function for the year 2009. This empirical demand function aims at providing
an easy-to-handle representation of the quantity of fuel consumed in 2009 (the response variable)
as a function of the own fuel price that year (the explanatory variable). Our simulation results
(given in figure 5.1) suggest that the quantity of fuel demanded should be modeled as a smooth
and monotonically decreasing function of that fuel’s price. For a very low price level, the fuel under
scrutiny nearly captures all the new investments whereas the quantity demanded saturates at large
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Figure 5.1 – The numerical demand function. Canada, industrial sector, natural gas, year 2009.

values of this fuel prices, and this saturation level is set by the capacity of previously installed
burning equipment. As all our simulations suggested the presence of an "S" shaped pattern,
we explored the possibility of modeling these simulation results with an empirically determined
sigmoid curve. Among the set of mathematical functions with an S-shaped curve (e.g., logistic
function, Gompertz function, etc.), our experiments lead us to consider the hyperbolic tangent.
For each year t, we thus propose to fit the relation between simulated demand and price with the
following functional form :

q̂(p) = β + δ. (1− tanh (γ.(p− pc))) (5.1)

where q̂ is the approximated quantity of fuel demanded in 2009, p is the 2009 fuel price (the
explanatory variable), t is the time, and β, δ, γ, and pc are nonnegative parameters. The function
tanh is the hyperbolic tangent :

∀x ∈ R, tanh(x) =
ex − e−x

ex + e−x
(5.2)

According to Formula (5.1), the proposed approximated demand function is monotonicaly
decreasing. This specified demand does not rise to +∞ when the price is very low. This is prin-
cipally due to the fact that the total final energy demand is exogenous to our model. Hence, the
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demand for natural gas remains upper-bounded. When the price is very high, we can notice that
the quantity demanded converges towards a finite positive value β, that captures the "clay" ef-
fect, that is, the remaining demand originating from all the previous investments done in that fuel.

An interesting interpretation can be associated with the proposed approximation. This spe-
cification can be decomposed in two components, a constant term β that captures the rigidity
associated with past decisions, and a price-variable term that measures the instantaneous reaction
of demand to the current price (that is, δ. (1− tanh (γ.(p− pc)))). Concerning the latter term, the
parameter pc, which is the inflexion point of the curve (cf. figure 5.2), can be interpreted as a
measure of the price of an alternative composite energy utilizing both coal and oil. Thus, the
value of this parameter is influenced by the prices of both coal and oil products. The curvature
parameter γ represents how fast the natural gas usage drops within a year, if the gas price rises.
It is directly linked to the derivative of the demand function at the competing energy price pc.
The amplitude parameter δ is connected with the share of the total annual fuel demand that is
subject to interfuel substitutions.

If we denote by q(p) the simulated demand provided by the system dynamics model and q̂(p)
the one given in equation (5.1), the error (distance between q and q̂) can be defined as follows :

error =
< |q(p)− q̂(p)| >

< q(p) >
(5.3)

The < . > is the mean value. The mean value of a one-variable function f is defined as follows :

< f >= lima→+∞

∫ a
−a f(x)dx

2a
(5.4)

The values of the parameters β, δ, γ and pc are derived from a minimization of the error
function.

Table 5.1 – Optimal parameters, Canada, industrial sector, natural gas, year 2009.

β (ktoe) 1.84 104

δ (ktoe) 0.65 103

γ ($/toe−1) 0.0043
pc ($/toe) 352
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As an illustration, table 5.1 details the optimal values of the parameters β, δ, γ and pc found
for the case of natural gas industrial consumption in Canada for the year 2009. Figure 5.2 illus-
trates the quality of the numerical fit for that case. Apparently, the proposed formulation (5.1)
does an excellent job of tracking the simulated gas consumption as it is almost impossible to
distinguish between the simulated pseudo-data and the proposed S-shaped approximation. This
finding is also confirmed by the numerical value of the associated error which is low : 10−3.
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Figure 5.2 – The numerical fit. Canada, industrial sector, natural gas, 2009.

Given the good fit offered by this specification, we can discuss the implied short-run price
elasticity of natural gas demand. This elasticity is given by the following function (issued from
equation (5.1)) :

ε(p) = −
pγδ.

(
1− tanh2(γ(p− pc))

)
β + δ. (1− tanh(γ(p− pc)))

(5.5)

Ceteris paribus, this short-run elasticity is a decreasing function of the addiction parameter β,
which is quite intuitive.

With usual numerical values, the graph of this function has the shape depicted in figure 5.3.
From the example of Canada in 2009, the magnitude of the short-run price elasticity of natural gas
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demand remains low. Our experiments conducted with the other seven countries systematically
confirmed the fact that, in the short-run, industrial consumers appear to be very little responsive
to natural gas price increases. Of course, such a low price-response can have far-reaching conse-
quences when analyzing security of supply issues (2) or the possibility to exert market power in
the short-run with the help of an imperfect competition model.
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Figure 5.3 – The short-run price elasticity of industrial demand for natural gas. Canada, 2009.

Of course, the values of the parameters β, δ, γ and pc are conditioned by the chosen sce-
nario (that is. ED(2009), FPoil(2009), and FPcoal(2009)). Some sensitivity analysis can thus be
conducted to analyze the influence of the assumptions embedded in the scenario. As an example,
we can study how the value of pc varies with the assumed coal and oil prices. Figure 5.4 gives
the evolution of pc over the oil price FPoil(2009), in Canada in 2009. The coal price FPcoal(2009)
is fixed at 163$/toe. Our findings show that the price of the alternative energy is an increasing
function of the oil price. The saturation effect observed is due to the coal price that remains
constant.

Similarly, we can analyze the influence of the global energy demand ED(2009) on the natural
gas addiction quantified by the parameter β. Hence, figure 5.5 gives the evolution of β for Canada
over the assumed global energy demand ED(2009) for the year 2009. One can notice that there
is always a remaining addiction β 6= 0 even if there is no global energy demand ED = 0. This is
due to the previous (to 2009) investments in natural gas.
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According to these findings, the empirical approach at hand provides an acceptable approxi-
mation of the relation between simulated fuel demand and the fuel own price in year t0 + 1 for a
wide range of possible scenarios. Such a specification could usefully be put to work to refine the
demand-side treatment embedded in most static oligopolistic models of the natural gas industry.
For example, the popular models detailed in (13), (4) and (15) systematically postulate a simple,
downward sloping, affine function to represent the connection between gas price and the volume
demanded during the base year. Nevertheless, one could rightly feel uncomfortable with a model
solely based on a static vision of the natural gas industry. At least two types of arguments can
be advanced to consider a dynamic specification. Firstly, on the supply side, natural gas is an
exhaustible resource and gas producers typically have to decide an intertemporal policy (invest-
ment, extraction path, etc.). Secondly, on the demand side, the magnitude of the long-run price
elasticity of fuel demand is notoriously larger than its short-run counterpart. Any sudden rise in
the price of a given fuel can, ceteris paribus, have far reaching negative consequences on both
the volumes of fuel demanded during actual and future time periods. Concerning the supply-
side, some progress has been made as a couple of recent imperfect competition models propose
a dynamic treatment of the supply-side ((20), (9)). On the contrary, the dynamic adjustment of
volumes demanded to prices has, to our knowledge, never been taken into consideration within
an imperfect competition model of the natural gas industry. In most cases, demand behaviour is
simplified to an affine demand function depicting an instantaneous relationship between current
prices and volumes demanded without any reference to past prices. Such a statement obviously
calls for some investigation.

5.1.2 Modeling future demands

By construction, the system dynamics approach presented above is coherent with the fact that
the occurrence of a large gas price rise at a given future time t′ will result in a lower demand
for that fuel during the subsequent periods. In this subsection, we aim at putting this model to
work to specify a single-equation demand function that captures such a dynamic adjustment. To
begin with, we report how a meticulous analysis of a large number of simulated demand outcomes
has guided us in the construction of such a dynamic specification. Then, a numerical example is
detailed to illustrate the performances of the proposed specification.

5.1.2.1 Simulations : paving the way to a multivariate specification

Now, we focus on the demand for natural gas at a given future time period t. We assume
that an exogenously defined scenario gives, for each time period t′ ≤ t, the overall energy demand
ED(t′) and the prices of the two alternative fuels FPcoal(t′) and FPoil(t′). Our approach can be
decomposed into three successive steps.

1. A large number (10,000) of scenarios have been generated for the future prices of natural
gas at any future time t′ with t′ < t. Hereafter, J is used to denote the set of scenarios. If j
is used to index the generated scenarios, a gas price scenario can thus be written as (pjt′)t′<t
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a vector with t− 1 components. From a practical perspective, these future prices have been
randomly generated assuming that future gas prices are i.i.d. random variables that follow
an uniform distribution on the interval [0, 700]$/toe. These assumptions allow us to explore
a large domain of possible future price scenarios 1.

2. Then, we propose to analyze, for each scenario j, the instantaneous relationship between
the current price of natural gas pt and q

j
t the volume of natural gas demanded at time t. To

do so, the current price pt is varied so as to generate by simulation, for each scenario j, a
data set of 1000 observations of the volume demanded. Unsurprisingly, these observations
suggested the presence of a downward sloping, "S" shaped relation between the price pt and
qjt .

3. Each of these data sets has in turn been used to fit the following "S-shaped" specification. As
a result, we have estimated, for each scenario j, the parameters βjt , δ

j
t , γ

j
t and pc

j
t (according

to equation (5.1)) :

q̂jt (pt) = βjt + δjt .
(

1− tanh
(
γjt .(pt − pc

j
t )
))

. (5.6)

For each parameter, we can gather the values (βjt )j∈J , (δjt )j∈J , (γjt )j∈J and (pcjt )j∈J obtained
for the various scenarios j and analyze their distributional properties. Two interesting fin-
dings emerged from this analysis. Firstly, the "dispersion", measured either in absolute terms
(with the sample standard deviation) or in relative terms (with the coefficient of variation)
was extremely low for the series (δjt )j∈J , (γjt )j∈J and (pcjt )j∈J . Accordingly, the values of
these three parameters are not influenced by previous gas prices. Secondly, on the contrary,
the values (βjt )j∈J are intimately connected with those of previous gas prices. Moreover, we
systematically observed that, with two scenarios j1 and j2 that are such that pj1t′ ≤ pj2t′ for
all t′ < t, a comparison of the values βj1t and βj2t provided βj1t ≥ βj2t , ∀t′ < t. This latter
observation is coherent with the interpretation given for βjt in the previous subsection, i.e.,
a parameter that captures the "clay" effect associated with past investment decisions.

This three-step approach has been replicated for several time horizons t (in the range t0 + 2
and t0 + 30 years), for various countries, various alternative scenarios for both the overall energy
demand and the prices of the two alternative fuels (coal and oil). Our empirical findings systema-
tically confirmed the fact that : (i) the parameters δjt , γ

j
t and pcjt do not depend on previous gas

prices, whereas (ii) βjt exhibits a clear dependence on past values of the natural gas prices. From
these investigations, it appears that : the index j can be dropped on the parameters δt, γt and
pct, and that βjt can be viewed as the value taken by βt a multivariate function of past gas prices
evaluated at the particular point (pjt′)t′<t, i.e., :

q̂jt (pt) = βt

(
(pjt′)t′<t

)
+ δt. (1− tanh (γt.(pt − pct))) . (5.7)

1. More subtle probabilistic models fitted on historical time series, including alternative distributions and au-
tocorrelation, have also been considered. Given that the obtained results did not differ from those detailed here,
we have decided to maintain these rough assumptions.
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In addition, one may wish to elaborate on the path-dependency that is at work for the parame-
ter βt. As this parameter reflects the rigidity associated with past decisions, it is tempting to relate
it to qjt−1 the volumes demanded at time t − 1 in the scenario j (modulo some aging/scrapping
of installed equipment). These latter volumes can, in turn, be approximated by the "S" shaped
function q̂jt−1 evaluated at the particular price pjt−1 :

q̂jt−1(pjt−1) = βjt−1 + δt−1.
(

1− tanh
(
γt−1.(p

j
t−1 − pct−1)

))
. (5.8)

Here, the overall volume q̂jt−1(pjt−1) can also be decomposed into : those precisely decided at
date t− 1, and those encapsulated within the term βjt−1 that reflects earlier decisions. This latter
term can in turn be related, modulo some aging/scrapping of installed equipment, to qjt−2, a vo-
lume that can be approximated by q̂jt−2(pjt−2) and so on...

Because of this nested scheme, one could wish to model the function βt
(

(pjt′)t′<t

)
, given in

(5.7), with an additive specification that explicitly tracks the contributions of earlier vintages :

βt

(
(pjt′)t′<t

)
= β0,t +

∑
t′<t

ht′→t

(
δt′ .
(

1− tanh
(
γt′,t.(p

j
t′ − pct′,t)

)))
, (5.9)

where β0,t denotes the contribution of burners initially present at time t0, and ht′→t is a function
that models the aging of burning appliances installed at date t′. Rather than specifying these
aging processes, we consider that the aging function only alters the amplitude parameters δt′ so
that equation (5.9) can be rewritten as follows :

βt

(
(pjt′)t′<t

)
= β0,t +

∑
t′<t

δt′,t.
(

1− tanh
(
γt′,t.(p

j
t′ − pct′,t)

))
. (5.10)

Since this formula, which will be confirmed in the following section, holds for a huge number
of possible values of (pjt′)t′<t, we can drop the scenario index j, and write :

∀(pt′)t′<t, βt ((pt′)t′<t) = β0,t +
∑
t′<t

δt′,t.
(
1− tanh

(
γt′,t.(pt′ − pct′,t)

))
. (5.11)
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If we denote δt,t = δt, both equations (5.10) and (5.7) suggest to model the volumes demanded
at date t thanks to the following multivariable specification :

q̂t ((pt′)t′≤t) = β0,t +
∑
t′≤t

δt′,t.
(
1− tanh

(
γt′,t.(pt′ − pct′,t)

))
, (5.12)

where β0,t, (δt′,t)t′≤t, (γt′,t)t′≤t and (pct′,t)t′≤t are unknown parameters to be determined numeri-
cally.

5.1.2.2 Estimation and performance

We can now clarify the calibration procedure used to fit the approximation specified in equation
(5.12). As in subsection 5.1.1, we need to define a distance between the simulated demand function
q(t) and the theoretically proposed one q̂(t). Let us re-write the functions while showing the
main variables : q(t, (pt′)t′≤t) and q̂(t, (pt′)t′≤t). It is difficult to define a distance because of the
multivariable aspect of the functions, the variables being (pt′)t′≤t and t. Therefore, we define the
time-depending error as follows :

error(t) = limn−→∞
1

n

n∑
j=1

|q(t, (pjt′)t′≤t)− q̂(t, (p
j
t′)t′≤t)|

q(t, (pjt′)t′≤t)
(5.13)

where the variables pj1, p
j
2... p

j
t are randomly selected between 0 and 700$/toe (uniform distribu-

tion), for all j ∈ N. Thanks to the strong law of large numbers, we know that 1
n

∑n
j=1

|q(t,(pj
t′ )t′≤t)−q̂(t,(p

j

t′ )t′≤t)|
q(t,(pj

t′ )t′≤t)

converges when n −→∞.

Here again, our method minimizes the (time-depending) errors in order to estimate the parame-
ters β0,t, δt′,t, γt′,t and pct′,t. In the following, we report an illustration obtained for Canada, in year
2013. The following scenario has been used : constant fuel prices FPcoal=165 $/toe, FPoil=1030
$/toe and a constant overall energy demand ED=30 Mtoe. Table 5.2 gives the values of the
parameters β0,2013, γt′,2013, pct′,2013 and δt′,2013 for t′ ∈ {2009...2013}.

Table 5.2 – Optimal parameters, Canada, industrial sector, natural gas, year 2013.

time (t′) 2009 2010 2011 2012 2013
δt′,2013 (ktoe) 595 611 625 636 644
γt′,2013 ($/toe−1) 0.0043 0.0043 0.0043 0.0043 0.0043
pct′,2013 ($/toe) 352 352 352 352 352
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β0,2013 (ktoe) 1.55 104

The error we find numerically is small : ∀t, error(t) ≤ 10−3. This is a validation of the use
of the functional form provided in equation (5.12) to mathematically describe the demand function.

The new parameter β0,t decreases with time. Indeed, formula (5.12) indicates that β0,t is the
residual demand in year t, when all the previous natural gas prices are very high. This residual
consumption is expected to decrease with time if no investments are made in natural gas (which
is the case when the natural gas prices are high, considering equation (4.2)).

At a fixed time t, the parameter δt′,t increases with t′, which is intuitive : the consumption
dependence on natural gas price in year t′ is less and less important in the future. If the global
demand remains constant over time, the parameters δt′,t behave like the following :

δt′,t = δ0κ
t−t′

where δ0 and κ are constants. We found out that the new parameter κ is roughly the same for all
the countries we studied : κ = 0.95.

There are many advantages to using our model to make a demand forecast. First, we take into
account the inertia present in energy consumption, which is due to all the past investments in
coal, oil and natural gas. Second, the demand function estimated for gas naturally depends on the
other fuel prices. Thus, a competition between fuels, thanks to the substitution aspect, appears
in the demand function. Finally, this technique takes into consideration the intertemporal depen-
dence between consumption and prices. Indeed, fuel prices in year t will influence the demand
in future years t′ ≥ t. Obviously, if the natural gas price is high in 2010, for instance, compared
to the other fuels, few investments will be made in that fuel and the corresponding demand will
therefore be low in the future years. In (1), it is shown that this functional form can be used for
building imperfect competition models of natural gas markets.

It has been stated before that the addiction parameter β0 decreases with time. Figure 5.6
shows the evolution of β0 between 2009 and 2023.

The decrease of β0 is quasi exponential. We can numerically estimate the following dependence :
β0,t = Ke−(t−2009)/τ . The values of the constants K and τ in the case we studied (Canada) are
K = 1.83.104 ktoe and τ = 19 years, which is roughly the investments depreciation time factor
Tnatural gas .
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Figure 5.6 – The evolution of β0 over time. Canada, industrial sector, natural gas.

§ 5.2 Conclusion

The previous chapter described a system dynamics approach in order to capture the fuel substi-
tution in the overall fossil energy consumption, between the consumption of oil, coal, and natural
gas. An application of the model has been carried out to construct a dynamic demand function
for natural gas. More particularly, a large number of simulations have been conducted with the
aim to propose an adapted single-equation specification for the demand for natural gas. From
these investigations, it appears that a smooth, S-shaped, function can be used to represent the
instantaneous reaction of fuel demand to price. In addition, this approach provides the ingredients
necessary to capture the dynamic influence of past fuel prices on current consumption level. An
extended multivariable specification has thus been derived and successfully tested.

As a result, a multivariable demand function that makes the gas consumption depend on all
the previous prices has been estimated and calibrated. Such a function, captures at the same
time, fuel substitution and the dynamics of the natural gas consumption. After a linearization
process, this demand function was used in large-scale natural gas markets modeling, as shown in
the following chapters.

This chapter demonstrates the potential of that system dynamics-based method for deriving
demand curves and thus offers a promising approach to further enhance the relevance of existing
large-scale models of the natural gas industry.
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Chapitre 6. A Generalized Nash-Cournot model for natural gas markets with a fuel substitution

demand function : The GaMMES model.

§ 6.1 Introduction

Quantitative studies and mathematical models are necessary to understand the economic and
strategic issues that define energy markets in the world. In that vein, the study of natural gas
markets is particularly interesting because most of them, particularly in Europe, show a high de-
pendence on a small number of producers’ exports. According to Mathiesen et al. (44), this market
structure can be analyzed with strategic interactions and market power. This market power can
be exerted at the different stages of the gas chain : by the producers in the upstream market or
the local intermediate traders in the downstream market. The European markets are also cha-
racterized by long-term contracts established between the producers and the intermediate local
independent traders. These long-term contracts were initially designed as a risk-sharing measure
between producers and local traders. They are usually analyzed, in particular, as a tool to mitigate
the producers’ market power. The combination of strategic interactions and long-term contracts
makes the study of the natural gas markets evolution particularly subtle and rich.

The economic literature provides an important panel of numerical models whose objective is
to describe the natural gas trade structure. As an example, we can cite the "World Gas Trade
Model" (Baker Institute) (49), the "EUGAS" model (Cologne University) (48), the "GASTALE"
model (Energy Research Centre of the Netherlands) (41) or the "World Gas Model" (University
of Maryland) ((14), an extension of the work developed in (21) and (22)). However, most of these
models present some necessary simplifying assumptions concerning either the description of the
market economic structure or the demand function. For instance, the "EUGAS" model assumes
pure and perfect competition between the players and thus neglects market power to allow a detai-
led description of the infrastructure. The "GASTALE" and "World Gas Model" depict strategic
interactions between the players via a Nash-Cournot competition and the latter model also uses
exogenous long-term contracts. However, the former model does not include investments in pro-
duction or in pipeline and storage infrastructure. Besides, the demand representation for all these
previous models does not explicitly take into account the possible substitution between different
types of fuels (natural gas, oil, and coal, for instance). All these drawbacks have been analyzed in
detail in (51)

The partial equilibrium model we develop, named GaMMES, Gas Market Modeling with
Energy Substitution, tries to address some of the limitations proposed in (51). It is also based on
an oligopolistic approach of the natural gas markets. The interaction between all the players is a
Generalized Nash-Cournot competition and we explicitly take into consideration, in an endogenous
way, the long-term contractual aspects (prices and volumes) of the markets. Our representation
of the demand is new and rich because it includes the possible substitution, within the overall
primary energy consumption, between different types of fuels. Hence, in our work, we mitigate
market power exerted by the strategic players : they cannot force the natural gas price up freely
because some consumers would switch to other fuels.

We study both the upstream and downstream stages of the gas chain, while modeling the
possible strategic interactions between all the players, through all the stages. The production side
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is detailed at the production node level and we choose a functional form derived from Golombek
(27) for the production costs. We assume, in our representation that the producers sell their gas
through long-term contracts to a set of independent traders who sell it back to end-users, where
the Nash-Cournot competition is exerted. Storage and transportation aspects are taken care of
by global regulated storage and transportation operators. Producers also have the possibility to
directly target end-users for their sales. Both producers and independent traders share market
power. The long-term contracts are endogenous to our model and this property (among others)
makes our formulation a Generalized Nash-Cournot game. The introduction of non-symmetric in-
dependent traders that can exert market power in the spot markets and contract in the long-term
with the producers, and are in an oligopolistic competition with them in the downstream induces
a rich, double layer economic structure. This is a new feature of the description of the natural gas
trade. It allows us to represent long-term contracts and mitigate the producers’ market power.

The demand side is also detailed. We use a system dynamics approach (3) in order to mo-
del possible fuel substitutions within the fossil primary energy demand of a consuming country,
between the consumption of coal, oil, and natural gas. This approach allows us to derive a new
and interesting mathematical functional form for the demand function that includes naturally
the competition between these. This particular new feature of the gas markets description that
we have introduced in our model induces a flexibility in the gas demand representation. It allows
us, for example, to study the sensitivity of gas consumption and prices over the oil and coal prices.

We include all the possible investments in the gas chain (production, infrastructure, etc.) and
make the long-term contract prices and quantities endogenous to the model using an MCP (mixed
complementarity problem) formulation.

This part is divided as follows : chapter 6 presents a theoretical framework for GaMMES. It
gives a general description of the chosen economic structure representation. All the players are
presented and are divided into two categories : the strategic and the non-strategic ones. The stra-
tegic interaction is also detailed in this chapter. A brief description of a system dynamics approach
to model the consumers’ behavior investment in coal, oil or natural gas so that their utility is opti-
mized is provided. This chapter also presents the mathematical representation of the markets : the
optimization programs associated with all the strategic and non-strategic players are presented
and discussed. We also explain in particular how we make the long-term contract prices and vo-
lumes endogenous to our model. Chapter 7 is an application of our model to the European natural
gas trade where the calibration process and the results are discussed. A comparison between our
model, a more standard one where the demand does not take into consideration fuel substitution
and the European Commission natural gas forecast is carried out in order to compare between the
results. In particular, forecasts of the consumption, prices, production, and gas dependence are
provided and discussed. Besides, long-term contracts aspects (prices and volumes) are also given,
analyzed, and discussed. Chapter 8 gives the theoretical framework of Generalized Nash-Cournot
games. It presents in particular the VI/QVI formulations of Standard/Generalized Nash-Cournot
games. A formal discussion about VI/QVI solutions is provided, as well as conditions that cha-
racterize the VI solutions.
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demand function : The GaMMES model.

The same notation will be used in chapters 6 and 7.

§ 6.2 The model

6.2.1 Economic description

Our description of the natural gas markets divides them into two stages.

The upstream market is represented by gas producers, each with a dedicated trader (export
division) to sell gas to other traders or directly to end-users. An example would be Gazexport for
Gazprom. The set of producers and dedicated traders is denoted as P .

Besides the market players just mentioned, there are a number of independent traders whose
activity is to buy gas from the big producers (or their traders) and to sell it to the final users
in the downstream market. This type of traders includes all the firms whose production is small,
compared to their sales (e.g., EDF and GDF-SUEZ 1). The associated index for these players is I.

The different target markets (the consumers) are divided into three sectors : power genera-
tion, industrial, and residential, represented respectively as D1, D2 and D3. However, it is easy to
demonstrate that if the sectors do not interact with each other (i.e., the different demand curves
are independent), the study of only one sector can easily be generalized to the three. We will
make the assumption that the different demand curves do not interact (as an example, the gas
price in the industrial sector does not depend a priori on the residential price), which may not be
realistic for some situations. Hence, to simplify our notation and modeling, we will consider only
one consumption set D to represent each country’s gross natural gas consumption.

We assume that each dedicated trader can either establish long-term contracts with the inde-
pendent traders or sell his gas to the spot markets.

The first situation corresponds to a gas trade under a fixed, contracted price, not dependent on
the quantities sold (in a first approximation). These quantities are also fixed by the contract. The
second situation is characterized by the fact that the spot price is a consequence of the competition
between all the traders in the downstream markets, via a specified inverse demand function.

The long-term contracts we consider are modeled as follows : each pair of producer-independent
trader have to contract, if needed, on a fixed volume that must be exchanged each year, at a fixed
price. We allow for seasonal flexibility within a year, for the low-consumption regimes. This des-
cription takes into account the basis of the long-term contracts’ Take-Or-Pay clauses (34). For
computational reasons and to keep the model’s formulation simple, we do not allow for annual

1. GDF-SUEZ produces 4.4% of its natual gas supplies (26)
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flexibility of the long-term contract volumes.

All the traders compete via a Nash-Cournot interaction, during a finite number of years Num.
Time will be indexed by t ∈ T (five-year time steps) and we will take into account seasonality
by distinguishing, for each year t, between the off-peak and peak seasons. The seasons will be
indexed by M . They basically correspond to different demand regimes.

More precisely, the strategic interaction between the players is modeled as the following : the
producers can sell their gas directly to the end-users in the spot markets, or to the independent
traders via long-term contracts. The independent traders buy gas from the producers only via
these long-term contracts and they can sell gas to all the possible spot markets. All the producers
and the independent traders are strategic players. They are in competition in the spot markets
where they exert market power. This situation is modeled using a Nash-Cournot competition. All
the strategic players (producers and independent traders) see the same inverse demand function.
All the markets are liberalized. Therefore, each producer can make contracts with all the possible
independent traders and sell gas to all the possible spot markets. Similarly, an independent trader
can make contracts with all the possible producers and sell gas to all the possible spot markets.
Each trader can also store gas in all the possible storage nodes, if the storage capacity is sufficient.
The competition in the upstream is not represented as an oligopoly (unlike some models like (41)).
Indeed, we do not model the possible traders’ demand functions that can be considered, a priori,
by the producers in their optimization programs. The upstream activity, which is dominated by
long-term contracts, is modeled with a supply/demand equilibrium in the long-term between the
producers and the independent traders. The corresponding long-term contract price is issued from
the supply/demand equality constraints’ dual variables.

Since the model is dynamic, we need to take care of possible capacity investment. For infrastructure-
related capacity, this corresponds to additional installed capacities. Regarding the production, we
do not explicitly model exploration activities, because of a lack of geological data. Therefore, we
assume that investments only increase the extraction capacity. We also make the model conserva-
tive as we do not endogenously consider possible additional reserves due to exploration activities.
Therefore, a gas-producing firm may want to increase its production capacity by investing if this
would lead to an increase of its revenue.
We take into consideration the depreciation of the production capacity in the upstream side of
the market by introducing a depreciation factor per time unit at each production node : depf . To
simplify the model (and because of a lack of data concerns), we decided not to take into account
the transport or storage capacity depreciations.

The main advantage of the GaMMES model is that it takes into account, in an endogenous
way, long-term contracts between the independent traders and the producers. Obviously, this
representation is quite realistic for the natural gas trade since the latter is still dominated by
long-term selling/purchase prices and volumes. In 2004 the long-term contracts’ imports repre-
sented more than 46% of the European natural gas consumption and 80% of the total European
imports (17) and (35). Another advantage inherent to our description is that the inverse demand
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function explicitly takes into consideration the possible substitution between consumption for na-
tural gas and the competing fuels.

Considering the energy substitutions in the natural gas demand mitigates the market power
that can be exerted by all the strategic players in the end-use markets. Indeed, this is due to the
fact that the consumers have the ability to reduce the natural gas share in their energy mixes
if the market price for natural gas is much higher than the substitution fuel’s (such as oil and
coal) price. Therefore, the producers may not have much incentive to reduce their natural gas
production in order to force the price up. This model property allows us to take into account the
natural gas price dependence on oil and coal prices. Indeed, the Nash-Cournot interaction will
link the natural gas price to the coal and oil prices because of the demand function dependence
on these parameters.

In order to take into consideration the intra and extra-European physical network of the trans-
port and distribution networks, we need to introduce a pipeline operator whose role is to minimize
the transmission costs over all the arcs of the topology. We denote by N the set of all the nodes
including the production nodes, the consuming markets, and the storage nodes. Added to the
transport cost minimization objective, the pipeline operator also has the possibility to make in-
vestments in order to increase the arc capacities, if necessary.

All the arc transport costs are exogenous to the model. The congestion prices are taken into
consideration endogenously : they can be obtained by computing the dual variables corresponding
to the infrastructure capacity constraint. The set of all these arcs is A. An arc can either be a
pipeline or an LNG route.

In order to be able to meet high levels of consumption, we assume that the independent traders
have access to a set of storage nodes to store natural gas in the off-peak season, and withdraw
it in the peak one. Obviously, they have to support a capacity reservation, storage, withdrawal,
and transport costs. All the storage nodes, indexed by the set S, are managed by a global storage
operator player. This player can invest in order to increase the storage capacity of each storage
node.

Both the pipeline and the storage operators are assumed not to have market power. The sto-
rage and transport costs are hence exogenous to the model. The strategic players are therefore
the producers/dedicated traders and the independent traders. Obviously, this assumption is an
important simplification of reality, where market power can also be exerted by the storage and
pipeline operators. However, it is consistent with what can be found in the literature (14), (41).

The storage cost, which is assumed to be supported by the independent traders, is represented
using capacity reservation and storage/withdrawal costs. We consider that the average time for
the storage investments to be realized is delays years (five years). The situation is similar for
the infrastructure (delayi) and production capacity investments (delayp) costs supported by the
pipeline operator and the producers.
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6.2.2 Notation

The units chosen for the model are the following : quantities in toe (i.e., Ton Oil Equivalent)
or Bcm and unit prices in $/toe or $/cm. The following table summarizes the notation chosen for
the exogenous parameters and the endogenous variables.
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Exogenous factors

P set of producers-dedicated traders
I set of independent traders
D set of gas consuming countries in the downstream market

(no distinction between the sectors) D ⊂ N
T time T = {0, 1, 2, ..., Num}
M set of seasons. Off-peak (low-consumption) and peak (high-consumption) regimes
F set of all the gas production nodes. F ⊂ N
N set of the nodes
S set of the storage nodes S ⊂ N
A set of the arcs (topology)
Rff production node f ’s total gas resources (endowment)
Kff production node f ’s initial capacity of production, year 0
Lff production node f ’s maximum increase of the production capacity (in %)
Ics injection marginal cost at storage node s (constant)
Wcs withdrawal marginal cost at storage node s (constant)
Rcs reservation marginal cost at storage node s (constant)
Lss storage node s’s maximum increase of the storage capacity (in %)
Pcf production cost function, production node f
Tca transport marginal cost through arc a (constant)
Tka pipeline initial capacity through arc a, year 0
Kss initial storage capacity at node s, year 0
Iss investment marginal costs in storage (constant)
Ipf investment marginal costs in production (constant)
Ika investment marginal costs in pipeline capacity through arc a (constant)
Laa arc a’s maximum increase of the transport capacity (in %)
O incidence matrix ∈ MF×P . Ofp = 1 if and only if producer p owns production node f
B incidence matrix ∈ MI×D. Bid = 1 if and only if trader i is located at the consumption node d
M1 incidence matrix ∈ MF×N . M1fn = 1 if and only if node n has production node f
M2 incidence matrix ∈ MI×N . M2in = 1 if and only if trader i is located at node n
M3 incidence matrix ∈ MD×N . M3dn = 1 if and only if node n has market d
M4 incidence matrix ∈ MS×N . M4sn = 1 if and only if node n has storage node s
M5 incidence matrix ∈ MA×N . M5an = 1 if and only if arc a starts at node n
M6 incidence matrix ∈ MA×N . M6an = 1 if and only if arc a ends at node n
H maximum value for the quantities produced and consumed
δtmd an inverse demand function parameter
βtmd an inverse demand function parameter
γtmd an inverse demand function parameter
pctmd an inverse demand function parameter

We could have used different upper bounds for the different variables. However, to simplify the
notation, we will use the same value H.
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flf production node f ’s flexibility : the maximum modulation
between production during off-peak and peak seasons

minpi percentage of the minimum quantity that has to be exchanged on the long-term contract
trade between i and p

δ discount factor
delays,i,p period of time necessary to undertake the technical investments
lossa loss factor through transportation arc a
depf depreciation factor of the production capacity at production node f

Endogenous variables

xtmfpd quantity of gas produced by p from production node f for the end-use market d,
year t, season m, in Bcm

zptmfpi quantity of gas produced by p from production node f dedicated to a long-term contract
with trader i, year t, season m
in Bcm

zitmpi quantity of gas bought by trader i from producer p with a long-term contract
year t, season m
in Bcm

uppi quantity of gas sold by producer p to trader i with a long-term contract, each year
in Bcm

uipi quantity of gas bought by trader i from producer p on a long-term contract, each year
in Bcm

ytmid quantity of gas sold by i to the market d, year t, season m
in Bcm

iptfp producer p’s increase of production node f ’s production capacity, due to
investments in production, year t, in Bcm/time unit

qtmfp production of producer p from production node f , year t, season m
in Bcm

ptmd market d’s gas price, result of the Cournot competition between all the traders,
year t, season m, in $/cm

ηpi long-term contract price contracted between producer p and trader i
in $/cm

rtis amount of storage capacity reserved by trader i at node s, year t
in Bcm

intis volume injected by trader i at storage node s, year t
in Bcm

ists increase of storage capacity at node s, year t due to the storage operator investments
in Bcm/time unit

ikta increase of the pipeline capacity through arc a, year t, due to the TSO investments
in Bcm/time unit
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fptmpa gas quantity that flows through arc a from producer p
year t, season m
in Bcm

fitmia gas quantity that flows through arc a from trader i
year t, season m
in Bcm

τ tma the dual variable associated with arc a capacity constraint
year t, season m
in $/cm. It represents the congestion transportation cost over arc a

The table is divided into two parts. The upper half represents the exogenous parameters or
functions whereas the lower half represents the different decision variables and the inherent retail
prices.
The indices p, d, i, f , n, s, a, m and t are such that p ∈ P , d ∈ D, i ∈ I f ∈ F , n ∈ N , s ∈ S,
a ∈ A, m ∈M and t ∈ T .
The long-term contract between producer p and trader i fixes both a unit selling price and an
amount to be purchased by the independent trader i each year from producer p. Both price and
quantity will be specified endogenously by the model.
Matrix O is such that Ofp = 1 if producer p owns production node f and Ofp = 0 otherwise.

Figure 6.1 represents a schematic overview of GaMMES.

6.2.3 The inverse demand function

We need to specify a functional form for the inverse demand function, which links the price pd
at market d to the quantity brought to the market. Most of the natural gas models (49), (48), (41),
(14) do not take into account fuel substitution. Let h be the specific inverse demand function. We
assume that the long-term contract quantities do not directly influence the market competition
price, which is to say that ptmd = h(

∑
i y
t
mid +

∑
f

∑
p x

t
mfpd). (Actually, this assumption is neces-

sary to guarantee the concavity of the objective functions of each strategic player’s maximization
problem, regardless of the quantities decided by the other competitors. Otherwise, this assumption
can be dropped if linear functions are used).
As mentioned in the introduction, we want to capture the inter-fuel substitution in the fossil pri-
mary energy consumption. To be able to do so, we used a system dynamics approach that models
the behavior of the consumers who have to decide whether they invest in new technologies that
use either oil, coal or natural gas. Our model, has been fully presented in Part 3 and (3).

We have run and calibrated the system dynamics model with the primary natural gas consump-
tion and the industrial gas prices. The main result that will be used in this part is as follows : if
we denote by Qtmd the total quantity

∑
i y
t
mid +

∑
f

∑
p x

t
mfpd that is brought to the spot market

d at season m of year t, the system dynamics approach provides the following inverse demand
function :
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Figure 6.1 – The market representation in GaMMES.
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ptmd = pctmd + 1
γtmd

atanh
(
δtmd+βtmd−Q

t
md

δtmd

)
if Qtmd ≥ βtmd +

δtmdβ
t
md

δtmd+βtmd

p′ctmd + 1
γ′tmd

atanh
(
δ′tmd+β′tmd−Q

t
md

δ′tmd

)
if Qtmd ≤ βtmd +

δtmdβ
t
md

δtmd+βtmd

(6.1)

where the parameters δ, β, γ and pc, which are time and season-dependent must be calibrated.
Note that no confusion should be made between the discount rate δ and the inverse demand
function’s parameter δtmd because they are not defined with the same indices. Qtmd is the gross
gas consumtion in market d at year t and season m and ptmd is the corresponding gas market
price. Note that this function links the gas price and volume in the spot markets. It links the
price to the consumed volume at the same year. In general, the system dynamics approach links
the price at year t to all the volumes Qt′md, t

′ ≤ t previously consumed. However, the general
multivariable demand function is not theoretically invertible. Therefore, when writing the inverse
demand function, we preferred sticking to a monovariable formulation, by making the parameter
β time-dependent.

The distinction between the domains Qtmd ≥ βtmd +
αtmdβ

t
md

αtmd+βtmd
and Qtmd ≤ βtmd +

αtmdβ
t
md

αtmd+βtmd
is

needed to take into account the anticipated scrapping of burners 2 and avoid absurd situations
where the price rises towards +∞ (and also to guarantee the concavity of the objective functions).
The parameters α′, β′, γ′ and p′c are calculated to ensure the continuity of h and its derivative
h′.

The function atanh is such that :

∀x ∈ (−1, 1) atanh(x) =
1

2
ln
(

1 + x

1− x

)
The following table gives the values of the inverse demand function parameters, for the pri-

mary natural gas consumption in year 2003 in France, Germany, Italy, the UK, Belgium and the
Netherlands. The natural gas volumes in 2002 are exogenous.

Parameters France Germany Italy UK Belgium The Netherlands
β(×103ktoe) 22.87 43.70 41.28 41.88 22.89 23.49

δ(×103ktoe) 2.76 4.00 3.60 2.80 2.76 1.05

pc($/toe) 172.5 242.9 268.3 175.8 230.4 217.5

γ(×10−2($/toe)−1) 0.72 0.98 0.96 1.00 1.48 0.88

β′(×103ktoe) 0.00 0.00 0.00 0.00 0.00 0.00

α′(×103ktoe) 13.20 24.67 23.23 23.18 13.20 12.81

p′c($/toe) 350.8 404.1 441.2 379.5 316.6 549.1

γ′(×10−2($/toe)−1) 0.96 1.03 0.96 0.79 1.99 0.48

Figure 6.2 gives the demand function shape (i.e., the variation of the quantity Qd over the
price pd in a given market). Note that we preferred showing the demand function rather than the
inverse demand function for more clarity.

2. We will call burner a technology that can use either coal, oil or natural gas. Note that our apporach concerns
the primary natural gas consumption (not only the electricity generation demand).
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Standard scrapping of 
burners

Anticipated scrapping of 
burners

ktoe

$/toe

Figure 6.2 – The demand function.

We take account for the anticipated scrapping of burners to avoid situations where the quan-
tity does not converge towards 0 when the price is very high. Obviously, such situations provide
demand functions that cannot be used in Nash-Cournot competition modeling. Hence, we dis-
tinguish between two domains of the demand function, regarding whether we are in a standard
scrapping regime or the anticipated scrapping one. This distinction is clearly shown in equation
9.1. Also, Figure 6.2 shows the difference between the domains : Qtmd ≥ βtmd+

αtmdβ
t
md

αtmd+βtmd
(standard

scrapping of burners) and Qtmd ≤ βtmd+
αtmdβ

t
md

αtmd+βtmd
(anticipated scrapping of burners). The inflexion

point of the demand function, which is shown in Figure 6.2, is the parameter pctmd. It represents
a competition price, regarding the consumption of natural gas. It is an aggregation of the oil and
coal prices and can be seen as threshold for the gas price that determines whether natural gas
is a competitive fuel or not. This feature captures the possible fuel substitution in the natural
gas inverse demand function. Besides, Fugure 6.2 shows that the domains distinction and the
calibration of the (inverse) demand function ensures its continuity and differentiability.

As said in the economic description of the markets, we need to distinguish between the off-
peak/peak season parameters of the inverse demand function. Besides, as explained in Part 3, to
calibrate the demand function for the future, we need to specify a scenario for the fossil primary
energy demand and the oil and coal market prices. Our system dynamics approach will allow us
to understand how the fossil demand is going to be shared between the consumption of the three
fuels.
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6.2.4 The mathematical description

This section details the mathematical description of our model. It presents the optimization
problems of all the supply chain players. Note that the dual variables are written in parentheses
by their associated constraints.

Producer p’s maximization program is given below. The corresponding decision variables are
zptmfpi, x

t
mfpd, ip

t
fp, q

t
mfp and uppi. A producer can extract natural gas from all the possible

production nodes he owns. He can sell gas to the independent traders via long-term contracts or
directly target the spot markets, where a Nash-Cournot competition is exerted, between him, the
other producers, and the independent traders. He pays the transportation costs necessary to bring
gas to the independent traders’ location (for the LTCs sales) or the spot markets (for the spot
markets sales). Production investments are also considered.
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Max ∑
t,m,f,i

δtηpi(zp
t
mfpi)

+
∑
t,m,f,d

δt
(
ptmd(x

t
mfpd + xtmfpd)

)
xtmfpd

−
∑
t,f

δtPcf

∑
t′≤t

∑
m

qt
′
mfp, Rff


+
∑
t,f

δtPcf

(∑
t′<t

∑
m

qt
′
mfp, Rff

)
−
∑
t,f

δtIpf ip
t
fp

−
∑
t,m,p,a

δt((Tca + τ tma)fp
t
mpa)

such that :

∀t, f,
∑
p

∑
t′≤t

∑
m

qt
′
mfp −Rff ≤ 0 (φtf ) (6.2a)

∀t, f, m,
∑
p

qtmfp −Kff (1− depf )t

−
∑
p

∑
t′≤t−delayp

ipt
′
fp(1− depf )t−t

′ ≤ 0 (χtmf ) (6.2b)

∀t, m, f, − qtmfp +

(∑
i

zptmfpi +
∑
d

xtmfpd

)
≤ 0 (γtmfp) (6.2c)

∀t, f
∑
m

∑
p

((−1)mqtmfp)− flf ≤ 0 (ϑ1tf ) (6.2d)

∀t, f, −
∑
m

∑
p

((−1)mqtmfp)− flf ≤ 0 (ϑ2tf ) ∀t, f, d, m, xtmfpd −OfpH ≤ 0 (ε1tmfpd)

(6.2e)

∀t, f, i, m, zptmfpi −OfpH ≤ 0 (ε2tmfpi) (6.2f)

∀t, f, m, qtmfp −OfpH ≤ 0 (ε3tmfp) (6.2g)

∀t, f, iptfp −OfpH ≤ 0 (ε4tfp) (6.2h)
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∀t, f,
∑
p

iptfp − LffKff (1− depf )t

− Lff
∑
p

∑
t′≤t−delayp

ipt
′
fp(1− depf )t−t

′ ≤ 0 (ιptf ) (6.3a)

∀t, m, n,
∑
a

M6anfp
t
mpa(1− lossa)−

∑
a

M5anfp
t
mpa

+
∑
f

M1fnq
t
mpf −

∑
d

∑
f

M3dnx
t
mfpd

−
∑
i

∑
f

M2inzp
t
mfpi = 0 (αptmpn) (6.3b)

∀t, i, uppi −
∑
f,m

zptmfpi = 0 (ηptpi) (6.3c)

∀ i, uipi − uppi = 0 (ηpi) (6.3d)
∀t, m, d, i, f, zptmfpi, x

t
mfpd, ip

t
fp, q

t
mfp, uppi ≥ 0

We denote by xtmfpd the total amount of gas brought in year t, season m to the market d
by all the players different from producer p. Hence, the total quantity brought to the market
Qtdm =

∑
i y
t
mid +

∑
f

∑
p x

t
mfpd will be denoted Qtdm = xtmfpd + xtmfpd in order to clearly show

the strategic interaction and the dependence of Qtdm over xtmfpd (producer p’s decision variable).
Using this notation, the KKT conditions will written more easily.
The term ∑

t,m,f,i

δtηpi(zp
t
mfpi) +

∑
t,m,f,d

δt
(
ptmd(x

t
mfpd + xtmfpd)

)
xtmfpd

is the revenue, which is obtained from the sales on the long-term contracts to the independent
traders or directly from the retail markets.
The term ∑

t,m,p,a

δt((Tca + τ tm,a)fp
t
mpa)

is the transport and congestion costs charged by the pipeline operator to producer p. The dual
variable τ tma is associated with the pipeline capacity constraint through the arc a. It represents the
congestion price on the corresponding pipeline (see the transport operator optimization problem
for more explanation).
The term ∑

t,f

δtIpf ip
t
fp

is the investment cost in production at the different production nodes.
The term ∑

t,f

δt

Pcf
∑
t′≤t

∑
m

qt
′
mfp, Rff

− Pcf
(∑
t′<t

∑
m

qt
′
mfp, Rff

)
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is the actualized production cost. This term’s explanation is as follows :
The production cost (at production node f) Pcf depends on two variables, the total quantity
produced, which will be denoted q and the natural gas resources Rff . The Golombek production
cost function we used is as follows :

∀q ∈ [0, Rff ), P cf (q,Rff ) = afq + bf
q2

2
− Rffcf

(
Rff − q
Rff

ln
(
Rff − q
Rff

)
+

q

Rff

)
(6.4)

or if written for the marginal production cost

∀q ∈ [0, Rff ),
dPcf
dq

= af + bfq + cf ln
(
Rff − q
Rff

)
(6.5)

In our model, the production cost function is dynamic. The gas volume available to be extracted
is dynamically reduced at each period, taking into account the exhaustivity of the resource.
If at year 1, the production is q1 and at year 2 q2, the total cost is thus :

cost = Pcf (q1, RESf ) + δ(Pcf (q1 + q2, RESf )− Pcf (q1, RESf ))

Hence, to estimate that cost at year t, we need to calculate the production cost of the sum over
all the extracted volumes until year t and subtract the cost we have at year t− 1.

The explanation of the constraints is straightforward :
The constraint (9.16a) bounds each production node’s production by its reserves.
The constraint (9.16b) bounds the seasonal quantities produced by each production node’s produc-
tion capacity, explicitly taking into account the different dynamic investments. The total installed
production capacity decreases with time because of the production depreciation factor depf .
The constraint (9.16c) states that the total production must be greater than the sales (to the
long-term and spot markets). The constraints (9.16d) and (9.16e) can be rewritten as follows :

∀t, f |
∑
m

((−1)m
∑
p

qtmfp)| ≤ flf

This fixes a maximum spread between the off-peak/peak production at each production node.
(−1)m is equal to 1 in the off-peak season and -1 in the peak season.
The constraint (9.17a) is a market-clearing condition at each node, regarding the flows from pro-
ducer p depending on whether this node is a production node, an independent trader location or
a demand market.
The constraint (9.16j) bounds the capacity expansion of each production node f : each year, the
investment decided to increase the production capacity is less than 100× Lff percent the instal-
led capacity at that year. A historical study of the capacity expansion of some production nodes
allowed us to calibrate the value of Lff : Lff = 0.20.
The constraint (9.17b) equates the sales of producer p for the long-term contracts to the contrac-
ted volume uppi, each year.
The constraint (9.17c) describes the following : For each pair of producer/independent trader



156
Chapitre 6. A Generalized Nash-Cournot model for natural gas markets with a fuel substitution

demand function : The GaMMES model.

(p, i), the gas quantity sold by p in the long-term contract market must be equal to the gas
quantity purchased by i. Therefore, this is a supply/demand equation in the long-term contracts
market. The associated dual variable ηpi is the corresponding contract unit selling/purchase price,
because we do not assume the existence of market power in the long-term contract trade. Using
this technique, it is possible to make the long-term contracts prices and volumes endogenous to
the description so that they become an output of the model.
The constraint (and the similar other ones) (9.16f) allows producer p to use only the production
nodes he owns (for production, investments, sales, etc.). We recall that the incidence matrix O is
such as Ofp = 1 if and only if producer p owns production node f .

Independent trader i’s maximization program is given below. The corresponding decision variables
are zitmpi, y

t
mid, r

t
is, in

t
is and uipi. The independent trader buys gas only from the producers via

long-term contracts. The sales are dedicated to all the spot markets, where trader i is in an
oligopolistic competition with the other independent traders and the producers. He can store his
gas in all the different storage nodes while supporting capacity reservation, storage and withdrawal
costs. He also has to support the transportation costs to bring gas to the spot markets or to
store/withdraw it.
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Max ∑
t,m,d

δt
(
ptmd(y

t
mid + ytmid)y

t
mid

)
−
∑
t,p,m

δt
(
ηpizi

t
mpi

)
−
∑
t,s

δt
(
Rcsr

t
is

)
−
∑
t,s

δt
(
(Ics +Wcs)in

t
is

)
−
∑
t,m,i,a

δt
(
Tca + τ tma

)
fitmia

such that :

∀t, m,
∑
p

zitmfpi −

(∑
d

ytmid + (−1)m
∑
s

intis

)
= 0 (ψtmi) (6.6a)

∀t, s, intis − rtis ≤ 0 (µtis) (6.6b)

∀t, m, n,
∑
a

M6anfi
t
mia(1− lossa)−

∑
a

M5anfi
t
mia

−
∑
d

M3dny
t
mid +

∑
p

M2inzi
t
mpi

− (−1)m
∑
s

M4snin
t
is = 0 (αitmin) (6.6c)

∀t, p, uipi −
∑
m

zitmpi = 0 (ηitpi) (6.6d)

∀ p, uipi − uppi = 0 (ηpi) (6.6e)

∀t, m, p, − zitmpi +minpi
∑
m

zitmpi ≤ 0 (υtmpi) (6.6f)

∀t, s,
∑
i

rtis −Kss −
∑

t′≤t−delays

ist
′
s ≤ 0 (βsts) (6.6g)

∀t, m, s, d, zitmpi, y
t
mid, r

t
is, in

t
is, uipi ≥ 0

We denote by ytmid the total amount of gas brought in year t, season m to the market d by
all the players different from trader i. Hence, the total quantity brought to the market Qtdm =∑

i y
t
mid +

∑
f

∑
p x

t
mfpd will be denoted Qtdm = ytmid + ytmid in order to clearly show the strategic

interaction and the dependence of Qtdm over ytmid (trader i’s decision variable). Using this notation,
the KKT conditions will be written more easily. Note that the producers and independent traders
see the same inverse demand function in the spot markets. The notation we have chosen implies
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that :

∀p, i, d, t, m, Qtdm =
∑
i

ytmid +
∑
f

∑
p

xtmfpd = ytmid + ytmid = xtmfpd + xtmfpd‘ (6.7)

The term ∑
t,m,d

δt
(
ptmd(y

t
mid + ytmid)y

t
mid

)
−
∑
t,p,m

δt
(
ηpizi

t
mpi

)
is the net profit.
The term ∑

t,s

δt
(
Rcsr

t
is

)
is the storage capacity reservation cost.
The term ∑

t,s

δt
(
(Ics +Wcs)in

t
is

)
are the storage/withdrawal costs. 3

The term ∑
t,m,i,a

δt
(
Tca + τ tma

)
fitmia

is the transport and congestion costs charged by the pipeline operator from the independent trader
i.

As for the feasibility set, it is also easy to specify :
The constraint (9.20a) is a gas quantity balance for each trader. The term (−1)m is equal to 1 in
the off-peak season and -1 otherwise. An implicit assumption we use in our description is that all
the storage nodes must be "empty" (regardless of the working gas quantitities) at the end of each
year.
The equation (9.20b) implies that each independent trader has to pay for a storage reservation
quantity, each year and at each storage node s, to be able to store his gas.
The constraint (9.20d) forces each trader to purchase the same quantity, in long-term contracts
from each producer and year.
The constraint (9.20e) is similar to the constraint (9.17c) of the producers’ optimization program.
For each pair of producer/independent trader (p, i), the gas quantity sold by p in the long-term
contract market must be equal to the gas quantity purchased by i. Therefore, this is a sup-
ply/demand equation in the long-term contracts market. The associated dual variable ηpi is the
corresponding contract unit selling/purchase price, because we do not assume the existence of
market power in the long-term contract trade. Using this technique, it is possible to make the
long-term contracts prices and volumes endogenous to the description so that they become an
output of the model.

3. There are no storage losses in the model. They can easily be taken into account by increasing the transpor-
tation losses of the arcs that start at the storage nodes.



6.2. The model 159

The constraint (9.20f) fixes a minimum percentage of the annual contracted volume minpi that
has to be exchanged between p and i each season of each year.
The constraint (6.6g) is a storage constraint expressed at each storage node, taking into account
the investments decided by the storage operator.

On the transportation side of our model, we will assume that the producers pay the transport
costs to bring natural gas from the production nodes to the independent traders’ locations and
the end-use markets. The traders support the transport costs to store/withdraw gas or bring it to
the end-users for their sales.

The pipeline operator optimization (cost minimization) program is given below. The corresponding
decision variables are fptmpa, fitmia and ikta. The piepline operator minimizes the total transpor-
tation, congestion, and capacity investments costs.
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Min ∑
t,m,a

δt
(
Tca + τ tma

)∑
p

fptmpa

+
∑
t,m,a

δt
(
Tca + τ tma

)∑
i

fitmia

+
∑
t,a

δtIkaik
t
a

such that :

∀t, m, a,
∑
p

fptmpa +
∑
i

fitmia −

Tka +
∑

t′≤t−delayi

ikt
′
a

 ≤ 0 (τ tma) (6.8a)

∀t, a, ikta − Laa

Tka + Laa
∑

t′≤t−delayi

ikt
′
a

 ≤ 0 (ιata) (6.8b)

∀t, m, p, n,
∑
a

M6anfp
t
mpa(1− lossa)−

∑
a

M5anfp
t
mpa

+
∑
f

M1fnq
t
mpf −

∑
d

∑
f

M3dnx
t
mfpd

−
∑
i

∑
f

M2inzp
t
mfpi = 0 (αptmpn) (6.8c)

∀t, m, i, n,
∑
a

M6anfi
t
mia(1− lossa)−

∑
a

M5anfi
t
mia

−
∑
d

M3dny
t
mid +

∑
p

M2inzi
t
mpi

− (−1)m
∑
s

M4snin
t
is = 0 (αitmin) (6.8d)

∀t, m, a, p, i, fptmpa, fi
t
mia, ik

t
a ≥ 0

The objective function contains both the transport/congestion and investment costs.
The congestion cost through arc a, τ tma, is the dual variable associated with the constraint (9.21a).
This constraint concerns the physical seasonal capacity of arc a, including the possible time-
dependent investments.
The constraint (9.21b) bounds the capacity expansion of each arc a : each year, the investment
decided to increase the transport capacity is less than 100×Laa percent the installed capacity at
that year. In GaMMES, we used the value Laa = 0.2.
The other constraints are market-clearing conditions at each node, depending on whether this
node is a production node, an independent trader location, a demand market or a storage node
and depending on whether the transportation costs are supported by the producers or the inde-
pendent traders.
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We consider both pipeline and LNG routes for transport. The liquefaction and regasification costs
are included in the transportation cost on the LNG arcs. We assume, in our representation that
the physical losses occur at the end nodes of the arcs.

The storage operator optimization (cost minimization) program is given below. The correspon-
ding decision variable is ists. The storage operator minimizes the total operational and capacity
investments costs.

Min∑
t,s

δtIssis
t
s +

∑
t,i,s

δt(Ics +Wcs)in
t
is +

∑
t,i,s

δtRcsr
t
is

such that :

∀t, s,
∑
i

rtis −Kss −
∑

t′≤t−delays

ist
′
s ≤ 0 (βsts) (6.9a)

∀t, s, ists − LssKss − Lss
∑

t′≤t−delays

ist
′
s ≤ 0 (ιsts) (6.9b)

∀t, s, ists ≥ 0

The storage operator minimizes the total operation cost that includes investment, storage,
withdrawal and storage capacity reservation costs. His decision variable is ists, which means that
he only controls the different investments that dynamically increase the storage capacity of each
storage node. The incentive this player has to invest is due to the constraint he must satisfy : the
capacity available at each storage node must be sufficient to meet the volumes the independent
traders have to store each year in the off-peak season. Capacity expansion is bounded and we used
the value Lss = 0.2.

If we take a closer look at the optimization program of a producer, we will notice that his fea-
sibility set depends on the decision variables of the independent traders. Also, the feasibility set of
any independent trader’s optimization program depends on the producers’ decision variables. The
situation is similar for the pipeline and storage operators. This particularity makes our formula-
tion (the KKT conditions) a Generalized Nash-Cournot problem. Similarly, the Generalized
Nash-Cournot problem can also be formulated as a Quasi-Variational Inequality problem (QVI).
In order to solve our problem, we look for the particular solution that makes our problem a VI
formulation (29). More details about the VI solution search are given in Section 10.

The concavity of all the players’ objective functions is given in Appendix 1.
When the KKT conditions are written, we obtain the Mixed Complementarity Problem given in
Appendix 2.
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6.2.5 The (Quasi)-Variational Inequality and Generalized Nash-Cournot games

In this section, we recall Harker’s result (29) in order to understand how to theoretically solve
a Generalized Nash-Cournot problem. We refer to chapter 8 for more theoretical results and ex-
planations.

A standard Nash-Cournot problem is a set of optimization programs where some of the players
can influence other players’ payoff via the objective functions. In a Generalized Nash-Cournot
formulation, some players can also change the feasibility sets of other players, via their decision
variables. In our particular model, if we consider an independent trader i, the constraint

∀ p, i, uipi = uppi

contains the producers’ decision variables uppi. These decision variables influence trader i’s fea-
sibility set. The situation is symmetric for the producers. More generally, our double-layer eco-
nomic structure makes the producers and independent traders influence each-other’s feasibility
sets. This is principally due to the formulation of the long-term contracts that are issued from a
supply/demand equilibrium constraint. It is straightforward that a standard Nash-Cournot pro-
blem can be expressed as a VI formulation if the objective functions are differentiable (is suffices
to write the necessary and sufficient conditions on the gradient of the objective functions that
characterize the optimum, or the Euler’s inequality).

A generalized Nash-Cournot problem can be expressed as a QVI formulation. Unlike VI pro-
blems, a QVI formulation often has an infinite set of equilibria. In some particular cases, a QVI
problem can be slightly changed into a VI formulation. This is possible, in particular if the QVI
is issued from a Generalized Nash-Cournot problem, which is our case. To do so, we make all the
constraints that mix different players’ decision variables common to all these players. From the
KKT conditions point of view, Harker (29) demonstrated that the "VI solution" is obtained by
giving the same dual variables to the common constraints.

If we apply the previous results to our model, this leads to the fact that the producers and
independent traders, see the same dual variables ηpi and must consider the common constraint
(9.17c) and (9.20e) in their optimization program. Economically speaking, this means that they
have the same appreciation of the long-term contracts prices.

Using this technique, we make sure we end up with a VI solution (29).
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§ 6.3 Conclusion

This chapter presents a Generalized Nash-Cournot model in order to describe the natural gas
market’s evolution. The demand representation is rich because it takes into account the possible
energy substitution that can be made between oil, coal, and natural gas. This appears in the
introduction of a competitive price, in the demand function. The exhaustibility of the resource is
taken care of by the use of Golombek production cost functions.

The different actors’ behavior is represented thanks to their optimization programs (they are
assumed to be rational players). The strategic actors, who can exert market power, are the produ-
cers and the independent traders. Market power is exerted in the downstream and is modeled as
a Nash-Cournot competition. Long-term contracts link the producers and the traders by a fixed
gas volume that has to be exchanged each year (with a tolerated flexibility) at a contracted price.
The producers constitute the only means of supply to the independent traders. This creates a
double-layer economic structure that differs from the standard double-dividend problem : indeed,
in GaMMES, we do not model a successive oligopoly because the traders do not show a demand
function that can be exploited by the producers in their optimization program. On the contrary,
the producers and independent traders see the same demand function in the downstream where
they are in an imperfect competition.

The long-term contract prices and volumes are endogenously computed as dual variables to
long-term contracts’ constraints. This aspect makes our formulation a Generalized Nash-Cournot
model, more generally a QVI formulation. In order to solve it, we derived the corresponding VI
formulation.

GaMMES has been applied to describe the northwestern European gas trade till 2035. The
results are provided in the next chapter.



164
Chapitre 6. A Generalized Nash-Cournot model for natural gas markets with a fuel substitution

demand function : The GaMMES model.



- Chapitre 7 -

Application of the GaMMES model to the northwestern
European gas trade.
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§ 7.1 Introduction

The previous chapter presented the GaMMES model, a Generalized-Nash Cournot model to
describe the natural gas market trade. The key features of the model are the following : energy
substitution between coal, oil, and natural gas is taken into account and long-term contracts are
endogenously described. Thus, GaMMES is particularly well suited to describe the European gas
trade, which is still mainly dominated by long-term contracts in the upstream. This chapter is an
application of our model to the northwestern European natural gas trade where the calibration
process and the results are discussed. The results contain forecasts of the consumption, prices,
production, and gas dependence in Europe. LTC prices and volumes are provided and analyzed.
A comparison between our model, a more standard one where the demand does not take into
consideration fuel substitution and the European Commission natural gas forecast is carried out
in order to compare between the results. Finally, we take advantage of energy substitution allowed
by the model to draw the evolution of the gas price as a function of the oil or coal prices.

In this chapter, we will use chapter 6’s notation.

§ 7.2 The European natural gas markets model

This section puts the model at work and presents our numerical results.

7.2.1 The representation

The model we presented in Section 9.2.5 has been used in order to study the northwestern
European natural gas trade. The following array summarizes the representation we have studied.
Producers Production nodes Consuming markets Independent traders
Russia Russiaf France Francetr
Algeria Algeriaf Germany Germanytr
Norway Norwayf The Netherlands The Netherlandstr
The Netherlands NLf UK UKtr

UK UKf Belgium Belgiumtr

Storage nodes Seasons Time
Francest off-peak 2000− 2045

Germanyst peak
The Netherlandsst
UKst

Belgiumst

The model is run up through 2045 but only the results through 2035 are used to avoid end-
of-horizon effects (depletion of all the production nodes, etc.).
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We aggregate all the production nodes of each producer into one production node. We assume
that each consuming market is associated with one independent local trader (indexed by tr). As an
example, Francetr would be GDF-SUEZ and Germanytr would be E-On Ruhrgas. All the storage
nodes are also aggregated so that there is one storage node per consuming country. As for the
transport, the different gas routes given in Figure 7.1 were considered.
The local production in the different consuming countries is also taken into consideration (the
imports from non-represented producers, which are small, are also considered). We assume that
these locally consumed volumes are exogenous to the model.
We consider Algeria as an LNG producer who can exert market power. The other LNG exchanges
between producers "outside" the scope of the model (such as the UAE) and the represented
consumers are considered exogenously in the model. Therefore, we assume that the LNG demand,
except for Algeria, is inelastic to the gas price. This approach is an assumption that overestimates
the market power allowed to standard (not LNG) natural gas producers. However, the missing
LNG volumes are very small in (36) (less than 1%).

2000 2030

T

study
calibration

consuming countries

producing coutries

consuming and producing countries

pipeline 

LNG routes

production fields

storage sites

Figure 7.1 – The northwestern European natural gas routes, production and storage nodes.

7.2.2 The calibration

The calibration process has been carried out in order to best meet :
– the primary natural gas consumption,
– the industrial sector gas price and
– the volumes produced by each gas producer,

between 2000 and 2004 (the first time period).
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The model has been solved using the solver PATH (20) from GAMS. In order to shorten the
running time, we used a five-year time-step resolution. We chose five years because it is the typical
length of time needed to construct investments in production, infrastructure or storage. Also, the
demand function has been linearized.

The data for the market prices, consumed volumes, and imports is the publicly available set
from IEA (36). We define a new variable exchtmpd that represents the exported volume from
producer p to market d. More precisely :

∀t, m, p, d, exchtmpd =
∑
i

Bid zp
t
mpi + xtmpd

The matrix B is such that Bid = 1 if the independent trader i is located in market d (e.g.,
GDF-SUEZ in France, E-On Ruhrgas in Germany) and Bid = 0 otherwise. Hence, one can notice
that the exchanged volumes include both the spot and long-term contract trades.

The calibration elements we used are the inverse demand function parameters αtmd, γ
t
md, pc

t
md

and βtmd. The idea is that the system dynamics (3) model is run in order to calculate all the
inverse demand function parameters, for all the markets and at each year and season of our study.
The calibration technique slightly adjusts these values to make the model correctly describe the
historical data (between 2000 and 2004).

In order to calibrate the produced volumes properly, we introduced security of supply para-
meters that link each pair of producer/consuming countries (p, d). A security of supply measure
forces each country not to import from any producer, more than a fixed percentage (denoted by
SSP ) of the overall imports. This property can be rewritten as follows :

∀t, m, p, d, exchtmpd ≤ SSPpd
∑
p

exchtmpd

The security of supply parameters are set exogenously. As mentioned before, the calibration
concerned only the first time period.

The calibration tolerates a maximum error of 5% for the prices and consumed quantities and
10% for the imported/exported volumes. The tolerated error is higher for the exchanged volumes
because they depend on the exports decided by the producers for all the targeted consumers, even
those that are not in the scope of the model. As an example, the exported volumes from Russia
to CIS (CEI) countries are exogenous to our model.

The discount factor δ is set to 0.95 (per year). This value is commonly used in the indusry.
All the production, transport and investment costs are inflated by the CERA’s UCCI index.

We did not provide all the data in this manuscript because of confidentiality issues.
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7.2.3 Numerical results

In order to estimate the demand function parameters, our model requests exogenous inputs :
the fossil primary energy demand and the evolution of the oil and coal prices. For that pur-
pose, we used a scenario provided by the European Commission (18). The annual fossil primary
consumption and prices growth per year that we used are given in the following array (starting
from 2000) :

annual growth Total gross consumption (in %) Oil price (in %) Coal price (in %)

France 0.46 3.71 2.61

Germany 0.06 3.71 2.61

United Kingdom 0.02 3.71 2.61

Belgium 0.06 3.71 2.61

The Netherlands 0.11 3.71 2.61

Figure 7.2 gives the evolution of the natural gas consumption between 2000 and 2030 provided
by our model for the countries represented. The consumption is given in Bcm/year. The figure also
shows the evolution of the natural gas prices ($/cm), in the industrial sector, for the represented
countries. We recall that the industrial sector prices are taken as a proxy for natural gas prices.
The figure also gives the evolution of the producing countries’ sales between 2000 and 2030, in
Bcm/year.

The average annual consumption growth between 2000 and 2030 is given in the following array :

Country Annual consumption growth (in %)

France 0.61

Germany 0.23

UK −1.35

Belgium 0.23

The Netherlands −0.94

According to our simulation, France shows the highest annual consumption growth, averaging
0.61%, between 2005 and 2030. Both the UK and the Netherlands experience a significant decrease
in their natural gas consumption, as their domestic supplies are replaced by more expensive fo-
reign imports. This effect is magnified in our model by the fact that only existing reserves are
taken into account, which are depleted relatively quickly due to high installed capacities.
The consumption of all the countries shown flattens out or decreases in 2030, compared to 2000,
despite the increase of the fossil primary demand. This is mainly due to the fact that competition
in the upstream market becomes less and less important with time. Indeed, in 2025, the continen-
tal Europe gas production (the UK and the Netherlands) is expected to be around 25 Bcm/year.
This will increase the exercise of market power and the consumption growth will therefore be
reduced.

The price average annual growth between 2000 and 2030 is given in the following chart :
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Figure 7.2 – The natural gas consumption, prices, and sales between 2005 and 2030.
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Country annual price growth (in %)

France 2.47

Germany 2.19

UK 1.28

Belgium 1.92

The Netherlands 2.14

As expected, the natural gas prices increase continuously in all the countries. The prices va-
lues are driven, as a resut of the Nash-Cournot interaction by the combination of two effects :
the fossil primary energy demand and the competition between fuels (see equation 9.1). Since the
fossil primary energy demand and the coal and oil prices increase with time, they force the gas
price up. This combination explains why the natural gas price annual growth in all the countries
is less important than the growth in both oil and coal. Indeed, this is due to the fact that the
fossil primary energy consumption does not increase with time as quickly as the coal and oil prices.

The production in continental Europe is expected to greatly decrease in the forthcoming de-
cades. The Norwegian production is expected to increase until 2012 before starting to decrease.
The Dutch decrease is smooth (-4.5% per year between 2000 and 2020) whereas the UK one is very
sharp. The model indicates that the United Kingdom will use up more than 75% of its natural
gas reserves (starting from 2000) until 2015. This may seem surprising but can be understood by
the fact that we take into account only the proven reserves in 2000 (10). Thus, we do not consider
the reserves discoveries that may occur till 2045.

On the other hand, the Russian and Algerian shares in the European natural gas consumption
is expected to grow in the coming decades : in 2020, the foreign imports will represent 47% of the
northwestern European consumption.

In order to test the strength of the model, we compare its output versus historical values. For
that purpose, we consider the consumption and prices in the European countries between 2005 and
2010 (second time-step) and compare them to what actually happened in that period. Let us recall
that the second time-step has not been used in the calibration. Figure 7.3 gives the natural gas
consumption between 2005 and 2010 in Bcm/year and prices in $/cm in the countries represented.
The left bars represent the model’s output whereas the right bars represent the real historical data.

The average model estimation errors are 2.2% for the consumption and 3.5% for the prices.
They are in the same range as the ones tolerated when calibrating the model (period 2000-2005).

Figure 7.4 gives the evolution of the northwestern European natural gas dependence on foreign
imports (those considered in the model). The dependence is the ratio between the foreign exports
to northwestern Europe and the domestic consumption 1.
The natural gas dependence is expected to reach 70% around 2030, which will bring about impor-
tant security of supply concerns (2). However, these conclusions should be cautiously considered

1. The Norwegian sales are not taken into account in the foreign supplies for security of supply reasons.
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Figure 7.3 – Comparison between the model’s output and historical data.

because they are based on strong assumptions. Indeed, in our study, we assume that no more
natural gas reserves will be found in the future and no shale gas will be produced in Europe. 2

dependence =
foreign exports

total consumption
(7.1)

Now we present the results related to the long-term contracts (LTC) provided by GaMMES.
The following tables give the LTC volumes and prices between the different producers and the
independent traders :

Volume(Bcm/year) Francetr Germanytr UKtr Belgiumtr The Netherlandstr Total
Russia 5.25 42.39 nc 1.25 nc 48.89
Algeria 7.18 nc 0.17 3.49 nc 10.85
The Netherlands nc nc nc 1.66 6.18 7.84
Norway 0.36 nc 4.81 6.52 nc 11.69
UK nc nc nc nc nc 0
Total 12.80 42.39 4.98 12.92 6.18 79.27

2. shale gas production is expected to be negligeable in Europe due to environmental concerns, for instance. As
of now, few credible assumptions exist concerning the development of European domestic shale reserves (52).
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Figure 7.4 – The northwestern European natural gas dependence over time.

Price($/cm) Francetr Germanytr UKtr Belgiumtr The Netherlandstr
Russia 0.18 0.17 nc 0.20 nc
Algeria 0.18 nc 0.22 0.20 nc
The Netherlands nc nc nc 0.20 0.20
Norway 0.18 nc 0.22 0.20 nc
UK nc nc nc nc nc

One can notice that if a pair of producer-independent trader contract on the long-term, the
corresponding LTC price is nonnegative, which is not straightforward since the correponding LTC
price is a free dual variable. Also, the spot prices in the consuming countries reported in Figure
7.2 are in general higher than the LTC prices. The explanation is as follows : since long-term
contracts are the only means for the independent traders to obtain natural gas, LTC prices can
be considered as marginal supply costs. Similarly, the spot prices are directly related to the in-
dependent traders’ revenue. Therefore, if an independent trader has an incentive to contract in
the long-term, it implies that his revenues, over the time horizon, are greater than his costs. In a
similar fashion, spot prices are greater than LTC prices.

The Belgian trader is the one that diversifies his gas supplies the most (four sources). This is
due to its geographical location, which is close to three producing countries : Norway, The Ne-
therlands and Algeria (recall that the Algerian production node is directly linked to Belgium via
an LNG route). For a particular trader, the LTC price is the same with respect to all the possible
supply sources (same price within the column). This suggests that the LTC prices are correlated
to the spot prices : an independent trader may tolerate high supply marginal costs if his marginal
revenue in his spot market is high enough. Besides, we assumed in our model that the producers
do not exert market power when contracting in the long-term.
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The UK does not contract in the long-term with the independent traders. This is due to its li-
mited gas reserves that do not create an incentive to invest in production. Therefore, the producer
does not have an investment-related risk hedging strategy and prefers directly targeting the spot
markets without creating long-term contracts. This situation has been observed in recent years.

Regarding the LTC prices, the GaMMES results are close to reality (what can be found in
private data). As for the LTC volumes, the results suggest that they represent, on average, 28% of
the total (contract+spot) trade. This value is relatively low, compared to what is currently obser-
ved in Europe (70%) (40). This can be explained by the fact that in GaMMES, we only consider
contracts endogenously determined after 2000 without taking into consideration the pre-existing
ones signed before that time as part of the calibration process. Furthermore, from the point of
view of the model, given installed production capacity as of 2000, the producers may not have
a strong incentive to contract with the traders after this time because related investments have
already been made.

The purpose of the next comparison is to show the effects of the fuel substitution-based demand
function. To that end, we consider an alternative linear demand function of the following form :

qtmd = atmd − bdptmd (7.2)

where the slope bmd should remain constant over time and the interceipt atmd changes as a function
of the fossil primary energy demand. In our study, we made atmd evolve with the fossil primary
energy demand annual growth. The slope bmd is a result of the calibration process. This descrip-
tion of the markets will be refered to as the standard model whereas the model we proposed in this
chapter will be refered to as the GaMMES model. Note that the standard model is rather simplistic
and does not correctly capture the demand behavior, because the inverse demand function’s slope
bmd is kept constant with time. However, the main purpose of the comparison is not to present
a new model but rather to remove one feature of the GaMMES model (energy substitution) and
see how this would alter the results.

Figure 7.5 provides the consumption and price levels for both models considered.

We notice that the standard model provides a lower consumption than the GaMMES results.
The average difference in consumption is 13%. The standard model provides lower prices than the
GaMMES results. The average difference between the two models is 23% which is quite large.

Now, let’s compare between the results provided by the GaMMES model, the standard model
and some official forecast. For that purpose, we choose the forecast of the European Commission
(18).

Figure 7.6 shows the evolution of the global European energy consumption between 2000 and
2030 and the average European price, forecasted in three scenarios. Ths first one is issued from
the European Commission report (baseline scenario) (18). The second one is our model forecast
and the third one is the standard model forecast.
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Figure 7.5 – Comparison between the standard and the GaMMES model : consumption and
prices.

Figure 7.6 – The European Commission, the GaMMES model and the standard model forecasts.
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Comparing the results of both the GaMMES model and the standard model with the 2007
European Commission forecasts (18) gives strong support to the need to take into account fuel
substitution, especially in the long run. The standard model output shows a very fast decrease of
natural gas consumption in the long-run. This seems at odds with the perspective of the market,
since as fossil primary energy consumption is exogenous, the remaining energy consumption has
to be met with oil and coal. This view clearly contradicts the global evolution of the different
energy shares in the recent past as well as the strong support for cleaner fuels given by the Euro-
pean policy framework. On the contrary, the GaMMES model output gives a better outcome. The
demand for gas slowly increases in the medium term, due to both higher fossil primary domestic
consumption and a higher share for natural gas in the energy mix (39). The trend is compensated
in the long run by the increased exercise of market power. The 2010 kink is mostly explained by
the quick depletion of domestic reserves.

These previous results and those of figure 7.5 show that consumed quantities provided by the
model are in line with the European Commission forecasts. This gives confidence in the GaMMES
results, for the European Commission forecasts are subject to countries’ review and acceptance.
Regarding the prices, GaMMES is closer to the European Commission scenario than the standard
model, even if both of these scenarios underestimate the prices.

In conclusion, compared to a standard description, the GaMMES model gives a better repre-
sentation of the evolution of the natural gas prices and consumption. It is necessary to take into
consideration the fuel substitution in the natural gas markets’ modeling because is allows a better
understanding of the consumers’ behavior.

To test the effects of the systems dynamics approach, starting from time-step three (2010-
2014), six sets of exogenous coal and oil price patterns over time were input varying only in
time-step three. Then the different endogenous gas prices that resulted were analyzed. Hence, we
are able to draw, in the third time-step, the dependence of the gas price on the oil and coal prices.
Figure 7.7 gives the evolution of the (average) European natural gas price in the third time-step
vs. the oil and coal prices. For the sake of clarity, we showed the evolution of the natural gas price
over the competitive price pc.

Obviously, this evolution is an increasing function of the substitution fuels’ prices. The higher
the oil and coal prices are, the greater the natural gas demand will be and, therefore, the higher
the natural gas price will be. This property also concerns the long-term contract prices between
the producers and the independent traders ηpi. Hence, our model allows us to capture part of the
indexation (on coal and oil prices) effects via the substitution in the inverse demand function.
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Figure 7.7 – Evolution of the natural gas price over the competitive price in 2015.

§ 7.3 Conclusion

This chapter presents an application of GaMMES to the nothwestern European gas trade bet-
ween 2000 and 2035. The model has been solved using the PATH solver with GAMS. After the
calibration process, the model was applied to the European natural gas trade between 2000 and
2035 to understand consumption, prices, production, and natural gas dependence. The consump-
tion and price forecast are consistent with those found in the literature. A study of the evolution
of the natural gas dependence on foreign supplies has been carried out. It shows that northwes-
tern Europe will become more and more dependent on foreign supplies in the future. Long-term
contract prices and volumes have been presented, analyzed, and compared with current data in
order to understand the producers/traders’ interaction.

Our results have been compared with other forecasts : one provided by the European Commis-
sion and another one issued from a standard model where the energy substitution is not present.
The results show that it is important to capture, while studying the natural gas demand function,
the possible energy substitution regarding other possible usable fuels market’ prices.

In order to illustrate the possible use of fuel substitution, we studied the evolution of the
natural gas price over the coal and oil prices. The coal-oil price indexation of the natural gas price
in the spot markets or in the long-term contracts can be understood using these studies.

The GaMMES model coud be used in the future to address the impact of the Shale gas’s
penetration in Europe. This can be carried out by considering a more realistic representation of
the European gas trade (more consuming and producing countries, a more complex infrastructure,
etc.). It would allow us to understand and quantify the effect of the Shale gas on the long-term
contracting behavior, regarding both prices and volumes. Also, stochasticity can be introduced
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when representing the impact of risk on the market or the seasonality of the demand. The de-
mand can also be made random by modeling the fluctuations of the oil price. This would allow
one to study, thanks to the energy substitution, the impacts of the oil price fluctuations on the
natural gas price. The model can also be used to perform more policy focused analysis such as
the impact of environmental policies on the gas trade evolution and the development of major
infrastructures toward Europe, or to analyze more thoroughly the impact of long-term contracts
on the competition in the downstream market.

Some of this will be presented in the following chapters.
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§ 8.1 Introduction

The goal of this study is to present a very simple example of a Generalized Nash-Cournot
game (GNCG) in order to understand the differences between the Quasi-Variational (QVI) and
Variational (VI) Inequality formulations and to see in which cases a QVI solution is also the so-
lution of a VI problem. The uniqueness of the solution will also be discussed in some cases.

We will first define the Standard (SNCG) and Generalized (GNCG) Nash-Cournot games and
the Variational (VI) and Quasi-Variational (QVI) inequalities. Then, we prove the equivalence
between SNCG and VI, and GNCG and QVI. In particular, we present necessary and sufficient
conditions under which a GNCG equilibrium has a VI solution. The last part of the chapter is
dedicated to a simple two-player game that illustrates the different theorems presented. We also
develop an inexact penalization method that allows one to solve GNC games.

§ 8.2 Standard and Generalized Nash-Cournot games, Varia-
tional and Quasi-Variational Inequalities

A Standard Nash-Cournot game (SNCG) describes a situation where a certain number of
players strive to optimize their respective utility, thanks to a particular set of strategies. A player’s
strategy choice can influence the other players’ payoff, but not their strategy sets. On the contrary,
in a Generalized Nash-Cournot game (GNCG), a player can change some of the other players’
strategy sets. In an imperfect competition modeling context, a GNCG appears when the players
have common constraints. As an example, if some firms produce natural gas from the same field,
they may have to deal with a common resource constraint. If we denote by xi the volume extracted
by firm i and Q the reserve of natural gas in the field, the common reserve constraint will be∑

i xi ≤ Q. Therefore, each firm i’s feasibility set contains the following constraint :

∀i, xi ≤ Q−
∑
j 6=i

xj

Hence, this common constraint makes the firms influence each other’s feasibility (or strategy) sets,
because of their decision variables.

Now, let us define theoretically a GNCG. We denote by I = {1, 2, ...N} the set of players.
Player i’s decision variable is assumed to be a vector xi ∈ Rni . We will denote by x the vector
x = (x1, x2, ..., xN ) formed by all the decision variables. To distinguish between the different
decision variables, we may write x as x = (xi, x

−
i ), where x−i is the vector formed by all the

decision variables, other than xi. In order to represent the feasibility sets’ inter-dependence, we
denote by Ki a point-to-set mapping :

Ki : R
∑
j nj−ni −→ P (Rni)
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such as xi must belong to Ki(x
−
i ). We will assume that ∀x−i , Ki(x

−
i ) is a convex set.

Each player i’s payoff is fi(x) = fi(xi, x
−
i ). fi is assumed differentiable and strictly concave,

with respect to the variable xi. fi depends on xi but also on x−i , which is the standard non-
cooperative game frame.

The general formulation of a GNC game is given by the following :

Definition 15. A GNC game is a situation where each firm i deals with the following program :
Max fi(x)
s.t. xi ∈ Ki(x

−
i )

and the GNC equilibrium is defined by the following :

Definition 16. x∗ is a GNC equilibrium if :

∀i, x∗i ∈ Ki(x
∗−
i ) and fi(xi, x∗−i ) is optimal with respect to the variable xi when xi = x∗i .

The condition x∗i ∈ Ki(x
∗−
i ) reflects the fact that player i’s feasibility set depends on the other

players’ decision variables x∗−i . On the contrary, a Standard Nash-Cournot game is a situation
where the strategy sets are not mixed. Thus, the feasibility set Ki no longer depends on x∗−i .

The general formulation of an SNC game is given by the following :

Definition 17. An SNC game is a situation where each firm i deals with the following program :
Max fi(x)
s.t. xi ∈ Ki

and the SNC equilibrium is defined by the following :

Definition 18. x∗ is an SNC equilibrium if :

∀i, x∗i ∈ Ki and fi(xi, x∗−i ) is optimal with respect to the variable xi when xi = x∗i .

To simplify the notation, we will denote by K, in the SNCG situation, the set K = K1 ×
K2...×KN .

We already know that, thanks to the Euler’s inequality (see Part 1), the following problem :

Max fi(x)
s.t. xi ∈ Ki

is equivalent to :

find xi ∈ Ki such as ∀yi ∈ Ki, ∇xifi(x)(yi − xi) ≤ 0 (8.1)
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Theorem 9. The SNCG is equivalent to :

find x∗ ∈ K such as ∀y ∈ K,
∑
i

∇xifi(x∗)(yi − x∗i ) ≤ 0 (8.2)

Démonstration. Let us show that (8.1) ⇔ (8.2). Obviously, (8.1) ⇒ (8.2). Let x∗ be a vector in
K such as ∀y ∈ K,

∑
i∇xifi(x∗)(yi − x∗i ) ≤ 0. If yi ∈ Ki, then (yi, x

∗−
i ) ∈ K and∑

j

∇xjfj(x∗)(yj − x∗j ) = ∇xifi(x∗)(yi − x∗i ) ≤ 0

Therefore, (8.2) ⇒ (8.1).

Similarly, a GNCG is equivalent to :

find x∗ such as ∀i, x∗i ∈ Ki(x
∗−
i ) and ∀y such as ∀i, yi ∈ Ki(x

∗−
i ),

∑
i

∇xifi(x∗)(yi − x∗i ) ≤ 0

The previous problems constitute respectively Variational and Quasi-Variational inequalities.
Given a point-to-point mapping F : Rn1+n2...+nN −→ Rn1+n2...+nN , these are defined by the
following :

Definition 19. The (F,K) QVI problem is defined by :

find x∗ such as ∀i, x∗i ∈ Ki(x
∗−
i ) and ∀y such as ∀i, yi ∈ Ki(x

∗−
i ), F (x∗)(y∗ − x∗) ≤ 0

Definition 20. The (F,K) VI problem is defined by :

find x∗ ∈ K such that ∀y ∈ K, F (x∗)(y∗ − x∗) ≤ 0

We have demonstrated that the GNCG is equivalent to QVI((∇x1f1,∇x2f2, ...∇xnfn) ,K) and
the SNCG is equivalent to VI((∇x1f1,∇x2f2, ...∇xnfn) ,K). In definition 19 , K is defined by
K = K1(x∗−1 )×K2(x∗−2 )× ...KN (x∗−N ).

§ 8.3 QVI and VI solutions

As previously said, we assume that the payoff functions are strictly concave. We also assume
that the GNCG is issued from a common constraints situation. Hence, we will assume that there
exists two functions g and h such as the decision variables xi must satisfy : g(x) = 0 and h(x) ≤ 0,
where x = (x1, ...xN ). The non common constraints are represented by two functions gi and hi :
gi(xi) = 0 and hi(xi) ≤ 0. h and hi are convex and g and gi affine. Player i’s optimization program
is as follows :
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Max fi(x)
s.t. gi(xi) = 0

hi(xi) ≤ 0
g(x) = 0
h(x) ≤ 0

One can notice that constraint qualifications hold. In this case, the mappings Ki are such as :

Ki(x
−
i ) =

{
xi ∈ Rni/gi(xi) = 0, hi(xi) ≤ 0, g(xi, x

−
i ) = 0, h(xi, x

−
i ) ≤ 0

}
The corresponding QVI is :

gi(x
∗
i ) = 0, hi(x

∗
i ) ≤ 0, g(x∗) = 0, h(x∗) ≤ 0, ∀y such that ∀i, yi ∈ Ki(x

∗−
i ),

∑
i

∇xifi(x∗)(yi−x∗i ) ≤ 0

and the corresponding KKT conditions, which are necessary and sufficient for optimality, are :

find x∗i , αi, βi, λi, µi, such that
gi(x

∗
i ) = 0, hi(x

∗
i ) ≤ 0, g(x∗) = 0, h(x∗) ≤ 0

∇xifi(x∗) + αi∇xigi(x∗i ) + βi∇xihi(x∗i ) + λi∇xig(x∗) + µi∇xih(x∗) = 0
0 ≥ βi⊥hi
0 ≥ µi⊥h

(8.3)

This problem will be refered to as Problem 1.

If we define by K = {x / gi(xi) = 0, hi(xi) ≤ 0, g(x) = 0, h(x) ≤ 0}, we call Problem 2 the
VI version of problem 1. More precisely, Problem 2 is the following VI :

gi(x
∗
i ) = 0, hi(x

∗
i ) ≤ 0, g(x∗) = 0, h(x∗) ≤ 0, ∀y ∈ K,

∑
i

∇xifi(x∗)(yi − x∗i ) ≤ 0

and the corresponding KKT conditions are :

find x∗i , αi, βi, λ, µ, such that
gi(x

∗
i ) = 0, hi(x

∗
i ) ≤ 0, g(x∗) = 0, h(x∗) ≤ 0

∇xifi(x∗) + αi∇xigi(x∗i ) + βi∇xihi(x∗i ) + λ∇xig(x∗) + µ∇xih(x∗) = 0
0 ≥ βi⊥hi
0 ≥ µ⊥h

(8.4)

Theorem 10. A solution of Problem 2 (VI) is also a solution of Problem 1 (QVI).

Démonstration. Let us consider x∗ a VI solution and demonstrate that it is also a QVI solution.
We already know that gi(x∗i ) = 0, hi(x

∗
i ) ≤ 0, g(x∗) = 0, h(x∗) ≤ 0, which means that x∗ ∈ K.

If y is such as yi ∈ Ki(x
∗−
i ), then :

∀i, (yi, x
∗−
i ) ∈ K and the VI formulation allows us to state that ∇xifi(x∗)(yi − x∗i ) ≤ 0. Hence∑

i∇xifi(x∗)(yi − x∗i ) ≤ 0. Since x∗ ∈ K, the demonstration is complete.
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The first conclusion to draw from the previous theorem is that a QVI formulation is more
general than a VI one, because the VI solutions are also solutions for the QVI. Now it may be
interesting to characterize the VI solutions of a QVI. This can be done thanks to this theorem :

Theorem 11. Let us consider (x∗, αi, βi, λi, µi) a solution of Problem 1 (QVI), issued from its
KKT conditions. (x∗, αi, βi, λi, µi) is solution to Problem 2 (VI) if and only if :

λ1 = λ2 = ... = λN and µ1 = µ2 = ... = µN

.

Démonstration. The demonstration is straightforward, considering equations (8.3) and (8.4)

Theorem 11 give a simple condition that ensures a QVI solution to be a VI. This condition
makes all the dual variables associated with the common constraints of the concerned players
equal. We will see in the next section that a GNCG usually has an infinite continuous solution
set. On the contrary, an SNCG has usually a discrete (often finite) solution set because it is less
degenerate. Therefore, in a GNCG context, we will often pick the VI solution, if possible, when
looking for an equilibrium. In that case, Theorem 11 gives a simple selection criterion, based on
the common constraints dual variables.

§ 8.4 A simple Generalized Nash-Cournot game

8.4.1 Introduction

This section illustrates the different definitions and theorems presented previously in this chap-
ter.

For that purpose, we consider the situation of two utility maximizing players 1 and 2. The
players’ strategies sets are supposed to be continuous and are denoted byX1 andX2. The strategies
x1 and x2 are such that x1 ∈ X1(x2) and x2 ∈ X2(x1). To take into account the fact that these
sets are nondisjoint, we make X1 depend on x2 and X2 on x1. Player i’s utility is denoted by
Πi(x1, x2). The GNC game can be written as follows :

Max Π1(x1, x2)
s.t. x1 ∈ X1(x2)

Max Π2(x1, x2)
s.t. x2 ∈ X2(x1)

It is easy to demonstrate that the previous problem can be rewritten as follows :

find x1 and x2 such as x1 ∈ X1(x2) and x2 ∈ X2(x1)

∀y1 ∈ X1(x2), ∀y2 ∈ X2(x1), −
(
∂Π1

∂x1
(x1, x2)(y1 − x1) +

∂Π2

∂x2
(x1, x2)(y2 − x2)

)
≥ 0 (8.5)

Equation 8.5 is the QVI formulation of our GNC game. The functions Πi are supposed strictly
concave with respect to both variables x1,2 ∈ X1,2.
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8.4.2 The MNCP and QVI formulations

Let us simplify our problem by assuming that Πi(x1, x2) = f(x1 + x2)xi − cixi (where f is a
decreasing differentiable one variable function and ci is a nonnegative parameter). This expression
of the utilities can represent, for instance, a firm’s profit, f being the inverse demand function.
We study two problems. The first situation is the following :

Problem 1

Max f(x1 + x2)x1 − c1x1

s.t. x1 ≥ 0

Max f(x1 + x2)x2 − c2x2

s.t. x2 ≥ 0, x2 = x1

The second game rule is slightly different. The condition {x1 = x2} is taken out from the second
player’s optimization program and becomes a matter for both players (economically speaking, this
can represent a market-clearing condition).

Problem 2

Max f(x1 + x2)x1 − c1x1

s.t. x1 ≥ 0, x1 = x2

Max f(x1 + x2)x2 − c2x2

s.t. x2 ≥ 0, x2 = x1

The main difference between problems 1 and 2 is as follows : in the first situation, the condition
x2 = x1 is important only for player 2 (player 1 realizes his optimization program with no consi-
deration to this condition) whereas in the second situation, the condition x1 = x2 is important for
both players. This difference will appear with more clarity while writing the MCP corresponding
to each problem and introducing the dual variables.

In the following calculations, we will assume that f(0) > max(c1, c2) and c1 6= c2.

If the usual concavity assumptions are satisfied, the KKT conditions allow us to characterize
the Nash Cournot equilibrium (they are both necessary and sufficient conditions for the solutions
set). More particularly, for problem 1 the equilibrium is reached if and only if there exists x1 ∈ R+,
x2 ∈ R+ and λ ∈ R such as

Problem 1(KKT)
0 ≤ x1⊥ (f ′(x1 + x2)x1 + f(x1 + x2)− c1) ≤ 0
0 ≤ x2⊥ (f ′(x1 + x2)x2 + f(x1 + x2)− c2 − λ) ≤ 0

x1 = x2

(8.6)
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For problem 2, the equilibrium is reached if and only if there exists x1 ∈ R+, x2 ∈ R+, λ1 ∈ R
and λ2 ∈ R such as

Problem 2(KKT)
0 ≤ x1⊥ (f ′(x1 + x2)x1 + f(x1 + x2)− c1 + λ1) ≤ 0
0 ≤ x2⊥ (f ′(x1 + x2)x2 + f(x1 + x2)− c2 − λ2) ≤ 0

x1 = x2

(8.7)

Both Problems 1 and 2 are MCP problems. It is interesting to write the corresponding QVI
formulations of our two games :

Problem 1(QVI)
X1(x2) = R+, X2(x1) = {x2 ≥ 0, /x2 = x1}
find x1,2 such as
x1 ∈ X1, x2 ∈ X2(x1)
∀y1 ∈ X1, y2 ∈ X2(x1)
− (f ′(x1 + x2)x1 + f(x1 + x2)− c1) (y1 − x1)− (f ′(x1 + x2)x2 + f(x1 + x2)− c2) (y2 − x2) ≥ 0

(8.8)
and

Problem 2(QVI)
X1(x2) = {x1 ≥ 0, /x1 = x2} , X2(x1) = {x2 ≥ 0, /x2 = x1}
find x1,2 such as
x1 ∈ X1(x2), x2 ∈ X2(x1)
∀y1 ∈ X1(x2), y2 ∈ X2(x1)
− (f ′(x1 + x2)x1 + f(x1 + x2)− c1) (y1 − x1)− (f ′(x1 + x2)x2 + f(x1 + x2)− c2) (y2 − x2) ≥ 0

(8.9)
The main difference between the two problems appears in the expressions of X1 and X2. The

first game allows the first player not to consider the condition x2 = x1 which makes the set X1

"free" whereas the second game binds it to the variable x2.
Problem 1(QVI) can be rewritten more simply :

find x1 ≥ 0 and x2 = x1 such as

∀y1 ≥ 0, −
(
f ′(2x1)x1 + f(2x1)− c1

)
(y1 − x1) ≥ 0

It is then easy to notice that Problem 1(QVI) cannot be expressed as a VI problem.

Problem 2 is obviously more general than Problem 1. By "more general", we mean that Pro-
blem 1’s solution set is included in Problem 2’s one. Indeed, considering equations (8.6) and (8.7),
Problem 2’s particular solution where λ1 = 0 and λ2 = c1 − c2 satisfies all of Problem 1’s equa-
tions. Hence, adding the equation x1 = x2 in player 1’s feasibility set does not reduce our solution



8.4. A simple Generalized Nash-Cournot game 187

set.

We can easily express Problem 1’s solutions. We will assume that the function f is such that
∀x ∈ R+, f(x) > 0. We will also assume that the equation

xf ′(2x) + f(2x)− c1 = µ

has a unique solution x∗(µ) in R, ∀µ ∈ R. This is the case, for instance, if f is linear (i.e.
f(x) = ax+ b with a < 0). Hence, Problem 1’s solution is :

x1 = x2 = x∗(µ = 0)

In a similar way, we can express Problem 2’s solution as follows :

x1 = x2 = x∗(µ)
µ ∈ {µ ∈ R/x∗(µ) ≥ 0}

One can notice that the QVI problem has a continuous infinite solution set. This particularity
is general for QVI problems.

The standard Nash game can be expressed as a VI problem because all the players do not
have power over each other’s strategy sets. It is then natural to look for particular VI solutions.

Let us consider the following VI problem :

Problem 2(VI)
X = {(x1, x2) ≥ 0, /x1 = x2}
find x1 and x2 such as
(x1, x2) ∈ X
∀(y1, y2) ∈ X
− (f ′(x1 + x2)x1 + f(x1 + x2)− c1) (y1 − x1)− (f ′(x1 + x2)x2 + f(x1 + x2)− c2) (y2 − x2) ≥ 0

(8.10)
Problem 2(VI) is equivalent to :

Problem 2(VI)
find x1 ∈ R+ such as
∀y1 ∈ R+

−
(
f ′(2x1)x1 + f(2x1)− c1+c2

2

)
(y1 − x1) ≥ 0

x2 = x1

(8.11)

It is now easy to notice that Problem 2(VI)’s solutions are also solutions of Problem 2(KKT)
(and hence Problem 2(QVI)). They correspond to the particular situation where λ1 = λ2. Indeed,
if λ1 = λ2, equations (8.7)’ solution is a solution for equations (8.11), and vice versa.

This VI solution is not solution for Problem 1(KKT) : otherwise, since f(0) > max(c1, c2)
we would have (thanks to equations 8.6) f ′(2x1)x1 + f(2x1) = c1 = c1+c2

2 , which is not possible
because c1 6= c2.
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The first conclusions to draw from this study are the following : If the condition x1 = x2

constrains only player 2’s feasibility set, we have a GNC game which may not have VI solutions.
This situation can lead to an infinite continuous set of solutions (which is not the case in our
particular example, but it can happen in more complex situations). Adding the condition x1 = x2

in player 1’s maximization program leads to a more general QVI that accepts a particular VI
solution. This solution is found if we impose the same dual variable to all the players, for the
common equation.

To be more explicit, let us consider the particular example of a linear functional form for f ,
∀x ≥ 0, f(x) = ax+ b, where the parameters a and b are such that a < 0 and Max(c1, c2) < b. If
we denote by S the solution set of our problems, we find :

SProblem1 =

{
(−b− c1

3a
,−b− c1

3a
)

}
and

SProblem2 =

{
(x1, x2) ∈ R2, x1 = x2 = −λ+ b− c1

3a
/λ ≥ c1 − b

}
SProblem2 is an infinite continuous set, which is a particularity of a QVI problem solution set.

We notice that in SProblem2 the VI solution is obtained when the dual variables λ1 and λ2 are
such as λ1 + λ2 = c1 − c2 and λ1 = λ2.

To conclude, we can state that if we want to take out some equations from the feasibility set
of a particular player, which includes strategies of other players to avoid thorny GNC problems
(which have usually an infinite continuous set of equilibria) and make it common to all the players,
we need to impose the same dual variables for all the players, associated with that equation, in
order to have a VI formulation.

8.4.3 The penalization method

There exists a simpler way to transform a GNC game into a standard NC game and avoid
having QVI formulations (and hence avoid taking the risk of having an infinite set of equilibria).
It consists on removing the equations that make the problem a GNC game and add them to the
concerned players objective functions, as a penalty. For example, Problem 1 becomes :

Problem 3

Max f(x1 + x2)x1 − c1x1

s.t. x1 ≥ 0

Max f(x1 + x2)x2 − c2x2 − λ(x1 − x2)2

s.t. x2 ≥ 0

where the penalty factor λ is such that λ > 0. The idea is that if we make λ big enough, we hope
that Problem 3’s solution will be a good approximation of Problem 1’s solution. Mathematically
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speaking, we want to demonstrate that Solutionpenalty −→ SolutionGNC , when the penalty factor
λ −→ +∞. The main advantage of the penalty method is that it transforms a GNC situation into
a standard NC game. Indeed, Problem 3 makes the players influence each other’s choices only via
the objective function.

When the KKT conditions are written, Problem 3 can be reformulated as :

find x1 and x2 such that :

Problem 3
0 ≤ x1⊥ (f ′(x1 + x2)x1 + f(x1 + x2)− c1) ≤ 0
0 ≤ x2⊥ (f ′(x1 + x2)x2 + f(x1 + x2)− c2 + 2λ(x1 − x2)) ≤ 0

(8.12)

Obviously, the condition x1 = x2 has been dropped and is taken care of by the penalty factor.

Let us denote Problem 3’s solutions by x1,2(λ). We assume that ∃λ0 > 0 / ∀λ > λ0, x1(λ) >
0 and x2(λ) > 0 (this assumption will allow us to avoid studying, when the KKT conditions
are written, the corner solutions where x1 = 0 or x2 = 0). We also assume that x1,2(λ) converges
toward a finite limit x∗1,2 (which is the case if f is linear), the second equation of (8.12) allows us
to write

x2(λ)− x1(λ) =
1

2λ

(
f ′(x1(λ) + x2(λ))x2(λ) + f(x1(λ) + x2(λ))− c2

)
Since f and f ′ are continuous, if we make λ −→ +∞ we can state that(

f ′(x1(λ) + x2(λ))x2(λ) + f(x1(λ) + x2(λ))
)
−→

(
f ′(x∗1 + x∗2)x∗2 + f(x∗1 + x∗2)

)
and

x∗1 = x∗2 = x∗

where x∗ can be calculated thanks to the first equation of (8.12). Indeed x∗ is solution of :

f ′(2x∗)x∗ + f(2x∗)− c1 = 0

Hence, we have demonstrated that under some particular assumptions, the penalization technique
leads to a good approximation of the GNC solution.

Let us study the linear functional form. f(x) = ax + b. b > Max(c1, c2). In that case, we can
easily calculate Problem 3’s solution. If λ is big enough, we can discard the solutions x1 = 0 or
x2 = 0 (for example, when λ > a

(
1− c2−b

2(c1−b)

)
).

(x∗1(λ), x∗2(λ)) =

(
1

3a(a− 2λ)
(2(a− λ)(c1 − b)− a(c2 − b)),

c1 − b
a
− 2

3a(a− 2λ)
(2(a− λ)(c1 − b)− a(c2 − b))

)
Hence,
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(x1(λ), x2(λ)) −→ (−b− c1

3a
,−b− c1

3a
)

which is the property we are looking for. The penalized solution converges like 1
λ , when λ −→ +∞

toward the GNC solution. The penalty method provides a good way to change the formulation of
a GNC game (QVI) into an NC game (VI). However, if we want to end up with the VI solution,
it is necessary to impose the same penalization factor to all the players.

The penalization technique has provided very good results when applied to the GaMMES
model.
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§ 8.5 Conclusion

This chapter focuses on Generalized Nash-Cournot games, in order to study different ways to
solve such problems. For that purpouse, we highlighted the difference between Standard (SNCG)
and Generalized Nash-Cournot (GNCG) games in order to show the usual degeneracy of the Ge-
neralized Nash-Cournot equilibria solutions set. Thanks to the variational formulation, a GNCG
can be formulated as a Quasi-Variational Inequality (QVI) whereas an SNCG is equivalent to
a Variational Inequality (VI). We have shown how an SNCG problem is less degenerate than a
GNCG. The QVI’s solution set contains the solution set of an SNCG whose VI formulation is
more restrictive than the initial QVI. In other words the QVI’s solution set of a GNCG always
contains VI solutions.

In our natural gas markets modeling, the GNC form appears when we have to deal with mixed
constraints that belong to different players’ feasibility sets. We have demonstrated that the dif-
ference between VI and QVI solutions can be explained thanks to the dual variables associated
with the mixed constraints. The VI solution is obtained when all the corresponding dual variables
are equal. These conditions remove the degeneracy inherent to the QVI formulation.

We have presented a simple GNCG, based on the interaction between two players, in order to
illustrate the differences beween GNCGs and SNCGs. Once the QVI and VI formulations were
written, we showed that the SNCG is less degenerate than the GNCG and found simple conditions
to characterize the VI solutions. These conditions are consistent with the theorems presented in
the first section.

We have tested another theoretical way to solve a GNC problem, by changing it into an SNC
one. This technique uses a penalization factor that penalizes a particular player, in his objective
function, if the corresponding mixed constraints do not hold. Therefore, it is possible to drop the
mixed constraints in the feasibility sets and to deal with SNC problems. We have demonstrated
that, if the calculated equilibria converge when the penalization factor is high enough and if we
use the same penalization factor for all the players, the equilibria converge toward the VI solution.
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§ 8.6 Appendix 1

This appendix demonstrates the concavity of all the players’ objective functions.
We will demonstrate that the production cost function is convex with respect to the quantity pro-
duced. The storage/withdrawal/investments costs are convex functions because they are linear.

Let’s consider a producer p. First we demonstrate the convexity of the Golombek production
cost function. We consider a production node f . To simplify the notation, let us denote by q the
produced volume (a variable) and by Rff the reserve (a constant). We recall that the cost function
Pcf is as follows :

d Pcf
d q : [0, Rff ) −→ R+

q −→ af + bfq + cf ln
(
Rff−q
Rff

)
where cf ≤ 0 and bf ≥ 0.
Pcf is a C2([0, Rff )) function (twice continuously differentiable) and we have :

∀q ∈ [0, Rff )
d2Pcf
d2q

= bf −
cf

Rff − q
≥ 0

Thus, Pcf is convex.

Producer p’s objective function is :
+
∑

t,m,f,i δ
tηpi(zp

t
mfpi)

+
∑

t,m,f,d δ
t
(
ptmd(x

t
mfpd + xtmfpd)

)
xtmfpd

−
∑

t,f δ
t
(
Pcf

(∑
t′≤t

∑
m q

t′
mfp, Rff

)
− Pcf

(∑
t′<t

∑
m q

t′
mfp, Rff

))
−
∑

t,f δ
tIpf ip

t
fp

−
∑

t,m,p,a δ
t((Tca + τ tma)fp

t
mpa)

As mentioned before, the inverse demand function has been linearized. Let’s write the natural
gas price in market d as follows :

ptmd = atmd − btmd(xtmfpd + xtmfpd)

where btmd > 0. The function
∑

t,m,f,d δ
t
(
ptmd(x

t
mfpd + xtmfpd)

)
xtmfpd is therefore a concave func-

tion of the variables xtmfpd. Indeed the Hessian matrix Ht
md associated with the spot market profit

is diagonal and such that the diagonal terms are Ht
md = −2btmd < 0. Hence, the Hessian matrix is

negative definite.

Let us consider the global cost function GP :
qtmfp −→ GP (qtmfp) =

∑
t,f δ

t
(
Pcf

(∑
t′≤t

∑
m q

t′
mfp, Rff

)
+ Pcf

(∑
t′<t

∑
m q

t′
mfp, Rff

))
. And

let’s demonstrate that GP is convex. Let’s consider two variable vectors q1tmd and q2tmd and
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λ ∈ [0, 1].

GP (λq1tmd + (1− λ)q2tmd)
=∑

t,f δ
t
(
Pcf

(∑
t′≤t

∑
m(λq1t

′
md + (1− λ)q2t

′
md), Rff

))
−
∑

t,f δ
t
(
Pcf

(∑
t′<t

∑
m(λq1t

′
md + (1− λ)q2t

′
md), Rff

))
=∑

f

∑Num
t=0 δt

(
Pcf

(∑
t′≤t

∑
m(λq1t

′
md + (1− λ)q2t

′
md), Rff

))
−
∑

f

∑Num−1
t=0 δt+1

(
Pcf

(∑
t′≤t

∑
m(λq1t

′
md + (1− λ)q2t

′
md), Rff

))
=∑

f

∑Num−1
t=0 (δt − δt+1)

(
Pcf

(∑
t′≤t

∑
m(λq1t

′
md + (1− λ)q2t

′
md), Rff

))
+
∑

f δ
Num

(
Pcf

(∑
t′≤Num

∑
m(λq1t

′
md + (1− λ)q2t

′
md), Rff

))
=∑

f

∑Num−1
t=0 δt(1− δ)

(
Pcf

(∑
t′≤t

∑
m(λq1t

′
md + (1− λ)q2t

′
md), Rff

))
+
∑

f δ
Num

(
Pcf

(∑
t′≤Num

∑
m(λq1t

′
md + (1− λ)q2t

′
md), Rff

))
Since 0 ≤ δ ≤ 1 and Pcf is convex, we can write :

∑
f

∑Num−1
t=0 δt(1− δ)

(
Pcf

(∑
t′≤t

∑
m(λq1t

′
md + (1− λ)q2t

′
md), Rff

))
+
∑

f δ
Num

(
Pcf

(∑
t′≤Num

∑
m(λq1t

′
md + (1− λ)q2t

′
md), Rff

))
≤
λ
∑

f

∑Num−1
t=0 δt(1− δ)

(
Pcf

(∑
t′≤t

∑
m q1

t′
md, Rff

))
+(1− λ)

∑
f

∑Num−1
t=0 δt(1− δ)

(
Pcf

(∑
t′≤t

∑
m q2

t′
md, Rff

))
+λ
∑

f δ
Num

(
Pcf

(∑
t′≤Num

∑
m q1

t′
md, Rff

))
+(1− λ)

∑
f δ

Num
(
Pcf

(∑
t′≤Num

∑
m q2

t′
md, Rff

))
=
λGP (q1tmd) + (1− λ)GP (q2tmd)

Hence, the cost function is convex. The rest of the profit is made of linear functions of the
decision variables. The concavity of the producers objective function is thus demonstrated.

The independent traders’ objective function’s concavity can be demonstrated in a similar way.
Like for the producers, the spot market benefit is also concave.

The pipeline and storage operators objective functions are convex (to minimize) because they
are linear. The feasibility sets are all convex due to linearity of the constraint functions.
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§ 8.7 Appendix 2

This appendix presents the KKT conditions derived from our model. Once the KKT conditions
are written, we get the Mixed Complementarity Problem (MCP) given below.
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The producers KKT conditions

∀t, m, f, p, i, 0 ≤ zptmfpi ⊥ δtηpi − γtmfp − ε2tmfpi − ηptpi ≤ 0

(8.13a)

−
∑
n

M2inαp
t
mpn

∀t, m, f, p, d, 0 ≤ xtmfpd ⊥ δtptmd(x
t
mfpd + xtmfpd) ≤ 0

(8.13b)

+ δt
∂ptmd
∂xtmfpd

(xtmfpd + xtmfpd)x
t
mfpd

− γtmfp − ε1tmfpd −
∑
n

M3dnαp
t
mpn

∀t, m, f, p, 0 ≤ qtmfp ⊥ −
∑
t′≥t

δt
′ ∂Pcf
∂q

(
∑
t′′≤t′

∑
m

qt
′′
mfp, Rff ) ≤ 0

(8.13c)

+
∑
t′>t

δt
′ ∂Pcf
∂q

(
∑
t′′<t′

∑
m

qt
′′
mfp, Rff )

−
∑
t′≥t

φt
′
f − χtmf + γtmfp

− (−1)m(ϑ1tf − ϑ2tf )− ε3tmfp
+
∑
n

M1fnαp
t
mpn

∀t, f, p, 0 ≤ iptfp ⊥ − δtIpf − ε4tfp ≤ 0

(8.13d)

+
∑
m

∑
t′≥t+delayp

χt
′
mf (1− depf )t

′−t

− ιptf + Lff
∑

t′≥t+delayp

ιpt
′
f (1− depf )t

′−t

∀t, p, i, 0 ≤ uppi ⊥
∑
t

ηptpi − ηpi ≤ 0

(8.13e)

∀t, f, 0 ≤ φtf ⊥
∑
p

∑
t′≤t

∑
m

qt
′
mfp −Rff ≤ 0

(8.13f)
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∀t, m, f, 0 ≤ χtmf ⊥
∑
p

qtmfp −Kff (1− depf )t ≤ 0 (8.14a)

−
∑
p

∑
t′≤t−delayp

ipt
′
fp(1− depf )t−t

′

∀t, m, f, p, 0 ≤ γtmfp ⊥ − qtmfp +
∑
i

zptmfpi +
∑
d

xtmfpd ≤ 0 (8.14b)

∀t, f, 0 ≤ ϑ1tf ⊥
∑
m

∑
p

(−1)mqtmfp − flf ≤ 0 (8.14c)

∀t, f, 0 ≤ ϑ2tf ⊥ −
∑
m

∑
p

(−1)mqtmfp − flf ≤ 0 (8.14d)

∀t, f, 0 ≤ ιptf ⊥
∑
p

iptfp − LffKff (1− depf )t ≤ 0 (8.14e)

− Lff
∑
p

∑
t′≤t−delayp

ipt
′
fp(1− depf )t−t

′

∀t, f,m, p, d, 0 ≤ ε1tmfpd ⊥ xtmfpd −OfpH ≤ 0 (8.14f)

∀t, m, f, p, i, 0 ≤ ε2tmfpi ⊥ zptmfpi −OfpH ≤ 0 (8.14g)

∀t, m, f, p, 0 ≤ ε3tmfp ⊥ qtmfp −OfpH ≤ 0 (8.14h)

∀t, f, p, 0 ≤ ε4tfp ⊥ iptfp −OfpH ≤ 0 (8.14i)
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∀t, m, p, n, free αptmpn
∑
a

M6(a, n)fptmpa(1− lossa) = 0 (8.15a)

−
∑
a

M5anfp
t
mpa +

∑
f

M1fnq
t
mpf

−
∑
d

∑
f

M3dnx
t
mfpd

−
∑
i

∑
f

M2inzp
t
mfpi

∀t, p, i, free ηptpi uppi −
∑
f,m

zptmfpi = 0 (8.15b)

∀ p, i, free ηpi uipi − uppi = 0 (8.15c)

The independent traders’ KKT conditions

∀t, m, p, i, 0 ≤ zitmpi ⊥ − δtηpi − ηitpi ≤ 0 (8.16a)

+ ψtmi

+
∑
n

M2inαi
t
min

+ (1−minpi)υtmpi

∀t, m, i, d, 0 ≤ ytmid ⊥ δtptmd(y
t
mfpd + ytmfpd) ≤ 0 (8.16b)

δt
∂ptmd
∂ytmid

(ytmfpd + ytmfpd)y
t
mid

− ψtmi −
∑
n

M3dnαi
t
min

∀t, i, s, 0 ≤ rtis ⊥ − δtRcs + µtis − βsts ≤ 0 (8.16c)

∀t, i, s, 0 ≤ intis ⊥ − δt(Ics +Wcs) ≤ 0 (8.16d)

− µtis −
∑
m

(−1)mψtmi

−
∑
n

M4snαi
t
min(−1)m

∀t, p, i, 0 ≤ uipi ⊥
∑
t

ηitpi + ηpi ≤ 0 (8.16e)
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∀t, m, i, free ψtmi
∑
p

zitmpi −
∑
d

ytmid + (−1)m
∑
s

intis = 0 (8.17a)

∀t, i, s, 0 ≤ µtis ⊥ intis − rtis ≤ 0 (8.17b)

∀t, m, i, n, free αitmin
∑
a

M6anfi
t
mia(1− lossa) = 0 (8.17c)

−
∑
a

M5anfi
t
mia −

∑
d

M3dny
t
mid

+
∑
p

M2inzi
t
mpi

− (−1)m
∑
s

M4snin
t
is

∀t, p, i, free ηitpi uipi −
∑
m

zitmpi = 0 (8.17d)

∀ p, i, free ηpi uipi − uppi = 0 (8.17e)

∀t, m, p, i, 0 ≤ υtmpi − zitmpi +minpi
∑
m

zitmpi ≤ 0 (8.17f)

∀t, s, 0 ≤ βsts ⊥
∑
i

rtis −Kss −
∑

t′≤t−delays

ist
′
s ≤ 0 (8.17g)
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The pipeline operator KKT conditions

∀t, m, p, a, 0 ≤ fptmpa ⊥ − δt(Tca + τ tma)− τ tma ≤ 0 (8.18a)

+
∑
n

M6anαp
t
mpn(1− lossa)

−
∑
n

M5anαp
t
mpn

∀t, m, i, a, 0 ≤ fitmia ⊥ − δt(Tca + τ tma)− τ tma ≤ 0 (8.18b)

+
∑
n

M6anαi
t
min(1− lossa)

−
∑
n

M5anαi
t
min

∀t, a, 0 ≤ ikta ⊥ − δtIka ≤ 0 (8.18c)

+
∑

t′≥t+delayi

τ t
′
ma

− ιata + Laa
∑

t′≥t+delayi

ιat
′
a

∀t, m, a, 0 ≤ τ tma ⊥
∑
p

fptmpa +
∑
i

fitmia ≤ 0 (8.18d)

− Tka −
∑

t′≤t−delayi

ikta

∀t, a, 0 ≤ ιata ⊥ ikta − Tka −
∑

t′≤t−delayi

ikta ≤ 0 (8.18e)

∀t, m, p, n, free αptmpn
∑
a

M6(a, n)fptmpa(1− lossa) = 0 (8.18f)

−
∑
a

M5anfp
t
mpa +

∑
f

M1fnq
t
mpf

−
∑
d

∑
f

M3dnx
t
mfpd

−
∑
i

∑
f

M2inzp
t
mfpi
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∀t, m, i, n, free αitmin
∑
a

M6anfi
t
mia(1− lossa) = 0 (8.19a)

−
∑
a

M5anfi
t
mia −

∑
d

M3dny
t
mid

+
∑
p

M2inzi
t
mpi

− (−1)m
∑
s

M4snin
t
is

The storage operator KKT conditions

∀t, s, 0 ≤ ists ⊥ − δtIss +
∑

t′≥t+delays

βst
′
s ≤ 0 (8.20a)

− ιsts + Lss
∑

t′≥t+delays

ιst
′
s

∀t, s, 0 ≤ βsts ⊥
∑
i

rtis −Kss −
∑

t′≤t−delays

ist
′
s ≤ 0 (8.20b)

∀t, s, 0 ≤ ιsts ⊥ ists − LssKss − Lss
∑

t′≤t−delays

ist
′
s ≤ 0 (8.20c)
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§ 9.1 Introduction

When trying to represent the natural gas industry, the modeler may have to deal with un-
certainty, at practically all the different gas chain levels. If we consider production, for instance,
the exploration activities contain a lot of uncertainty since a producing firm does not know, a
priori, the amount of gas trapped under the ground before drilling. Regarding the infrastructure,
technical hazards may constitute an important uncertainty source in the gas transport. As for the
demand, its fluctuations among the months of the year (or the seasonality) is mainly driven by
the temperature variation, which is fundamentally a random phenomenon from the point of view
of energy economics. Adding to that, uncertainty may be the consequence of political or technical
issues that are sometimes hard to take care of in detailed mathematical models. As an example,
the Russia/Ukraine dispute over the Russian gas dedicated to Europe that led to an important
shortage of supplies, was mainly motivated by political reasons. The unpredictedness of the shor-
tage, which happened twice between 2006 and 2010, may make us consider such situations as
random.

Taking into account randomness in the decisions of a gas industry actor may radically change
its planning, as compared with a deterministic foresight’s outcome. Indeed, a trader for example
who has to choose its gas supplies may want to diversify its sources if he has to deal with security
of supply issues. A random demand will deeply influence a producer or a storage operator’s in-
vestment decisions. Therefore, to be more realistic, it is important to capture randomness of the
gas markets when trying to mathematically model them. Nevertheless, though this leads to more
realism, considering stochasticity in models is not costless. Indeed, stochastic models are often
huge in terms of number of variables and hold computational problems when solving them, which
forces the modeler to use decomposition techniques, such as the Benders’ decomposition (6), (25)
or scenario reduction methods (12). Therefore, one must carefully select the type of randomness
(production, demand, etc.) to consider.

Security of supply and randomness in European gas supplies have been studied in Part 2 of
this manuscript. Among all the other types of random gas market’s characteristics, we decided
to model the uncertainty associated with the demand because on the one hand we believe that
its impact on the markets’ outcome (especially prices and consumption) is the most important
and, on the other hand, the demand function specification is the most serious drawback of current
gas markets models (51) because it presents an arbitrary aspect in the calibration. The economic
literature provides an important panel of numerical models whose objective is to describe the
natural gas trade structure while taking into account stochasticity. As an example, we can cite
the "Stochastic World Gas Model" (University of Maryland) ((16)), which presents a stochastic
extension of the "World Gas Model" ((14)), where the demand is made random. Other interesting
works include (24) and (54). Most of these models consider only randomness of the demand.

A casual look at the oil and gas prices in the spot markets suggests that they are strongly
correlated (39). This is mainly due to two reasons : The first is the LTC prices’ oil price indexation
and the second is related to energy substitution.
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Long-term contract prices between producers and traders have always been indexed by the
oil products’ price 1, to allow natural gas to be a competitive fuel. 2 Since LTC prices constitute
a supply marginal cost for the traders, they are correlated to the gas spot prices and, therefore,
spot gas and oil prices become correlated too.

Energy substitution also plays an important role in linking the fuels’ prices. Indeed, if the
consumers are allowed to choose their energy consumption’s source, they will go for the cheapest
fuel to satisfy their demand (notwithstanding capacity consumption and investment inertia). The-
refore, such a consumption feature will ensure all the fuels remain competitive in the market and
will link their prices.

Taking into account long-term contracts’ oil price indexation in gas markets modeling requires
exogenous data, such as the indexation formula between each pair of producer/trader. Because of
a lack of data and the fact that we wanted the LTCs to be endogenous in the model, we decided
to focus mainly on energy substitution to capture the gas and oil prices correlation.

The model we present, named S-GaMMES, Stochastic Gas Market Modeling with Energy
Substitution, is based on an oligopolistic approach to the natural gas markets. The interaction
between all the players is a Generalized Nash-Cournot competition and we explicitly take into
consideration, in an endogenous way, the long-term contractual aspects (prices and volumes) of
the markets. The representation of the demand is new and rich because it includes the possible
substitution, within the overall energy consumption, between different types of fuels. Hence, in
our work, we mitigate the market power exerted by the strategic players : they cannot force the
natural gas price up freely because some consumers would switch to other fuels to satisfy their de-
mand. This chapter presents the stochastic extension of GaMMES by making the demand random.

The economic structure we modeled is the one used in the deterministic GaMMES. In parti-
cular, we divide the markets into two stages : the upstream part that represents production and
the downstream one, constituted by the different spot markets (end-use consumption markets).
Both stages are linked by a set of independent traders. The traders buy gas from the producers
on a long-term contract basis and bring it to the spot markets where market power is exerted.
Both producers and traders have market power and compete via a Nash-Cournot competition.
Long-term contracts, production, transportation, and storage investments are endogenous to the
model and this property makes our formulation a Generalized Nash-Cournot game.

The specification of the demand function is the one derived from the system dynamics ap-
proach presented in Part 3. Besides, in order to capture the oil price’s fluctuation and the oil/gas
price correlation, we decided to model the oil price as a random variable. This property makes
the demand function stochastic.

1. This was also the case for Netback pricing.
2. Currently, some coal prices indexation formulas are being introduced in the contracts.
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The remaining of this part is as follows : this chapter is a general description of the chosen eco-
nomic structure representation. All the players are presented and are divided into two categories :
the strategic and the non-strategic ones. The strategic interaction is also detailed. The notation
is presented and we explain how we introduced stochasticity in the demand representation and
construct the scenario tree. The third part is dedicated to the mathematical representation of the
markets : the optimization programs associated with all the strategic and non-strategic players
are presented and discussed. We also explain in this part how we make the long-term contract
prices and volumes endogenous to the model. A set of theorems and theoretical results inherent
to S-GaMMES is provided and discussed. They principally concern long-term contract prices and
volumes characteristics. Chapter 10 gives an application of our model to the European natural gas
trade where the calibration process and the results are discussed. The results provide scenarios of
the evolution of consumption, prices, and production in northwestern Europe. LTC aspects are
also provided and discussed in depth. In addition, we define, calculate, and discuss the value (loss
and gain) of the stochastic solution adapted to our model.

The same notation will be used in chapters 9 and 10.

§ 9.2 The model

9.2.1 Economic description

The economic structure is similar to the one described in GaMMES. We refer to chapter 6 for
more details.

The main advantage of the S-GaMMES model is that it takes into account, in an endogenous
way, long-term contracts between the independent traders and the producers. Obviously, this re-
presentation is quite realistic for the European natural gas trade since the latter is still dominated
by long-term selling/purchase prices and volumes. Another advantage inherent to this description
is that the inverse demand function explicitly takes into consideration the possible substitution
between consumption of natural gas and the competing fuels.

Market power is exerted by the producers and the independent traders in the spot markets,
where the competition is modeled thanks to a Nash-Cournot equilibrium.

Considering the energy substitutions in the natural gas demand mitigates the market power
that can be exerted by all the strategic players in the end-use markets. Indeed, this is due to the
fact that the consumers have the ability to reduce the natural gas share in their energy mixes if the
gas market price is much higher than the substitution fuel’s (such as oil and coal) price. Therefore,
the producers may not have any considerable incentive to reduce their natural gas production in
order to force the price up. This model property allows us to take into account the oil/natural gas
prices indexation : the Nash-Cournot interaction will link the natural gas price to the coal and oil
prices because of the demand function dependence on these parameters.
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Standard stochastic natural gas market models, like (24), (54) and (31) usually consider ran-
domness in the demand. If the demand function is considered linear, which is the case in most
of these models, consumption = a − b × price, then the parameter a is usually made stochastic
using a discrete probability law. This leads to the construction of a scenario tree that captures the
dynamics of the model. Unfortunately most of these models give arbitrary probability laws to the
demand levels and do not carry out a realistic calibration process. As an example, the parameter
a may follow a Gaussian distribution with an arbitrary mean value and variance. In the Stochastic
GaMMES model, randomness is also taken care of by the demand level. Indeed, in order to capture
the demand fluctuations and make the model more realistic, we introduced stochasticity in the de-
mand via the fluctuations of the oil price. For that purpose, an econometric study of the oil price is
carried out in order to deduce and calibrate the probability law of the oil price’s dynamic evolution.

The model also takes advantage of a scenario tree representation where each node represents
the intersection of randomness and time. The oil price, at each time-step, is hence a random va-
riable that influences the demand function parameters at each scenario node.

The transport and storage infrastructure is modeled using competitive pipeline and storage
operators whose objective is to minimize the operation costs. Regarding the transport, the cost
includes transportation, congestion, and investment fees. Regarding the storage, the cost includes
capacity reservation, storage, withdrawal, and investment fees.

9.2.2 Notation

The units chosen for the model are the following : quantities in toe (i.e., Ton Oil Equivalent)
or Bcm (i.e., 109 cubic meters) and unit prices in $/toe or $/cm.

The following table summarizes the notation chosen for the exogenous parameters and the
endogenous variables.
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Exogenous factors

P set of producers-dedicated traders
I set of independent traders
D set of gas consuming countries in the downstream market

(no distinction between the sectors) D ⊂ N
T time T = {0, 1, 2, ..., Num}
M set of seasons. Off-peak (low-consumption) and peak (high-consumption) regimes
F set of all the gas production fields. F ⊂ N
N set of the nodes
S set of the storage sites S ⊂ N
A set of the arcs (topology)
Ω set of scenario nodes
Ωl set of the tree leaves Ωl ⊂ Ω
Rff field f ’s total gas resources (endowment)
Kff field f ’s initial capacity of production, year 0
Lff production node f ’s maximum increase of the production capacity (in %)
Ics injection marginal cost at storage site s (constant)
Wcs withdrawal marginal cost at storage site s (constant)
Rcs reservation marginal cost at storage site s (constant)
Lss storage node s’s maximum increase of the storage capacity (in %)
Pcf production cost function, field f
Tca transport marginal cost through arc a (constant)
Tka pipeline initial capacity through arc a, year 0
Kss initial storage capacity at site s, year 0
Iss investment marginal costs in storage (constant)
Ipf investment marginal costs in production (constant)
Ika investment marginal costs in pipeline capacity through arc a (constant)
Laa arc a’s maximum increase of the transport capacity (in %)
O incidence matrix ∈ MF×P . Ofp = 1 if and only if producer p owns field f
B incidence matrix ∈ MI×D. Bid = 1 if and only if trader i is located at the consumption node d
M1 incidence matrix ∈ MF×N . M1fn = 1 if and only if node n has field f
M2 incidence matrix ∈ MI×N . M2in = 1 if and only if trader i is located at node n
M3 incidence matrix ∈ MD×N . M3dn = 1 if and only if node n has market d
M4 incidence matrix ∈ MS×N . M4sn = 1 if and only if node n has storage site s
M5 incidence matrix ∈ MA×N . M5an = 1 if and only if arc a starts at node n
M6 incidence matrix ∈ MA×N . M6an = 1 if and only if arc a ends at node n
π(ω) probability of occurence of scenario node ω
t(ω) time associated with scenario node ω
H maximum value for the quantities produced and consumed
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δωmd an inverse demand function parameter
βωmd an inverse demand function parameter
γωmd an inverse demand function parameter
pcωmd an inverse demand function parameter
flf field f ’s flexibility : the maximum spread

between production during off-peak and peak seasons
minpi percentage of the minimum quantity that has to be exchanged on the long-term contract

trade between i and p
δ discount factor
delays,i,p period of time necessary to undertake technical investments
lossa loss factor through arc a
depf depreciation factor of the production capacity at field f

Endogenous variables

xωmfpd quantity of gas produced by p from field f for the end-use market d,
scenario node ω, season m in Bcm

zpωmfpi quantity of gas produced by p from field f dedicated to the long-term contract
with trader i, scenario node ω, season m
in Bcm

ziωmpi quantity of gas bought by trader i from producer p with a long-term contract
scenario node ω, season m
in Bcm

uppi quantity of gas sold by producer p to trader i with a long-term contract, each year
in Bcm

uipi quantity of gas bought by trader i from producer p on the long-term contract, each year
in Bcm

yωmid quantity of gas sold by i to the market d, scenario node ω, season m
in Bcm

ipωfp producer p’s increase of field f ’s production capacity, due to investments in production,
scenario node ω in Bcm/time unit

qωmfp production of producer p from field f , scenario node ω, season m
in Bcm

pωmd market d’s gas price, result of the Cournot competition between all the traders,
scenario node ω, season m in $/cm

ηpi long-term contract price contracted between producer p and trader i
in $/cm

rωis amount of storage capacity reserved by trader i at site s, scenario node ω
in Bcm

inωis volume injected by trader i at site s, scenario node ω
in Bcm

isωs increase of storage capacity at site s, scenario node ω due to the storage operator
investments in Bcm/time unit
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ikωa increase of the pipeline capacity through arc a, scenario node ω, due to the TSO
investments in Bcm/time unit

fpωm,p,a gas quantity that flows through arc a from producer p
scenario node ω, season m
in Bcm

fiωm,i,a gas quantity that flows through arc a from trader i
scenario node ω, season m
in Bcm

τωm,a the dual variable associated with arc a capacity constraint
scenario node ω, season m
in Bcm/season. It represents the congestion transportation cost over arc a

The previous table is divided into two parts. The upper half represents the exogenous parame-
ters or functions whereas the lower half represents the different decision variables and the inherent
retail prices.

The indices p, d, i, f , n, s, a, m, ω and t are such that p ∈ P , d ∈ D, i ∈ I f ∈ F , n ∈ N ,
s ∈ S, a ∈ A, m ∈ M , ω ∈ Ω and t ∈ T . In the remainder of the chapter and according to the
context, a node can either represent a geographical location (of a production field, a consumption
market or a storage site) or a location in the scenario tree.

The long-term contract between producer p and trader i fixes both a unit selling price and an
amount to be purchased by the independent trader i each year from producer p. Both price and
quantity will be specified endogenously by the model.
Matrix O is such that Ofp = 1 if producer p owns field f and Ofp = 0 otherwise.

Figure 9.1 represents a schematic overview of S-GaMMES.

9.2.3 The inverse demand function

We need to specify a functional form for the inverse demand function which links the price pd
at market d to the quantity brought to the market. Most of the natural gas models (49), (48), (41),
(14) do not take into account fuel substitution. Let hωmd be the specific inverse demand function
in market d, season m of scenario node ω. We assume that the long-term contract quantities do
not directly influence the market competition price, which is to say that pωmd = hωmd(

∑
i y
ω
mid +∑

f

∑
p x

ω
mfpd). (Actually, this assumption is necessary to guarantee the concavity of the objective

functions of each strategic player’s maximization problem, regardless of the quantities decided by
the other competitors. Otherwise, this assumption can be dropped if linear functions are used).
As mentioned in the introduction, we want to capture the inter-fuel substitution in the global
energy consumption. To be able to do so, we used a system dynamics approach that models the
behavior of the consumers who have to decide whether they invest in new burners that use either
oil, coal or natural gas. The model is fully developed in part 3 and (3). If we denote by Qωmd
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Dedicated traders
Producers

Independent traders Independent traders

Final users Final users

Storage

Upstream 
market

Downstream 
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Producers

Production fields Production fields

Time

Ω

Figure 9.1 – The market representation in S-GaMMES.
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the quantity
∑

i y
ω
mid +

∑
f

∑
p x

ω
mfpd, the gas demand study (3) provides the following inverse

demand function :

pωmd = pcωmd + 1
γωmd

atanh
(
δωmd+βωmd−Q

ω
md

δωmd

)
if Qωmd ≥ βωmd +

δωmdβ
ω
md

δωmd+βωmd

p′cωmd + 1
γ′ωmd

atanh
(
δ′ωmd+β′ωmd−Q

ω
md

δ′ωmd

)
if Qωmd ≤ βωmd +

δωmdβ
ω
md

δωmd+βωmd

(9.1)

where the parameters δ, β, γ and pc, which are time- and season-dependent must be calibrated.

The distinction between the domains Qωmd ≥ βtmd +
δωmdβ

ω
md

δωmd+βωmd
and Qωmd ≤ βωmd +

δωmdβ
ω
md

δωmd+βωmd
is

needed to take into account the anticipated scrapping of burners and to avoid absurd situations
where the price rises toward +∞ and also to guarantee the concavity of the objective functions.
The parameters δ′, β′, γ′ and p′c are calculated to guarantee the continuity of h and its derivative
h′. To make the price converge toward 0 when the quantity goes to +∞, we need to force β′ = 0.

The function atanh is such that :

∀x ∈ (−1, 1) atanh(x) =
1

2
ln
(

1 + x

1− x

)
To calibrate the demand function for the future, we need to specify a scenario for the global

fossil energy demand and the oil and coal market prices. Our system dynamics approach (3) will
allow us to understand how the global demand is going to be shared between the consumption of
the three fuels and explicitly find the natural gas demand function.

In order to have an algorithm convergence in a reasonable time, the inverse demand function
has been linearized in S-GaMMES.

9.2.4 The scenario tree

This section specifies how the scenario tree is constructed in the model. The demand is made
random in order to capture the strong fluctuations of the oil price in Europe. The oil price’s
dynamic evolution will influence the inverse demand function parameters δ, β, γ and pc. Indeed,
if the oil price is high in a certain year, consumers will invest more in natural gas burners (the
substitute) and therefore, the future demand for natural gas will rise 3. On the contrary, a low oil
price will reduce the future demand for natural gas. The study of the coal price’s evolution over
time indicates that its fluctuation is negligible compared to the oil one (10). Therefore, the coal
price is not taken as random. To simplify the model, the total gross fossil energy demand is also
deterministic.

3. This argument holds for a constant evolution of the coal price.
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Let us denote by pb the chain of the Brent price, with a six-month time-step 4 and ζb the
corresponding logarithmic percentage price change :

ζb =
ln(pb+1)− ln(pb)

ln(pb)
(9.2)

The data base we use for the Brent price is given in (10).
More precisely, pb is the mean value, over six months, of the Brent price and ζb the six-month
logarithmic percentage change.

Figure 9.2 gives the evolution of the price pb and ζb, b ∈ {1, 2, ...64}. b = 1 corresponds to the
period July 1977 to December 1977 and b = 64 to the period January 2009 to June 2009.
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Figure 9.2 – The evolution of pb in $/toe and ζb over time.

Figure 9.3 is a histogram of the variable ζb. A visual inspection of the correlogram shows no
sign of linear auto-correlation between the variables ζb, b ∈ {1, 2, ...64}. In addition, the variables’

4. This time-step is the one that gives the best correlation in our study.
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independence has been checked using the BDS test (11) (the BDS statistics with two dimensions
0.008 with probability 0.52). The ζb variables can therefore be considered as independent and
identically distributed random variables. The Kolmogorov-Smirnov (43) test allows us to state
that they have a normal distribution. Indeed, the test did not reject the 0-hypothesis of normality
(Adj. value 1.04 with probability 0.22). The Gaussian fit is provided in Figure 9.3. This fit is
obtained by minimizing the normalized error between a Gaussian distribution and the histogram
points of ζb. The normalized error is given by the following : if (xi, yi), i ∈ {1, 2...n} are the
histogram points and Nx0,σ a Gaussian distribution, the error ex0,σ is :

ex0,σ =
1

n

n∑
i=1

|yi −Nx0,σ(xi)

yi
| (9.3)
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Figure 9.3 – The histogram of ζ and the Gaussian fit.

The statistical study we carried out provided a normalized error of 0.2, for the Gaussian fit
shown in Figure 9.3. The other numerical results (mean value, variance) will be provided later.

In the representation of the European natural gas trade, we may need to use a time-step longer
than six months 5. Hence, it is worthwhile to explain how we can deduce the new log percentage

5. Like in the deterministic version, we typically use a five-year time-step in the stochastic version.
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change’s probability density that can be used directly by the model. Let us assume that the
model’s study time-step is κ× 6 months where κ ∈ N, and call λ the new log percentage change :

λb =
ln(pb+κ)− ln(pb)

ln(pb)
(9.4)

λb takes into account the κ×6 months offset. In our case, κ=10 (relation between five years and
six months time-steps). The relationship between λb and ζb is given using the following lemmas
and theorems :

Lemma 2. ∀b ∈ N, pb+κ = p
Πκ−1
i=0 (1+ζb+i)

b

Démonstration. Lemma 2’s proof is straightforward : using equation (9.2), we can deduce that :

∀b, pb+1 = p1+ζb
b (9.5)

Hence

pb+κ = p
1+ζb+κ−1

b+κ−1

= p
(1+ζb+κ−2)(1+ζb+κ−1)
b+κ−2

= p
(1+ζb+κ−3)(1+ζb+κ−2)(1+ζb+κ−1)
b+κ−3

= ...

= p
Πκ−1
i=0 (1+ζb+i)

b

The previous equation can be rewritten as follows :

ln(pb+κ) = Πκ−1
i=0 (1 + ζb+i) ln(pb) (9.6)

Figure 9.3 shows that the random variable ζ is such that |ζ| ≤ 0.05 with a more than 90%
probability. Hence, we can write that, in first approximation, ∀b ∈ N, ζb << 1 and

Πκ−1
i=0 (1 + ζb+i) ' 1 +

κ−1∑
i=0

ζb+i (9.7)

The approximation error can be bounded via the following theorem :

Theorem 12. If we denote by ε = Πκ−1
i=0 (1 + ζb+i) −

(
1 +

∑κ−1
i=0 ζb+i

)
the error and ζmax the

maximum absolute value of ζk : ζmax = Max {|ζk|, k ∈ {b, ..., b+ κ− 1}}, then :

|ε| ≤ (1 + ζmax)κ − 1− κζmax (9.8)

The proof is as follows :
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Démonstration. If we develop Πκ−1
i=0 (1 + ζb+i), we find :

Πκ−1
i=0 (1 + ζb+i) =

κ∑
j=0

∑
ζk1ζk2 ...ζkj

(k1, k2, ..., kj) ∈ {b, ..., b+ κ− 1}
k1 < k2 < ... < kj

(9.9)

In the sum, the term that corresponds to j = 0 is 1 and to j = 1 is
(∑κ−1

i=0 ζb+i

)
. Therefore,

we can write :

κ−1∑
i=0

(1 + ζb+i) =

(
1 +

κ−1∑
i=0

ζb+i

)
+

κ∑
j=2

∑
ζk1ζk2 ...ζkj

(k1, k2, ..., kj) ∈ {b, ..., b+ κ− 1}
k1 < k2 < ... < kj

(9.10)

Therefore, we have :

|ε| =

∣∣∣∣∣∣
κ∑
j=2

∑
ζk1ζk2 ...ζkj

(k1, k2, ..., kj) ∈ {b, ..., b+ κ− 1}
k1 < k2 < ... < kj

∣∣∣∣∣∣ (9.11)

and we can write :

|ε| ≤
∑κ

j=2

∑
|ζk1 ||ζk2 |...|ζkj |

(k1, k2, ..., kj) ∈ {b, ..., b+ κ− 1}
k1 < k2 < ... < kj

≤
∑κ

j=2

∑
ζjmax

(k1, k2, ..., kj) ∈ {b, ..., b+ κ− 1}
k1 < k2 < ... < kj

=
∑κ

j=2

(
κ
j

)
ζjmax

= (1 + ζmax)κ − 1− κζmax
The last equality is obtained exploiting the Newton binomial theorem.

As stated before, figure 9.3 shows that the random variable ζmax is such that ζmax ≤ 0.05 with a
more than 90% probability. Therefore, |ε| ≤ 0.1 with more than 90% probability.

Using equations (9.6) and (9.7), we can deduce that :

λb =
κ−1∑
i=0

ζb+i (9.12)

Since we assumed that ζb are independent and identically distributed random variables and
since we know that they follow the Gaussian distribution Nx0,σ, then we can derive that λb are also
independent and identically distributed and follow a Gaussian probability distribution Nκx0,

√
κσ.
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In order to solve the model in a reasonable time, we decided to use only two scenarios for the
oil price at each time-step. Therefore, we have to approximate the logarithmic yield λ’s Gaussian
probability density Nκx0,

√
κσ by a two-value probability law. Let us call λ1 and λ2 the two pos-

sible values of the random variable λ that will be used by the model, p and 1− p the associated
probabilities. The goal now is to find λ1, λ2 and p.

The mean value and the standard deviation of λ are respectively κx0 and
√
κσ. Therefore, we

can write :

Lemma 3. λ1, λ2 and p verify

pλ1 + (1− p)λ2 = x0 (9.13a)
pλ2 + (1− p)λ2

2 − x2
0 = κσ2 (9.13b)

Démonstration. Equation (9.13a) equates the average of the two-value probability law (λ1, λ2, p)
and the Gaussian distribution. Equation (9.13b) does the same with the variance.

Equations (9.13a) and (9.13b) allow us to state that (assuming that p /∈ {0, 1}) :

λ1 = x0 +
σ
√
p

√
1− p (9.14a)

λ2 = x0 −
σ
√
p

(
1√

1− p
−
√

1− p
)

(9.14b)

Since we are looking for three variables (λ1, λ2, p), we need to impose a third equation. In our
case, we added the following relation :

λ1 = −λ2

in order to capture the increasing and decreasing fluctuations of the oil price. A nonnegative value
for λ implies an increase of the oil price, whereas a negative value means a decrease of the oil
price. In our case, λ1 ≥ 0 and λ2 ≤ 0 correspond respectively to an increase and decrease of the
Brent price.

The study of the Brent price between 1977 and 2009 gives the follwing values for λ1, λ2 and p :

λ1 0.1

λ2 −0.1

p 0.15

These values have been calculated for a five-year evolution of the Brent price.
To summarize, the oil price evolves via the following formula :

pb+κ = p1+λ1
b with probability p (9.15a)

pb+κ = p1+λ2
b with probability 1− p (9.15b)
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Relations (9.15a) and (9.15b) suggest that the oil price is modeled as a Markov chain. This
assumption has been verified and used in some statistical studies of the oil price (53).

To calibrate the demand function for the future, we need to specify a deterministic scenario for
the global fossil energy demand and the coal markets’ prices. The oil price evolution will create the
scenario tree as follows : at each time-step the oil price can follow respectively equation (9.15a) or
(9.15b) with probability p and 1−p. In the stochastic version, the model’s time scope is 2000-2035,
with a time resolution of five years. In order to keep the model solvable in a reasonable time, we
considered randomness only for the first five time-steps, until 2025. Starting from 2025, the oil
price follows the trend forecast by the European Commission (18) : an increase by 3.7% per year.
The corresponding log-change percentage in that case is called µ.

Figure 9.4 gives a schematic description of the scenario tree for the oil price and therefore
for the demand function parameters. There are 31 nodes and seven time-steps (35 years). Node
0, which is the top of the scenario tree corresponds to the 2000-2004 time period. Note that
randomness occurs starting from 2010 (node 1).

1

2 3

2000-2004

2005-2009

2010-2014

0

log % change: λ1

probability: p
Increase of the oil price

tω

0

1

2

time

log % change: λ2

probability: 1-p
Decrease of the oil price

4 5 6 7

8 9 10 11 12 13 14 15

2015-2019

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

2020-2024

2025-2029

2030-2035

3

4

5

6

log % change: µ
probability: 1

log % change: µ
probability: 1

Figure 9.4 – The scenario tree.

Figure 9.5 gives the values of the different scenario nodes weights π(ω) of the tree.
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0.0034 0.0191
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0.0034 0.0191
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0.0034 0.0191

0.0191 0.1084

0.0191 0.1084 0.1084
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Figure 9.5 – The scenario tree weights.
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9.2.5 The mathematical description

This section details the mathematical description of the model. It presents the optimization
problems of all the supply chain players. 6

Each node of the scenario tree represents the intersection of randomness with time. The first-
stage variables are all the ones decided by all the players at node 0 and 1, which are deterministic.
Once these variables have been chosen, they cannot be changed later, in the rest of the time
periods (or nodes). Similarly, the decisions made at nodes 2 and 3 will influence the market
outcome at all the forthcoming nodes ω ∈ {4, 5, ...31} especially the production, transport, and
storage investments. More generally, an investment or a contractual decision made at node ω will
remain unchanged and will influence the market structure at all the nodes ω′ that follow ω. In
the rest of the chapter, when two scenario nodes ω and ω′ are related, we will write :

ω ≤ ω′

if ω′ is a successor of ω (or ω is a predecessor of ω′). For example, in the scenario tree, node 4 ≤
node 4 and node 25.

In order to take into account the different investment delays, we need to consider the strict
successors of a particular node. When two scenario nodes ω and ω′ are related, we will write :

ω < ω′ ⇔ ω ≤ ω′ and ω 6= ω′

if ω′ is a strict successor of ω (or ω is a strict predecessor of ω′). For example, in the scenario tree,
node 4 < node 8 and node 25.

Using this scenario tree approach, we do not need to take into account non-anticipativity
conditions, because we define a relation between the nodes (successors and predecessors). From
the programming perspective, these relations have been included by using incidence matrices M7
and M8 : M7(ω, ω′) = 1 if and only if ω ≤ ω′, otherwise, M7(ω, ω′) = 0 and M8(ω, ω′) = 1 if
and only if ω < ω′, otherwise, M8(ω, ω′) = 0.

All the players are assumed to be risk-neutral. They optimize their respective expected utilities
over the time horizon and all the scenarios are computed simultaneously.

Producer p’s maximization program is given below. The corresponding decision va-
riables are zpωmfpi, x

ω
mfpd, ip

ω
fp, q

ω
mfp and uppi.

6. Note that the dual variables are written in parentheses next to their associated constraints.
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Max ∑
ω,m,f,i

π(ω)δt(ω)(ηpi)(zp
ω
mfpi)

+
∑

ω,m,f,d

π(ω)δt(ω)
(
pωmd(x

ω
mfpd + xωmfpd)

)
xωmfpd

−
∑
ω,f

π(ω)δt(ω)Pcf

∑
ω′≤ω

∑
m

qω
′

mfp, Rff


+
∑
ω,f

π(ω)δt(ω)Pcf

(∑
ω′<ω

∑
m

qω
′

mfp, Rff

)
−
∑
ω,f

π(ω)δt(ω)Ipf (ipωfp)

−
∑
ω,m,a

π(ω)δt(ω)((Tca + τωm,a)fp
ω
m,p,a)

such that :

∀ω, f,
∑
p

∑
ω′≤ω

∑
m

qωmfp −Rff ≤ 0 (φωf ) (9.16a)

∀ω, f, m,
∑
p

qωmfp −Kff (1− depf )t(ω)

−
∑
p

∑
ω′<ω

ipω
′

fp(1− depf )t(ω)−t(ω′) ≤ 0 (χωmf ) (9.16b)

∀ω, m, f, − qωmfp +

(∑
i

zpωmfpi +
∑
d

xωmfpd

)
≤ 0 (γωmfp) (9.16c)

∀ω, f, p,
∑
m

((−1)mqωmfp)− flf ≤ 0 (ϑ1ωfp) (9.16d)

∀ω, f, p, −
∑
m

((−1)mqωmfp)− flf ≤ 0 (ϑ2ωfp) (9.16e)

∀ω, f, d, m, xωmfpd −OfpH ≤ 0 (ε1ωmfpd) (9.16f)

∀ω, f, i, m, zpωmfpi −OfpH ≤ 0 (ε2ωmfpi) (9.16g)

∀ω, f, m, qωmfp −OfpH ≤ 0 (ε3ωmfp) (9.16h)

∀ω, f, ipωfp −OfpH ≤ 0 (ε4ωfp) (9.16i)

∀ω, f,
∑
p

ipωfp − LffKff (1− depf )t(ω)

− Lff
∑
p

∑
ω′<ω

ipω
′

fp(1− depf )t(ω)−t(ω′) ≤ 0 (ιpωf ) (9.16j)
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∀ω, m, n,
∑
a

M6anfp
ω
m,p,a(1− lossa)−

∑
a

M5anfp
ω
m,p,a

+
∑
f

qωmpfM1fn −
∑
d

∑
f

xωmfpdM3dn

−
∑
i

∑
f

zpωmfpiM2in = 0 (αpωm,p,n)

(9.17a)

∀ω, i, uppi −
∑
f,m

zpωmfpi = 0 (ηpωpi) (9.17b)

∀ p, i, uipi − uppi = 0 (ηpi) (9.17c)
∀ω, m, d, i, f, zpωmfpi, x

ω
mfpd, ip

ω
fp, q

ω
mfp, uppi ≥ 0

We denote by xωmfpd the total amount of gas brought at node ω, season m to the market d by
all the players different from producer p.

The term∑
ω,m,f,i

π(ω)δt(ω)(ηpi)(zp
ω
mfpi) +

∑
ω,m,f,d

π(ω)δt(ω)
(
pωmd(x

ω
mfpd + xωmfpd)

)
xωmfpd

is the revenue, which is obtained from the sales from the long-term contracts’ sales to the inde-
pendent traders or directly from the retail markets.
The term

∑
ω,f

π(ω)δt(ω)Pcf

∑
ω′≤ω

∑
m

qω
′

mfp, Rff

−∑
ω,f

π(ω)δt(ω)Pcf

(∑
ω′<ω

∑
m

qω
′

mfp, Rff

)

is the actualized production cost. This term’s explanation is as follows :
The production cost (at field f) Pcf depends on two variables, the total quantity produced, which
will be denoted q and the natural gas resources Rff . The Golombek production cost function we
used is as follows :

∀q ∈ [0, Rff ), P cf (q,Rff ) = afq + bf
q2

2
− Rffcf

(
Rff − q
Rff

ln
(
Rff − q
Rff

)
+

q

Rff

)
(9.18)

or if written for the marginal production cost

∀q ∈ [0, Rff ),
dPcf
dq

= af + bfq + cf ln
(
Rff − q
Rff

)
(9.19)
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In our model, the production cost function is dynamic. The gas volume available to be extracted
is dynamically reduced at each period, taking into account the exhaustivity of the resource.
If at time-step 1, the production is q1 and at time-step 2 q2, the total cost is hence :

cost = Pcf (q1, RESf ) + δ(Pcf (q1 + q2, RESf )− Pcf (q1, RESf ))

Thus, to estimate the cost at scenario node ω, we need to calculate the production cost of the
sum over all the extracted volumes until node ω and subtract the cost we have cummulated at all
the strict predecessor nodes to ω.

The term ∑
ω,f

π(ω)δt(ω)Ipf (ipωfp)

is the investment cost in production at the different production fields.

The term ∑
ω,m,a

π(ω)δt(ω)((Tca + τωm,a)fp
ω
m,p,a)

is the transport and congestion costs charged by the pipeline operator to producer p. The dual
variable τωm,ar is associated with the pipeline capacity constraint through the arc a. It represents
the congestion price on the corresponding pipeline (see the transport operator optimization pro-
blem for a more detailed explanation).

The explanation of the constraints is straightforward :
The constraint (9.16a) bounds each field’s production by its reserves.
The constraint (9.16b) bounds the seasonal quantities produced by each field’s production capacity,
taking explicitly into account the different dynamic investments, that decrease with time because
of the production depreciation factor. To take into consideration the investment delays, we account
only for the invested capacities at the strict predecessor nodes. This corresponds to a five-year
investment delay (the time-step of the model).
The constraint (9.16c) states that the total production must be greater than the sales (to the
long-term and spot markets). The constraints (9.16d) and (9.16e) can be rewritten as follows :

∀ω, f, p, |
∑
m

((−1)mqωmfp)| ≤ flf

This fixes a maximum spread between the off-peak/peak production at each field. (−1)m is equal
to 1 in the off-peak season and -1 in the peak season.
The constraint (9.17a) is a market-clearing condition at each node, regarding the flows from pro-
ducer p depending on whether this node is a production field, an independent trader location or
a demand market.
The constraint (9.16j) bounds the capacity expansion of each production node f : each year, the
investment decided to increase the production capacity is less than 100× Lff percent the instal-
led capacity at that year. A historical study of the capacity expansion of some production nodes
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allowed us to calibrate the value of Lff : Lff = 0.20.
The constraint (9.17b) equates the sales of producer p for the long-term contracts to the contrac-
ted volume uppi, each scenario node.
The constraint (9.17c) describes the following : For each pair of producer/independent trader
(p, i), the gas quantity sold by p in the long-term contract market must be equal to the gas
quantity purchased by i. Therefore, this is a supply/demand equation in the long-term contracts
market. The associated dual variable ηpi is the corresponding contract unit selling/purchase price,
because we do not assume the existence of market power in the long-term contract trade. Using
this technique, it is possible to make the long-term contract prices and volumes endogenous to
the description so that they become an output of the model.
The constraint (and the similar other ones) (9.16f) allows producer p to use only the fields he
owns (for production, investments, sales, etc.). We recall that the incidence matrix O is such as
Ofp = 1 if and only if producer p owns field f , otherwise, Ofp = 0.

Independent trader i’s maximization program is given below. The corresponding de-
cision variables are ziωmpi, y

ω
mid, r

ω
is, in

ω
is and uipi.
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Max ∑
ω,m,d

π(ω)δt(ω)
(
pωmd(y

ω
mid + yωmid)y

ω
mid

)
−
∑
ω,p,m

π(ω)δt(ω)
(
ηpizi

ω
mpi

)
−
∑
ω,s

π(ω)δt(ω) (Rcs(r
ω
is))

−
∑
ω,s

π(ω)δt(ω) ((Ics +Wcs)in
ω
is)

−
∑
ω,m,a

π(ω)δt(ω)
(
Tca + τωm,a

)
fiωm,i,a

such that :

∀ω, m,
∑
p

ziωmfpi −

(∑
d

yωmid + (−1)m
∑
s

inωis

)
= 0 (ψωmi) (9.20a)

∀ω, s, inωis − rωis ≤ 0 (µωis) (9.20b)

∀ω, m, n,
∑
a

M6anfi
ω
m,i,a(1− lossa)−

∑
a

M5anfi
ω
m,i,a

−
∑
d

yωmfidM3dn +
∑
p

ziωmpiM2in

− (−1)m
∑
s

M4sn

(∑
i

ijωis

)
= 0 (αiωm,p,n) (9.20c)

∀ω, p, uipi −
∑
m

ziωmpi = 0 (ηiωpi) (9.20d)

∀ p, i, uipi − uppi = 0 (ηpi) (9.20e)

∀ω, m, p, i, − ziωmpi +minpi
∑
m

ziωmpi ≤ 0 (υωmpi) (9.20f)

∀ω, m, s, d, ziωmpi, y
ω
mid, r

ω
is, in

ω
is, uipi ≥ 0

The term ∑
ω,m,d

π(ω)δt(ω)
(
pωmd(y

ω
mid + yωmid)y

ω
mid

)
−
∑
ω,p,m

π(ω)δt(ω)
(
ηpizi

ω
mpi

)
is the net profit.
The term ∑

ω,s

π(ω)δt(ω) (Rcs(r
ω
is))
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is the storage capacity reservation cost.
The term ∑

ω,s

π(ω)δt(ω) ((Ics +Wcs)in
ω
is)

are the storage/withdrawal costs. 7

The term ∑
ω,m,a

π(ω)δt(ω)
(
Tca + τωm,a

)
fiωm,i,a

is the transport and congestion costs charged by the pipeline operator to the independent trader i.

As for the feasibility set, it is also easy to specify :

The constraint (9.20a) is a gas quantity balance for each trader. The term (−1)m is equal to 1
in the off-peak season and -1 otherwise. An implicit assumption we use in the description is that
all the storage sites must be "empty" (regardless of the working gas quantitities) at the end of
each year.
The equation (9.20b) implies that each independent trader has to pay for a storage reservation
quantity, each year and at each storage site s, to be able to store his gas.
The constraint (9.20d) forces each trader to purchase the same quantity, in long-term contracts,
from each producer and scenario node.
The constraint (9.20e) is similar to the constraint (9.17c) of the producers’ optimization program.
For each pair of producer/independent trader (p, i), the gas quantity sold by p in the long-term
contract market must be equal to the gas quantity purchased by i. Therefore, this is a sup-
ply/demand equation in the long-term contracts market. The associated dual variable ηpi is the
corresponding contract unit selling/purchase price, because we do not assume the existence of
market power in the long-term contract trade. Using this technique, it is possible to make the
long-term contract prices and volumes endogenous to the description so that they become an
output of the model.
The constraint (9.20f) fixes a minimum percentage of the contracted volume, per time unit, minpi
that has to be exchanged between p and i each season of each scenario node. Obviously, this
constraint is expected to be more saturated in the summer when there is little need for the tra-
ders to have an important amount of gas supply.

On the transportation side of our model, we will assume that the producers pay the transport
costs to bring natural gas from the production fields to the independent traders’ locations and the
end-use markets. The traders support the transport costs to store/withdraw gas or bring it to the
end-users for their sales. All the distribution costs are implicitly included in the transportation
costs we use.

7. There are no storage losses in the model. They can easily be taken into account by increasing the tansportation
losses of the arcs that start at the storage nodes.
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The pipeline operator optimization (cost minimization) program is given below. The
corresponding decision variables are fpωm,p,a, fiωm,i,a and ikωa .

Min ∑
ω,m,a

π(ω)δt(ω)
(
Tca + τωm,a

)∑
p

fpωm,p,a

+
∑
ω,m,a

π(ω)δt(ω)
(
Tca + τωm,a

)∑
i

fiωm,i,a

+
∑
ω,a

π(ω)δt(ω)Ika(ik
ω
a )

such that :

∀ω, m, a,
∑
p

fpωm,p,a +
∑
i

fiωm,i,a −

(
Tka +

∑
ω′<ω

ikω
′

a

)
≤ 0 (τωm,a) (9.21a)

∀ω, a, ikωa − Laa

(
Tka + Laa

∑
ω′<ω

ikω
′

a

)
≤ 0 (ιaωa ) (9.21b)

∀ω, m, p, n,
∑
a

M6anfp
ω
m,p,a(1− lossa)−

∑
a

M5anfp
ω
m,p,a

+
∑
f

qωmpfM1fn −
∑
d

∑
f

xωmfpdM3dn

−
∑
i

∑
f

zpωmfpiM2in = 0 (αpωm,p,n)

(9.21c)

∀ω, m, i, n,
∑
a

M6anfi
ω
m,i,a(1− lossa)−

∑
a

M5anfi
ω
m,i,a

−
∑
d

yωmfidM3dn +
∑
p

ziωmpiM2in

− (−1)m
∑
s

M4sn

(∑
i

ijωis

)
= 0 (αiωm,p,n) (9.21d)

∀ω, m, a, p, i, fpωm,p,a, fi
ω
m,i,a, ik

ω
a ≥ 0

The objective function contains both the transport/congestion and invesment costs.
The congestion cost through arc a, τωm,a, is the dual variable associated with the constraint (9.21a).
This constraint concerns the physical seasonal capacity of arc a, including the possible node-
dependent investments.
The constraint (9.21b) bounds the capacity expansion of each arc a : each year, the investment
decided to increase the transport capacity is less than 100×Laa percent the installed capacity at
that year. In S-GaMMES, we used the value Laa = 0.2.
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The other constraints are market-clearing conditions at each node, depending on whether this
node is a production field, an independent trader location, a demand market or a storage site, and
depending on whether the transportation costs are supported by the producers or the independent
traders.
We consider both pipeline and LNG routes for transport. The liquefaction and regasification costs
are included in the transportation costs on the LNG arcs. We assume, in the representation that
the physical losses occur at the end nodes of the arcs.

The storage operator optimization (cost minimization) program is given below. The
corresponding decision variable is isωs .

Min∑
ω,s

π(ω)δt(ω)Iss(is
ω
s ) +

∑
i,ω,s

π(ω)δt(ω) ((Ics +Wcs)in
ω
is +Rcsr

ω
is)

such that :

∀ω, s,
∑
i

rωis −Kss −
∑
ω′<ω

isω
′

s ≤ 0 (βsωs )

(9.22a)

∀ω, s, isωs − LssKss − Lss
∑
ω′<ω

isω
′

s ≤ 0 (ιsωs )

(9.22b)

∀ω, s, isωs ≥ 0

The storage operator controls the different investments that dynamically increase the storage
capacity of each storage node. The incentive this player has to invest is due to the constraint he
must satisfy : the capacity available at each storage site must be sufficient to meet the volumes the
independent traders have to store each year in the off-peak season. Capacity expansion is bounded
and we used the value Lss = 0.2.

If we take a closer look at the optimization program of a producer, we will notice that his fea-
sibility set depends on the decision variables of the independent traders. Also, the feasibility set of
any independent trader’s optimization program depends on the producers’ decision variables. The
situation is similar for the pipeline and storage operators. This particularity makes our formula-
tion (the KKT conditions) a Generalized Nash-Cournot problem. Similarly, the Generalized
Nash-Cournot problem can also be formulated as a Quasi-Variational Inequality problem (QVI).
In order to solve the problem, we look for the particular solution that makes the problem a VI
formulation (29).
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When the KKT conditions are written, we obtain the Mixed Complementarity Problem given
in Appendix 2.

9.2.6 Theoretical results

We refer to Appendix 2 for the MCP formulation of S-GaMMES. This section uses this ap-
pendix’s equations numbers.
One of the S-GaMMES model’s key features is that it cpatures the markets’ long-term aspects in
an endogenous way, for both long-term contract prices and volumes. In the deterministic version
of GaMMES, it can be proved that long-term contract prices, or LTC prices, are smaller than the
spot market prices. 8 Indeed, since long-term contracts are the only means for the independent
traders to obtain gas, LTC prices are to be considered as supply costs for them. Besides, they
make a profit by selling natural gas directly to the consumers, in the spot markets. Therefore, if
the traders have any incentive to sell gas to the consumers, their revenue must be greater than
their costs and consequently, spot prices should be, on average, greater than LTC prices.

These conclusions still hold for the stochastic version of GaMMES. They are explained in the
following theorems.

First we prove that our representation of the long-term contracts leads to nonnegative LTC
prices. This property is not straightforward because these prices are computed as free dual variables
associated with equality constraints.

Theorem 13. If producer p and trader i contract on the long-term, then the long-term contract
price ηpi is such as ηpi ≥ 0

Démonstration. We assume that producer p contracts on the long-term with trader i. This means
that the LTC volume uppi is such that uppi > 0. Let us denote by d the market where i is located,
i.e., d is the only market such as Bid = 1. Hence, we can write that

∀n ∈ N, M2in = M3dn

.
We already know from equation (10.8b) that :

∀ω, uppi −
∑
f,m

zpωmfpi = 0

Hence we can deduce that :

∀ω, ∃f(ω) ∈ F and m(ω) ∈M such as zpωm(ω)f(ω)pi > 0

where we denote by f(ω) the particular field that producer p may use, at scenario node ω to
respect the LTC volume he has to sell to i in season m(ω).

8. Though this situation is less realistic nowadays, given the current high, long-term contract gas prices that
are indexed on the oil price.
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Because of relation (10.10e), we can deduce that

∀ω, ∃f(ω) ∈ F such as ∀m ∈M, zpωmf(ω)pi > 0

Using the complementarity condition of equation (10.6a), we can deduce that : ∀ω, ∃f(ω) ∈ F
such as ∀m ∈M ,

π(ω)δt(ω)ηpi − γωmf(ω)p − ε2
ω
mf(ω)pi − ηp

ω
pi −

∑
n

M2inαp
ω
m,p,n = 0 (9.23)

Since zpωmf(ω)pi > 0, producer p owns the particular field f(ω) and constraint (9.16g) is not
saturated. Therefore, ε2ωmf(ω)pi = 0 and

π(ω)δt(ω)ηpi − γωmf(ω)p − ηp
ω
pi −

∑
n

M2inαp
ω
m,p,n = 0 (9.24)

To simplify the notation we will denote the term(
pωmd(x

ω
mf(ω)pd + xωmf(ω)pd) +

∂pωmd
∂xωmfpd

(xωmf(ω)pd + xωmf(ω)pd)x
ω
mf(ω)pd

)
by (

pωmd +
∂pωmd
∂xωmfpd

xωmf(ω)pd

)
Using relation (10.6b) we have :

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂xωmfpd

xωmf(ω)pd

)
− γωmf(ω)p − ε1

ω
mf(ω)pd −

∑
n

M3dnαp
ω
m,p,n ≤ 0 (9.25)

Since producer p owns the particular field f(ω), constraint (9.16f) is not saturated. Therefore,
ε1ωmf(ω)pd = 0 and

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂xωmfpd

xωmf(ω)pd

)
− γωmf(ω)p −

∑
n

M3dnαp
ω
m,p,n ≤ 0 (9.26)

Combining equations (9.24) and (9.26) and using the fact that ∀n ∈ N, M2in = M3dn
9, we

obtain :

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂xωmfpd

xωmf(ω)pd − ηpi

)
+ ηpωpi ≤ 0 (9.27)

9. We recall that trader i is located at market d.
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We know by equation (10.6e) and the fact that uppi > 0, that :

ηpi =
∑
ω

ηpωpi (9.28)

Therefore, since equation (9.27) is satisfied for all ω ∈ Ω, summing it over ω and using relation
(9.28) gives :

ηpi

(∑
ω

π(ω)δt(ω) − 1

)
+
∑
ω

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂xωmfpd

xωmf(ω)pd

)
≤ 0 (9.29)

Since
(∑

ω π(ω)δt(ω) − 1
)
< 0, we have :

ηpi ≥
−
∑

ω π(ω)δt(ω)
(
pωmd +

∂pωmd
∂xωmfpd

xωmf(ω)pd

)
(∑

ω π(ω)δt(ω) − 1
) ≥ 0 (9.30)

The next theorem allows us to compare LTC and spot prices. Before, let us define the LTC
constraints cost supported by an independent trader i. From the point of view of an independent
trader, long-term contracts constrains him to purchase gas from the producers (he contracts with)
each year, with a minimum proportional amount each season. In S-GaMMES, this is taken care
of by constraints (9.20d) and (9.20f). Using the KKT conditions and the Lagrangian formulation,
it is possible to define a cost inherent to the respect of these LTC constraints. Obviously, this cost
that depends on the scenario node ω, the season m and the producer p involved in the contract,
is function of the dual variables associated with constraints (9.20d) and (9.20f) : ηiωpi and υ

ω
mpi.

Definition 21. The LTC cost between trader i and producer p is defined at each scenario node ω
and each season m by :

LTCcostωmpi = ηiωpi − (1−minpi)υωmpi

In the LTC cost definition, the term ηiωpi takes care of the annual LTC constraint (i.e.,
the trader must purchase the same volume from the producer, at each scenario node) and the
term −(1 −minpi)υωmpi captures the seasonal LTC constraint (i.e., the trader must buy at least
100×minpi percent of the annual LTC volume, at each season). Since the variable ηiωpi is free (it
is associated with an equality constraint), the LTC cost can be positive or negative.

In the following theorem and proof, we consider a particular pair of producer p and independent
trader i who contract on the long-term. We will denote by d the consumption market where i is
located.

Theorem 14. If producer p and trader i contract on the long-term and LTCcostωmpi is nonnegative
then the spot price at market d is greater than the LTC price as long as trader i sells gas to market
d :

∀ω, m, yωmid > 0 =⇒ pωmd ≥ ηpi
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Démonstration. Producer p and trader i are assumed to contract on the long-term. Hence, uipi >
0. We already know, using equation (10.10c), that

∀ω, uipi =
∑
m

ziωmpi

Thus, ∀ω, ∃m(ω) ∈M such as ziωmpi > 0. Because of equation (10.10e), the previous inequation
holds for all the seasons :

∀ω,∀m, ziωmpi > 0

Using equation (10.9a), it is possible to write : ∀ω,m

−π(ω)δt(ω)ηpi − ηiωpi + ψωmi +
∑
n

M2inαi
ω
min + (1−minpi)υωmpi = 0 (9.31)

If we assume that trader i sells gas to market d, then using equation (10.9b) and by denoting
(for the sake of simplicity)

pωmd +
∂pωmd
∂yωmid

yωmid

the term
pωmd(y

ω
mid + yωmid) +

∂pωmd
∂yωmid

(yωmid + yωmid)y
ω
mid

we find that :

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂yωmid

yωmid

)
− ψωmi −

∑
n

M3dnαi
ω
m,i,n = 0 (9.32)

Since trader i is located at market d, we can write :

∀n ∈ N, M3dn = M2in

Combining equations (9.31) and (9.32), we find that :

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂yωmid

yωmid − ηpi
)
− ηiωpi + (1−minpi)υωmpi = 0 (9.33)

or

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂yωmid

yωmid − ηpi
)

= ηiωpi − (1−minpi)υωmpi = LTCcostωmpi (9.34)

In particular, if the LTC cost is nonnegative, we find that :

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂yωmid

yωmid − ηpi
)
≥ 0 (9.35)



9.2. The model 237

or

π(ω)δt(ω) (pωmd − ηpi) ≥ −π(ω)δt(ω)

(
∂pωmd
∂yωmid

yωmid

)
(9.36)

Since the inverse demand function is decreasing, we can deduce that :

∂pωmd
∂yωmid

≤ 0 (9.37)

Hence,

π(ω)δt(ω) (pωmd − ηpi) ≥ −π(ω)δt(ω)

(
∂pωmd
∂yωmid

yωmid

)
≥ 0 (9.38)

and

ηpi ≤ pωmd (9.39)

From the point of view of an independent trader i, it may be interesting to study the variation
of the LTC price among the different producers. Intuitively, since LTC prices are modeled as
supply marginal costs for the trader i and since we assume that no market power is exerted by the
producers on the LTC trade, we can deduce that all the producers will contract at the same price
with i. The LTC price will therefore be correlated to the spot price because the latter is related
to the profit earned by i, whereas the former is related to his supply cost. The following theorem
details the relation between the different LTC prices.

Theorem 15. If trader i contracts with producers p and p′ on the long-term, then the LTC prices
are equal :

ηpi = ηp′i

Démonstration. We assume that trader i has LTCs with producers p and p′, which means that
uipi > 0 and uip′i > 0. To simplify the proof, we will assume that constraint (9.20f) is not binding.
Therefore, the corresponding dual variables are such as :

∀ω,m, υωmpi = 0

and

∀ω,m, υωmp′i = 0

Let us demonstrate that ηpi = ηp′i.
Since uipi > 0 and uip′i > 0, we can use equation (10.9e) to deduce that∑

ω

ηiωpi + ηpi = 0 (9.40)
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and ∑
ω

ηiωp′i + ηp′i = 0 (9.41)

Since i contracted on the long-term with p and p′, we can deduce, like in the previous proofs
that :

∀ω, m, ziωmpi > 0 and ziωmp′i > 0

Hence, using equation (10.9a), it is possible to write :

∀ω, m, −π(ω)δt(ω)ηpi − ηiωpi + ψωmi +
∑
n

M2inαi
ω
min = 0 (9.42)

and

∀ω, m, −π(ω)δt(ω)ηp′i − ηiωp′i + ψωmi +
∑
n

M2inαi
ω
min = 0 (9.43)

Summing equations (9.42) and (9.43) over ω and m and using relations (9.40) and (9.41), we can
deduce that : (

(
∑
ω

π(ω)δt(ω))− 1

)
ηpi =

(
(
∑
ω

π(ω)δt(ω))− 1

)
ηp′i (9.44)

or

ηpi = ηp′i

The following theorem concerns the stored volumes decided by the independent traders and
the related reservation capacity.

Theorem 16. The stored and reserved capacities for storage are such as :

∀ω, ∀i, s, rωis > 0⇒ rωis = inωis

The previous theorem allows us to assert that at each scenario node, each storage site, the
capacity reserved by an independent trader is always equal to the volume he actually decides to
store. This result is very intuitive because the independent traders do not take care of storage
investments. Hence, they are not affected, in their storage decision variables by the randomness
of the demand. Theorem 16’s proof is straightforward :

Démonstration. Let us assume that a trader i decides to make a storage reservation at storage
site s : rωis > 0.
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If he does not use completely the reserved capacity rωis > inωis, then using equation (10.10b), we
deduce that :

µωis = 0 (9.45)

If we consider relation (10.9c), we find that :

−π(ω)δt(ω)Rcs = βsωs (9.46)

Since βsωs ≥ 0 (using equation (10.13b)), we would have :

−π(ω)δt(ω)Rcs ≥ 0 (9.47)

which is absurd because Rcs > 0.
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§ 9.3 Conclusion

This chapter presents a Stochastic Generalized Nash-Cournot model in order to describe the
natural gas markets’ evolution, taking into account the fluctuations of the oil price. The demand
representation takes into consideration the possible energy substitution that can be made between
oil, coal, and natural gas. The exhaustibility of the resource is taken care of by the use of specific
production cost functions (Golombek production cost functions).

The long-term contract prices and volumes are endogenously taken into account with the use
of dual variables. This aspect makes our formulation a Generalized Nash-Cournot model, or simi-
larly a QVI formulation. In order to solve it, we derived the VI formulation that usually presents
a unique solution.

The demand is made random by considering the oil price’s fluctuation with time. The model
uses a scenario tree representation to capture the oil price fluctuation. The oil price’s dynamic
evolution is modeled as a Markov chain. The transition probabilities have been calibrated using
an econometric study of the Brent price’s historical evolution. The scenario tree representation
allows us to not take care of non-anticipativity conditions. The consequence is that the model’s
formulation is very similar to the deterministic version GaMMES, with a bigger number of va-
riables.

We have presented, proved and discussed a set of results and theorems related to our formu-
lation. Most of these concern a comparison between the long-term contracts and spot markets
gas prices. They allow one to understand the economic correlation between LTC and spot prices.
Besides, when considering an independent trader, a comparison between all the LTC prices among
all his possible supply sources is provided in order to understand the competition between the
producers, in the upstream market.

S-GaMMES has been applied to model the northwestern European gas trade. The results are
given in the following chapter.
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§ 10.1 Introduction

The previous chapter presented the S-GaMMES model, a Stochastic Generalized-Nash Cournot
model to describe the natural gas market trade. The key features of the model are the following :
energy substitution between coal, oil and natural gas is taken into account, long-term contracts
are endogenously described and the oil price’s fluctuation is captured by modeling the oil price
as a random variable. Thus, S-GaMMES is particularly well suited to describe the European gas
trade, which is still mainly dominated by long-term contracts in the upstream and where the LTCs
are oil price-indexed. This chapter is an application of our model to the northwestern European
natural gas trade where the calibration process and the results are discussed. The results contain
scenario forecasts of the consumption, prices, production, and gas dependence in Europe. LTC
prices and volumes are provided and analyzed. We defined and calculated the value, the loss,
and the gain of the stochastic solution in order to quantify the usefulness of taking into account
stochasticity in the model.

In this chapter, we will use chapter 9’s notation.

§ 10.2 The European natural gas markets model

This section puts the model at work and presents our numerical results.

10.2.1 The representation

This section presents an application of the model to the northwestern European natural gas
market. The representation is very similar to the one presented in the deterministic version of
GaMMES (1). The following array summarizes the main actors, production, and storage sites and
the seasons studied :

Producers Fields Consuming markets Independent traders Storage sites
Russia Russiaf France Francetr Francest
Algeria Algeriaf Germany Germanytr Germanyst
Norway Norwayf The Netherlands The Netherlandstr The Netherlandsst
The Nethherlandsf NLf UK UKtr UKst

UK UKf Belgium Belgiumtr Belgiumst

Seasons Time Time step # Scenario nodes # Branches at each time step
off-peak 2000− 2035 5 years 31 2 or 1

peak

We aggregate all the production fields of each producer into one production node. We assume
that each consuming market is associated with one independent local trader (indexed by tr). As



10.2. The European natural gas markets model 243

an example, Francetr would be GDF-SUEZ and Germanytr would be E-On Ruhrgas. All the sto-
rage sites are also aggregated so that there is one storage node per consuming country. As for the
transport, the different gas routes given in Figure 10.1 were considered.

The local production in the different consuming countries and the imports from non-represented
producers, which are small, are exogenously taken into consideration.

2000 2030

T

study
calibration

consuming countries

producing coutries

consuming and producing countries

pipeline 

LNG routes

production fields

storage sites

Figure 10.1 – The northwestern European natural gas routes, production, and storage sites.

Stochasticity is taken care of by the scenario tree presented in Section 9.2.4. The demand
representation is given in Section 9.2.3. The model has been solved, in its extensive form, using
the solver PATH (20) from GAMS. In order to have an algorithm convergence in a reasonable
time, we used a five-year time-step resolution. We chose five years because it is the typical length
of time needed to construct investments in production, infrastructure or storage. Also, the inverse
demand function has been linearized.

10.2.2 The calibration

The calibration process has been carried out in order to best meet :
– the global natural gas consumption,
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– the industrial sector gas price and
– the volumes produced by each gas producer,

at scenario node 0. We recall that this node corresponds to the time period between 2000 and
2004 (the first time period). Therefore, there is no randomness associated with this node.

The data for the market prices, consumed volumes, and imports is the publicly available set
from IEA (36). We define a new variable exchtmpd that represents the exported volume from
producer p to market d. More precisely :

∀t, m, p, d, exchtmpd =
∑
i

Bid zp
t
mpi + xtmpd

The matrix B is such that Bid = 1 if the independent trader i is located in market d (e.g.,
GDF-SUEZ in France, E-On Ruhrgas in Germany) and Bid = 0 otherwise. Hence, one can notice
that the exchanged volumes include both the spot and long-term contract trades.

The calibration elements we used are the inverse demand function parameters αtmd, γ
t
md, pc

t
md

and βtmd. The idea is that the system dynamics model is run in order to calculate all the inverse
demand function parameters, for all the markets and at each year and season of our study. The
calibration technique slightly adjusts these values to make the model correctly describe the histo-
rical data (between 2000 and 2004).

In order to calibrate the produced volumes properly, we introduced security of supply para-
meters that link each pair of producer/consuming countries (p, d). A security of supply measure
forces each country not to import from any producer more than a fixed percentage (denoted by
SSP ) of the overall imports.This property can be rewritten as follows :

∀t, m, p, d, exchtmpd ≤ SSPpd
∑
p

exchtmpd

The security of supply parameters are set exogenously.
The calibration tolerates a maximum error of 5% for the prices and consumed quantities and
10% for the imported/exported volumes. The tolerated error is higher for the exchanged volumes
because they depend on the exports decided by the producers for all the targeted consumers, even
those that are not in the scope of the model. As an example, the exported volumes from Russia
to CIS (CEI) countries are exogenous to our model.

10.2.3 Results

We refer to (1) for a more detailed analysis of the results. This section focuses mainly on the
theoretical results, in order to highlight the role of randomness in the model.

In order to estimate the demand function parameters, our model requests exogenous inputs :
the markets’ global energy demand and coal price evolution (scenario provided by the European
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Commision (18)). As explained in Section 9.2.4, we assume that the coal price remains constant
and that the oil price follows a Markov chain regime. The annual gross consumption growth per
year is given in the following chart (starting from 2000).

Annual growth Total gross consumption (in % per year)
France 0.46

Germany 0.06
United Kingdom 0.02

Belgium 0.06
The Netherlands 0.11

Figure 10.2 gives the evolution of the consumption and prices in the demand markets between
2000 and 2035, for the different scenarios given in Figure 9.4. We consider the different leaves
of the tree, indexed by their scenario node number (between 24 and 31) and draw the evolution
of the consumption, with time, following the path in the tree that leads to the corresponding
leaf. It is important to remember that all the possible scenarios are solved simultaneously while
respecting the non-anticipativity conditions. To analyze the actors’ and markets’ behavior, we also
run S-GaMMES with two deterministic evolutions of the demand :

– A "High" demand case, where the oil price follows the path that leads to node 24. This
corresponds to a deterministic increase of the oil price between 2000 and 2035 (a logarithmic
change of λ1 ≥ 0).

– A "Low" demand case, where the oil price follows the path that leads to node 31. This
corresponds to a deterministic decrease of the oil price between 2000 and 2035 (a logarithmic
change of λ2 ≤ 0).

In the "High" and "Low" cases, it is assumed that the players know exactly, a priori, whether
the oil prices are going to follow path 24 (constant and continuous increase of the oil price) or
path 31 (constant and continuous decrease of the oil price).

One can notice that the evolution of the consumption and prices in all the scenarios is bounded
by the deterministic "High" and "Low" scenarios. This result is intuitive because in both cases, it
is assumed that the players have perfect foresight of the demand evolution. Besides, scenarios 24
and 31’s results bind the other scenarios’ consumption and prices evolution, because they corres-
pond to a continuous a constant increase (scenario 24) or decrease (scenario 31) of the oil price.

The following table gives the consumption annual percentage growth (APG) mean value, bet-
ween 2005 and 2035, in the European countries studied. The ratio betwen the standard deviation
and the mean value of the consumption in 2035 (last period) is also given. The latter quantifies
the impact of randomness on the spread of consumption with time. More particularly, we will
define the spread by the following :

spread =
Standard deviation in 2035

Mean value in 2035
(10.1)

The spread, a measure of the standard error, can be defined for all the parameters or market
outcome that depend on the scenarios (consumption, prices, production, etc.). Intuitively, if the
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Figure 10.2 – Consumption and prices in the different scenarios.
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spread is high, this means that randomness may play an important role in the decisions made by
the actors that influence the market outcome. This situation indicates that a stochastic model is
more accurate to represent the market behavior as compared to a deterministic one. This notion
will be detailed later while introducing and calculating the value of the stochastic solution.

Consumption France Germany UK Belgium The Netherlands
(APG) mean value (%/year) -1.15 -0.62 -1.76 -0.09 -0.81
Spread (in %) 11.1 8.5 4.9 10.4 6.5

One can notice that the spread has the highest value in France, which suggests that the fluc-
tuations of the oil price influence the French gas consumption a great deal. On the contrary, the
spread is relatively low in the United Kingdom. This country also has the highest decrease of
consumption (in all scenarios). Indeed, the decrease of consumption is mainly due to the fact
that the United Kingdom has low gas reserves (around 900 Bcm in 2000, (10).) and will have to
rely on foreign (especially Russian and Algerian) supplies in the coming decades. Therefore, the
evolution of the consumption in the UK is greatly dependent on the supply and less on the oil
price fluctuations.
One can notice that the natural gas consumption is expected to decrease between 2000 and 2035,
in most of the scenarios, even if the demand increases. This is mainly due to the fact that the
initial natural gas reserves in Europe are relatively low compared to the demand. Since we do not
represent explorations activities (for Shale gas for instance), the foreign dependence, especially
toward Russia and Algeria, will grow with time, which will force the prices up mainly because
of two reasons : first, the growing market power exerted by Russia and Algeria and second, the
relatively high transportation costs.

The following table gives the price annual percentage growth (APG) mean value and the
spread, between 2005 and 2035, in the European countries studied.

Price France Germany UK Belgium The Netherlands
(APG) mean value (%/year) 0.89 1.14 0.73 1.25 0.65
Spread (in %) 17.2 17.1 15.5 16.3 18.4

The spread is higher for the prices than for the consumption. This is intuitive because the gas
prices are more correlated to the oil price as compared to the consumption. Like for the consump-
tion, France has the highest price spread in 2035.

Figure 10.3 shows the evolution of the production (dedicated to the consuming countries we
studied) over time, in the different scenarios.

The Russian and Algerian shares in the European consumption is expected to grow, in all the
possible scenarios. The Deutch and The UK production is expected to decrease with time, with
a very small spread. This is mainly due to the limited reserves of gas initially present in these
countries that reduces the correlation between the supply of these countries and the demand which
is linked to the oil price that is random. The Norwegian production varies a lot with the scenario
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Figure 10.3 – Production in the different scenarios.
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and has a relatively high spread.

Now it may be interesting to analyze the impact of randomness on the long-term contracts.
The following table gives the different long-term contracts’ (LTC) volumes and prices between the
producers and the independent traders (stochastic). In order to compare with the deterministic
version, we also report the LTC results in the High and Low cases. 1

Stochastic
Volume(Bcm/year) France Germany UK Belgium The Netherlands Total
Russia 0.84 32.26 0.00 0.00 0.00 33.10
Algeria 4.03 0.00 0.00 8.80 0.00 12.84
The Netherlands 0.00 0.00 0.00 9.42 5.91 15.33
Norway 0.00 0.00 0.00 12.16 0.00 12.16
UK 0.00 0.00 24.55 0.00 0.00 24.55
Total 4.87 32.26 24.55 30.38 5.91 97.98

High
Volume(Bcm/year) France Germany UK Belgium The Netherlands Total
Russia 0.31 33.61 0.00 0.00 0.00 33.92
Algeria 4.04 0.00 0.00 8.79 0.00 12.83
The Netherlands 0.00 0.00 0.00 9.23 5.84 15.06
Norway 1.11 0.00 2.88 12.44 0.00 16.43
UK 0.00 0.00 23.64 0.00 0.00 23.64
Total 5.47 33.61 26.53 30.45 5.84 101.89

Low
Volume(Bcm/year) France Germany UK Belgium The Netherlands Total
Russia 0.86 30.95 0.00 0.00 0.00 31.80
Algeria 3.93 0.00 0.00 8.88 0.00 12.81
The Netherlands 0.00 0.00 0.00 9.58 5.58 15.16
Norway 0.00 0.00 0.00 12.02 0.00 12.02
UK 0.00 0.00 24.89 0.00 0.00 24.89
Total 4.78 30.95 24.89 30.48 5.58 96.69

Stochastic
Price($/cm) France Germany UK Belgium The Netherlands
Russia 0.12 0.12 nc nc nc
Algeria 0.12 nc nc 0.13 nc
The Netherlands nc nc nc 0.13 0.14
Norway nc nc nc 0.13 nc
UK nc nc 0.15 nc nc

1. nc denotes a no-contract situation.
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High
Price($/cm) France Germany UK Belgium The Netherlands
Russia 0.13 0.13 nc nc nc
Algeria 0.13 nc nc 0.14 nc
The Netherlands nc nc nc 0.14 0.16
Norway 0.13 0.16 0.14 nc nc
UK nc nc 0.16 nc nc

Low
Price($/cm) France Germany UK Belgium The Netherlands
Russia 0.12 0.12 nc nc nc
Algeria 0.12 nc nc 0.12 nc
The Netherlands nc nc nc 0.12 0.14
Norway nc nc nc 0.12 nc
UK nc nc 0.15 nc nc

One can check that the results of Theorem 13 are respected in our numerical study. Indeed, if
a pair of producer-independent trader contract on the long-term, the corresponding LTC price is
nonnegative. Theorem 14’s results are also satisfied : the spot prices in the consuming countries,
reported in Figure 10.2 are in general higher than the LTC prices. One can also notice that the
Belgian trader is the one that diversifies the most his gas supplies (three sources). This is due to
its geographical location, which is close to three producing countries : Norway, The Netherlands
and Algeria (we remind that the Algerian production node is directly linked to Belgium via a LNG
route). A consuming country, which produces natural gas, such as the UK or The Netherlands, sees
the corresponding independent trader contract on the long-term exclusively with the local produ-
cer. This is quite intuitive because of the geographical proximity. Besides, for a particular trader,
the LTC price is the same with respect to all the possible supply sources. This confirms Theorem
15’s result and also suggests that the LTC prices are correlated to the spot prices. An independent
trader may tolerate high supply marginal costs if his marginal revenue or the spot price in his spot
market, which is the market where he has to support the least transportation costs, is high enough.

A comparison between the Stochastic, High and Low cases shows that the LTC volumes
contracted are, on average, 1.5% higher in the Stochastic case than in the Low case. On the
contrary, LTC volumes are, on average, 4% lower in the Stochastic case than in the High case.
There are even some contracts in the High case that do not exist in the Stochastic case : Norway-
UK (2.9 Bcm/year) and Norway-France (1.1 Bcm/year). Regarding the prices, the results are
similar : the Stochastic LTC prices are, on average 2.5% higher than in the Low case and the
Stochastic LTC prices are, on average 9% lower than in the High case.

These results are quite intuitive : in the stochastic model, the strategic players need to hedge
their decisions on the long-term, against the oil price fluctuations. In a High scenario perfect fo-
resight, the demand increases constantly with time and the independent traders need to contract
more important volumes in order to ensure a sufficient supply. In that situation, the spot price is
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expected to be relatively high (see Figure 10.2) and therefore the independent traders can support
higher supply costs, which benefits to the producers. This explanation holds for the Stochastic-
Low cases LTC comparison.

10.2.4 The value of the stochastic solution

Now we define a measure that allows us to quantify the utility to introduce stochasticity in the
S-GaMMES model. Following (54), we adapt the concept of the value of the stochastic solution,
introduced by (7) to analyze the performance of stochastic programing, to the context of imperfect
competition and Equilibrium problems.

For that purpose, we will compare the Stochastic Model (SM) and the Mean Value Model
(MVM) results, which will be defined later. In our representation, at each time period, the oil
price is modeled as a random variable whose mean value will be denoted by :

pt = 〈pωt 〉ω (10.2)

The mean value is calculated by considering all the scenarios ω that correspond to time-step
t.

The Mean Value Model is a deterministic model where, at each time step, we approximate the
oil price by its mean value pt. Figure 10.4 is a schematic description of both models.

We will compare the different players’ utilities in the Stochastic and Mean Value cases. We will
also compare the Stochastic, the High demand and Low demand cases utilities. For a particular
player, we will define :

– The SM utility ΠSM by the expected value of its global utility over the possible scenarios,
in the SM output.

– The MVM utility ΠMVM by the expected value of its global utility over time, in the MVM
output.

– The HM utility ΠHM by the expected value of its global utility over time, in the High case
output.

– The LM utility ΠLM by the expected value of its global utility over time, in the Low case
output.

– The value of the stochastic solution defined by :

V SS = ΠSM −ΠMVM (10.3)

– The loss of the stochastic solution defined by :

LSS = ΠSM −ΠHM (10.4)

– The gain of the stochastic solution defined by :

GSS = ΠSM −ΠLM (10.5)
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Note that the Mean Value Model, the High demand and Low demand cases are deterministic
situations, where the players have a perfect foresight of the future. The VSS is a means to quantify
the importance of using stochasticity in the model. The GSS measures the gain obtained by the
players when taking into consideration stochasticity, as compared to a deterministic low demand
regime. To the contrary, the LSS measures the loss supported by the players when taking into
consideration stochasticity, as compared to a deterministic high demand regime. In linear and non-
linear stochastic programing, Birge and Louveaux (7) demonstrated that the VSS is nonnegative.
However, this result may not hold for MCPs or Equilibrium Stochastic Problems. Indeed, since
we do not deal with a unique objective function to optimize, but rather with multiple correlated
ones, it is not straightforward that each player would benefit from taking care of stochasticity.
The same conclusions hold for the GSS and LSS. Indeed, in stochastic programing, it is intuitive
that the GSS is nonnegative whereas the LSS is negative. However this may not be true when
dealing with MCP formulations.

The following table gives the VSS, GSS and LSS for the producers. 2 A producer’s utility is
his profit.

VSS (*109 $) VSS (%) GSS (%) LSS (%)
Russia 9.23 9.23 19.45 -19.85
Algeria 0.91 1.43 7.23 -17.32
The Netherlands -0.87 -0.58 0.75 -4.69
Norway -0.29 -0.29 2.4 -14.66
UK -1.18 -0.72 0.8 -5.42
Total 7.80 1.35 4.80 -10.79

The average VSS for the producers is 1.35%, which is nonnegative. This means that on ave-
rage, the producers benefit from the use of randomness in their optimization programs. There
are some cases where the VSS is negative (The Netherlands, Norway and The UK). However, the
corresponding values are relatively small. Russia is the producer that benefits the most from the
use of stochasticity, with a VSS of 9%. Regarding the GSS and LSS, their average values are 4.8%
and -10.8% respectively. All the producers have a nonnegative GSS and negative LSS.

The following table gives the VSS for the independent traders. An independent trader’s utility
is his profit.

2. The VSS in % is defined by ΠSM−ΠMV M
ΠSM

. The definition is similar for the GSS and LSS in %.
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VSS (*109 $) VSS (%) GSS (%) LSS (%)
France -0.03 -0.54 3.89 -27.08
Germany 0.15 0.37 4.09 -13.40
UK 0.17 1.28 1.01 -18.17
Belgium -0.15 -0.51 1.24 -6.81
The Netherlands 0.55 14.29 12.08 2.55
Total 0.69 0.73 3.05 -12.17

The average VSS for the traders is 0.73%, which is nonnegative. This means that on average,
the independent traders benefit from the use of randomness in their optimization programs. Ne-
vertheless, there are some cases where the VSS is negative. The Dutch trader is the one that
benefits the most from the use of stochasticity, with a VSS of 14%. The average GSS is 3.05% and
the average LSS is -12.17%. The Dutch trader has a positive LSS. However, the value is relatively
small compared to the GSS or the VSS.

The previous results concerned the strategic players, who directly take into consideration
randomness in their profits. Now it may be interesting to measure the VSS for the non-strategic
players.

The following table gives the VSS for the consumers. The consumers’ utility is their surplus :
if the inverse demand function is p(q) and the consumed quantity is Q, then the utility is defined
by
∫ Q

0 (p(q)− p(Q)) q dq.

VSS (*109 $) VSS (%) GSS (%) LSS (%)
France 0.76 0.28 2.43 -16.52
Germany 1.86 0.46 2.49 -9.28
UK 3.23 2.54 2.71 -2.93
Belgium 0.33 0.42 2.39 -11.1
The Netherlands 1.37 1.26 2.9 -12.5
Total 7.55 0.76 2.54 -10.88

The average VSS for the consuming countries is 0.76%, which is nonnegative. This means that
in general, the consumers benefit from the use of randomness. Note that this result is not intuitive
because the consumers’ surplus is not taken into account in the producers or the traders payoff.
However, this can be explained by the fact that in S-GaMMES, the strategic players have a better
representation of the demand fluctuations that directly influences the consumers’ surplus. The
United Kingdom is the country that benefits the most from the use of stochasticity, with a VSS
of 2.5%. The average GSS and LSS values are respectively 2.5% and -10.88%

The following table gives the VVS for the pipeline (TSO) and storage (SSO) operators. The
utility is the opposite of the cost they minimize (see Section 9.2.5). The VSS and GSS are also
nonnegative, whereas the LSS is negative.
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VSS (*109 $) VSS (%) GSS(%) LSS(%)
TSO 5.69 8.33 0.67 -38.67
SSO 0 0 0 0

In conclusion, the use of the Value of the Stochastic Solution allows us to quantify the gain
earned by the players (strategic and non-strategic) when considering stochasticity in their deci-
sions. When calculated in S-GaMMES, the results suggest that, on average, all the strategic and
non-strategic players benefit from the use of randomness. However, since we are dealing with an
Equilibrium Stochastic Problem, there are some players who may suffer from that situation, which
may lead to their utility becoming smaller.
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§ 10.3 Conclusion

This chapter applies S-GaMMES to the northwestern European gas trade. The model has been
solved using the solver PATH on GAMS. After the calibration process, it was applied to unders-
tand the European natural gas trade forecast between 2000 and 2035 in terms of consumption,
prices, production, and LTC prices and volumes, in the different possible scenarios allowed by the
scenario tree. In particular, we have defined and calculated the spread of consumption and prices
in the different countries in order to quantify the importance of taking into account stochasticity
in the model. We have also compared LTC prices in the stochastic versus the deterministic situa-
tions, in order to understand how the producers hedge their investment-related risk when dealing
with an uncertain demand.

More generally, we have defined the value of the stochastic solution, as well as the gain and
loss of the stochastic solution. This can be carried out by comparing the stochastic model results
and its deterministic equivalent. This also allows one to quantify the importance and usefulness
of taking into consideration the demand randomness. The value of the stochastic solution can be
calculated for all the players in order to identify those who benefit from the use of stochasticity
from those who do not. On average, taking into account stochasticity benefits to all the players.
However, since we are dealing with imperfect competition, some players may reduce their utility
when dealing with stochastic programming. Such players have been identified in this chapter.
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§ 10.4 Appendix 1

This appendix demonstrates the concavity of all the players’ objective functions.
We will demonstrate that the production cost function is convex with respect to the quantity pro-
duced. The storage/withdrawal/investments costs are convex functions because they are linear.

Let’s consider a producer p. First we demonstrate the convexity of the Golombek production
cost function. We consider a production field f . To simplify the notation, let us denote by q the
produced volume (a variable) and by Rff the reserve (a constant). We recall that the cost function
Pcf is as follows :

d Pcf
d q : [0, Rff ) −→ R+

q −→ af + bfq + cf ln
(
Rff−q
Rff

)
where cf ≤ 0 and bf ≥ 0.

Theorem 17. The Golombek production cost function Pcf is convex.

Démonstration. Pcf is a C2([0, Rff )) function (twice continuously differentiable) and we have :

∀q ∈ [0, Rff )
d2Pcf
d2q

= bf −
cf

Rff − q
≥ 0

Thus, Pcf is convex because cf ≤ 0 and bf ≥ 0.

Producer p’s objective function is :∑
ω,m,f,i π(ω)δt(ω)ηpi(zp

ω
mfpi)

+
∑

ω,m,f,d π(ω)δt(ω)
(
pωmd(x

ω
mfpd + xωmfpd)

)
xωmfpd

−
∑

ω,f δ
t(ω)

(
Pcf

(∑
ω′≤ω

∑
m q

ω′
mfp, Rff

)
− Pcf

(∑
ω′<ω

∑
m q

ω′
mfp, Rff

))
−
∑

ω,f δ
t(ω)Ipf (ipωfp)

−
∑

ω,m,p,a δ
t(ω)((Tca + τωm,a)fp

ω
m,p,a)

Theorem 18. Producer p’s objective function is concave with respect to his decision variables.

Démonstration. As mentioned before, the inverse demand function has been linearized. Let’s write
the natural gas price in market d, season m and node ω as follows :

pωmd = aωmd − bωmd(xωmfpd + xωmfpd)

where bωmd > 0. The function
∑

ω,m,f,d π(ω)δt(ω)
(
pωmd(x

ω
mfpd + xωmfpd)

)
xωmfpd is therefore a concave

function of the variables xωmfpd. Indeed, the Hessian matrix Hω
md associated with the spot market
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profit is diagonal and such that the diagonal terms are Hω
md = −2bωmd < 0. Hence, the Hessian

matrix is negative definite.

Let us consider the global cost function GP :
qωmfp −→ GP (qωmfp) =

∑
ω,f δ

t(ω)
(
Pcf

(∑
ω′≤ω

∑
m q

ω′
mfp, Rff

)
− Pcf

(∑
ω′<ω

∑
m q

ω′
mfp, Rff

))
.

And let’s demonstrate that GP is convex. Let us consider two variable vectors q1ωmd and q2ωmd
and λ ∈ [0, 1].
We denote by Ωl the subset of Ω that contains all the leaves of the tree.

GP (λq1ωmd + (1− λ)q2ωmd)
=∑

ω,f δ
t(ω)

(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
−
∑

ω,f δ
t(ω)

(
Pcf

(∑
ω′<ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
=∑

f

∑
ω∈Ω δ

t(ω)
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
−
∑

f

∑
ω/∈Ωl

δt(ω)+1
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
=∑

f

∑
ω/∈Ωl

(δt(ω) − δt(ω)+1)
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
+
∑

f

∑
ω∈Ωl

δNum
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
=∑

f

∑
ω/∈Ωl

δt(ω)(1− δ)
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
+
∑

f

∑
ω∈Ωl

δNum
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
Since 0 ≤ δ ≤ 1 and Pcf is convex, we can write :

∑
f

∑
ω/∈Ωl

δt(ω)(1− δ)
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
+
∑

f

∑
ω∈Ωl

δNum
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
≤
λ
∑

f

∑
ω/∈Ωl

δt(ω)(1− δ)
(
Pcf

(∑
ω′≤t

∑
m q1

ω′
md, Rff

))
+(1− λ)

∑
f

∑
ω/∈Ωl

δt(ω)(1− δ)
(
Pcf

(∑
ω′≤t

∑
m q2

ω′
md, Rff

))
+λ
∑

f

∑
ω∈Ωl

δNum
(
Pcf

(∑
ω′≤ω

∑
m q1

ω′
md, Rff

))
+(1− λ)

∑
f δ

Num
(
Pcf

(∑
ω′≤ω

∑
m q2

ω′
md, Rff

))
=
λGP (q1ωmd) + (1− λ)GP (q2ωmd)

Hence, the cost function is convex. The rest of the profit is made of linear functions of the
decision variables. The concavity of the producers’ objective function is thus demonstrated.
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Theorem 19. The independent traders’ objective function is concave with respect to his decision
variables.

Theorem 20. The pipeline and storage operators objective functions are convex.

Theorem 21. All the players’ constraint sets are convex.

Démonstration. The proof of the independent traders’ concavity of their objective function is
similar to the previous proof. Like for the producers, the spot market benefit is in particular
concave.
The pipeline and storage operators objective functions are convex because they are linear.
The feasibility sets are all convex due to linearity of the constraint functions.

§ 10.5 Appendix 2

This appendix presents the KKT conditions derived from S-GaMMES. Once the KKT conditions
written, we get the Mixed Complementarity Problem (MCP) given below.
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The producers’ KKT conditions

∀ω, m, f, p, i, 0 ≤ zpωmfpi ⊥ π(ω)δt(ω)ηpi − γωmfp − ε2ωmfpi − ηpωpi ≤ 0

(10.6a)

−
∑
n

M2inαp
ω
m,p,n

∀ω, m, f, p, d, 0 ≤ xωmfpd ⊥ π(ω)δt(ω)pωmd(x
ω
mfpd + xωmfpd) ≤ 0

(10.6b)

+ π(ω)δt(ω) ∂pωmd
∂xωmfpd

(xωmfpd + xωmfpd)x
ω
mfpd

− γωmfp − ε1ωmfpd −
∑
n

M3dnαp
ω
m,p,n

∀ω, m, f, p, 0 ≤ qωmfp ⊥ −
∑
ω′≥ω

π(ω′)δt(ω
′)∂Pcf

∂q
(
∑
ω′′≤ω′

∑
m

qω
′′

mfp, Rff ) ≤ 0

(10.6c)

+
∑
ω′>ω

π(ω′)δt(ω
′)∂Pcf

∂q
(
∑
ω′′<ω′

∑
m

qω
′′

mfp, Rff )

−
∑
ω′≥ω

φω
′

f − χωmf + γωmfp

− (−1)m(ϑ1ωfp − ϑ2ωfp)− ε3ωmfp
+
∑
n

M1fnαp
ω
m,p,n

∀ω, f, p, 0 ≤ ipωfp ⊥ − π(ω)δt(ω)Ipf − ε4ωfp ≤ 0

(10.6d)

+
∑
m

∑
ω′>ω

χω
′

mf (1− depf )t(ω
′)−t(ω)

− ιpωf + Lff
∑
ω′>ω

ιpω
′

f (1− depf )t(ω
′)−t(ω)

∀ p, i, 0 ≤ uppi ⊥
∑
ω

ηpωpi − ηpi ≤ 0

(10.6e)

∀ω, f, 0 ≤ φωf ⊥
∑
p

∑
ω′≤ω

∑
m

qω
′

mfp −Rff ≤ 0

(10.6f)
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∀ω, m, f, 0 ≤ χωmf ⊥
∑
p

qωmfp − Tkf (1− depf )t(ω) ≤ 0

(10.7a)

−
∑
p

∑
ω′<ω

ipω
′

fp(1− depf )t(ω)−t(ω′)

∀ω, m, f, p, 0 ≤ γωmfp ⊥ − qωmfp +
∑
i

zpωmfpi +
∑
d

xωmfpd ≤ 0

(10.7b)

∀ω, f, p, 0 ≤ ϑ1ωfp ⊥
∑
m

(−1)mqωmfp − flf ≤ 0

(10.7c)

∀ω, f, p, 0 ≤ ϑ2ωfp ⊥ −
∑
m

(−1)mqωmfp − flf ≤ 0

(10.7d)

∀t, f, 0 ≤ ιpωf ⊥
∑
p

ipωfp − LffKff (1− depf )t(ω) ≤ 0

(10.7e)

− Lff
∑
p

∑
ω′<ω

ip
t(ω′)
fp (1− depf )t(ω)−t(ω′)

∀ω, f,m, p, d, 0 ≤ ε1ωmfpd ⊥ xωmfpd −OfpH ≤ 0

(10.7f)

∀ω, m, f, p, i, 0 ≤ ε2ωmfpi ⊥ zpωmfpi −OfpH ≤ 0

(10.7g)

∀ω, m, f, p, 0 ≤ ε3ωmfp ⊥ qωmfp −OfpH ≤ 0

(10.7h)
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∀ω, f, p, 0 ≤ ε4ωfp ⊥ ipωfp −OfpH ≤ 0 (10.8a)

∀ω, p, i, free ηpωpi uppi −
∑
f,m

zpωmfpi = 0 (10.8b)

∀ p, i, free ηpi uipi − uppi = 0 (10.8c)

The independent traders’ KKT conditions

∀ω, m, p, i, 0 ≤ ziωmpi ⊥ − π(ω)δt(ω)ηpi − ηiωpi ≤ 0 (10.9a)

+ ψωmi

+
∑
n

M2inαi
ω
min

+ (1−minpi)υωmpi

∀ω, m, i, d, 0 ≤ yωmid ⊥ π(ω)δt(ω)pωmd(y
ω
mid + yωmid) ≤ 0 (10.9b)

+ π(ω)δt(ω) ∂p
ω
md

∂yωmid
(yωmid + yωmid)y

ω
mid

− ψωmi −
∑
n

M3dnαi
ω
m,i,n

∀ω, i, s, 0 ≤ rωis ⊥ − π(ω)δt(ω)Rcs + µωis − βsωs ≤ 0 (10.9c)

∀ω, i, s, 0 ≤ inωis ⊥ − π(ω)δt(ω)(Ics +Wcs) ≤ 0 (10.9d)

− µωis −
∑
m

(−1)mψωmi

−
∑
n

M4snαi
ω
m,i,n(−1)m

∀p, i, 0 ≤ uipi ⊥
∑
ω

ηiωpi + ηpi ≤ 0 (10.9e)
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∀ω, m, i, free ψωmi
∑
p

ziωmpi −
∑
d

yωmid + (−1)m
∑
s

inωis = 0 (10.10a)

∀ω, i, s, 0 ≤ µωis ⊥ inωis − rωis ≤ 0 (10.10b)

∀ω, p, i, free ηiωpi uipi −
∑
m

ziωmpi = 0 (10.10c)

∀p, i, free ηpi uipi − uppi = 0 (10.10d)

∀ω, m, p, i, 0 ≤ υωmpi ⊥ − ziωmpi +minpi
∑
m

ziωmpi ≤ 0 (10.10e)
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The pipeline operator’s KKT conditions

∀ω, m, p, a, 0 ≤ fpωm,p,a ⊥ − π(ω)δt(ω)(Tca + τωm,a)− τωm,a ≤ 0 (10.11a)

+
∑
n

M6anαp
ω
p,m,n(1− lossa)

−
∑
n

M5anαp
ω
p,m,n

∀ω, m, i, a, 0 ≤ fiωm,i,a ⊥ − π(ω)δt(ω)(Tca + τωm,a)− τωm,a ≤ 0 (10.11b)

+
∑
n

M6anαi
ω
i,m,n(1− lossa)

−
∑
n

M5anαi
ω
i,m,n

∀ω, a, 0 ≤ ikωa ⊥ − π(ω)δt(ω)Ika ≤ 0 (10.11c)

+
∑
ω′>ω

τω
′

m,a

− ιaωa + Laa
∑
ω′>ω

ιaω
′

a

∀ω, m, a, 0 ≤ τωm,a ⊥
∑
p

fpωm,p,a +
∑
i

fiωm,i,a ≤ 0 (10.11d)

− Tka −
∑
ω′<ω

ikω
′

a

∀ω, a, 0 ≤ ιaωa ⊥ ikωa − Tka −
∑
ω′<ω

ikωa ≤ 0 (10.11e)

∀ω, m, p, n, free αpωm,p,n
∑
a

M6(a, n)fpωm,p,a(1− lossa) = 0 (10.11f)

−
∑
a

M5anfp
ω
m,p,a +

∑
f

qωmpfM1fn

−
∑
d

∑
f

xωmfpdM3dn

−
∑
i

∑
f

zpωmfpiM2in
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∀ω, m, i, n, free αiωm,i,n
∑
a

M6anfi
ω
m,i,a(1− lossa) = 0 (10.12a)

−
∑
a

M5anfi
ω
m,i,a −

∑
d

yωmpdM3dn

+
∑
p

ziωmpiM2in

− (−1)m
∑
s

∑
i

inωisM4sn

The storage operator’s KKT conditions

∀ω, s, 0 ≤ isωs ⊥ − π(ω)δt(ω)Iss +
∑
ω′>ω

βsω
′

s ≤ 0 (10.13a)

− ιsωs + Lss
∑
ω′>ω

ιsω
′

s

∀ω, s, 0 ≤ βsωs ⊥
∑
i

rωis −Kss −
∑
ω′<ω

isω
′

s ≤ 0 (10.13b)

∀ω, s, 0 ≤ ιsωs ⊥ isωs − LssKss − Lss
∑
ω′<ω

isω
′

s ≤ 0 (10.13c)
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Conclusion

Dans ce travail de thèse, nous avons proposé une représentation de l’évolution de l’économie
du gaz naturel en Europe jusqu’en 2035. Pour ce faire, nous nous appuyons sur des outils de modé-
lisation permettant de décrire le comportement stratégique de long-terme des différents acteurs de
la chaîne gazière : producteurs, traders, consommateurs et opérateurs de transport et de stockage.
Les marchés sont modélisés comme des oligopoles dissymétriques où les traders et producteurs
exercent un pouvoir de marché inégal auprès des consommateurs finaux. Les contrats long-terme
ainsi que les augmentations de capacités de transport, de stockage et de production sont des va-
riables endogènes au modèle. Les effets de substitution énergétique au niveau de la consommation
sont pris en considération grâce à un modèle de type systèmes dynamiques. Le modèle GaMMES
ainsi développé consiste en un problème dynamique de Nash-Cournot généralisé dont nous avons
donné une extension stochastique qui permet de rendre compte de l’influence du prix du pétrole
sur l’évolution des marchés gaziers.

Dans cette thèse, les réponses apportées aux différentes questions posées en introduction sont
les suivantes :

– La question de l’insécurité d’approvisionnement en Europe a été traitée en prenant en compte
la structure actuelle des marchés européens. Les traders sont considérés comme des acteurs
stratégiques pouvant exercer un pouvoir de marché au niveau aval de la chaîne. Ces traders
doivent choisir leurs sources d’importations en connaissant le risque de rupture associé à
chaque producteur. Les consommateurs quant à eux sont décrits grâce à leur fonction de
demande de long et de court-terme. Cette dernière permet d’estimer leur perte de bien-être
en cas de rupture d’approvisionnement. Grâce à cette modélisation, nous pouvons proposer
une explication des choix d’approvisionnement en gaz naturel de l’Allemagne dans les années
1980 entre importations de la Russie (producteur peu fiable) ou de la Norvège (producteur
sûr). Nous déduisons notamment l’existence d’un effet seuil sur la probabilité de rupture
qui imposerait à l’Allemagne de choisir exclusivement le gaz norvégien. Par ailleurs, notre
approche nous permet également d’étudier la situation actuelle de la Bulgarie qui est for-
tement dépendante du gaz russe. Nous arrivons ainsi à analyser l’évolution des paramètres
du marché (prix, consommation, etc.) en fonction du risque de rupture. Nous déduisons, en
particulier, que les traders bénéficient de deux marges dans leur profit. La première est la
marge oligopolistique inhérente à la structure économique du marché. Elle est due au fait
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que les traders ont intérêt à créer de la rareté dans le but de faire monter le prix du gaz.
La deuxième consiste en une marge de sécurité : les traders préfèrent hausser les prix dans
l’objectif de se couvrir face au risque de rupture. Nous avons établi que la marge de sécurité
augmente avec la probabilité de rupture. Nous proposons une régulation du marché, utili-
sant un contrôle des volumes importés, valable dans toute économie gazière particulièrement
vulnérable. L’avantage de notre régulation est qu’elle assure l’optimalité du bien-être social.
Nous étudions notamment les situations dans lesquelles elle s’applique, en fonction de la
probabilité de rupture et des réserves stratégiques de gaz naturel. Finalement, nous appli-
quons notre modèle au marché espagnol du gaz naturel afin de comparer entre deux modes
de régulation du marché : la première est celle qui est actuellement appliquée dans ce pays
et qui force les traders à diversifier les origines de leurs importations. La seconde (que nous
proposons) les autorise à choisir leur mix librement. En contrepartie, les traders devront
compenser les usagers en cas de crise. En fonction du risque de rupture, nous sommes ainsi
capables de préconiser l’application de la première ou de la seconde régulation, à des fins
d’optimisation du bien-être social.

– Le modèle GaMMES permet d’étudier les scénarii d’évolution des marchés du gaz naturel
en Europe, jusqu’en 2040. Nous avons ainsi pu constater que la production européenne va
décroître dans le temps, à cause des faibles réserves de gaz naturel en Europe, forçant les
producteurs locaux à un rationnement des ressources. Au contraire, les parts des exporta-
tions russes et algériennes vers l’Europe vont augmenter progressivement, ce qui aura pour
conséquence une hausse des prix due aux coûts de transport. Cette hausse est également le
fruit d’une augmentation de la demande et par conséquent de la consommation européenne.

– La décroissance de la production européenne aura pour conséquence directe une augmen-
tation de la dépendance énergétique. La Russie, l’Algérie et la Norvège (dans une moindre
mesure) sont les trois producteurs qui augmenteront leur production dans les décennies à
venir. Bien entendu, cela s’accompagnera d’une augmentation des prix, mue par les forts
coûts d’investissements en production et en transport.

– La substitution énergétique a été prise en compte dans la fonction de demande en gaz na-
turel grâce à un modèle de type systèmes dynamiques. Ce modèle permet de représenter
le comportement des consommateurs qui doivent choisir leur mix optimal en fonction des
prix de marché des énergies dont ils disposent. Cette modélisation du comportement est
fondée sur les investissements en technologies et considère la concurrence entre les produits
pétroliers, le charbon et le gaz naturel. Plus spécifiquement, nous considérons le développe-
ment du parc des brûleurs (ou technologies) à même d’utiliser les trois formes de sources
d’énergie citées ainsi que sa dépréciation dans le temps. Le modèle se formule grâce à un
ensemble d’équations différentielles partielles corrélées que nous résolvons numériquement.
Il a été appliqué avec succès, après un processus de calibration, pour représenter le compor-
tement des consommateurs dans plusieurs pays, pour le secteur industriel ainsi que pour la
demande primaire totale en gaz naturel. Une fois le modèle validé, nous l’avons utilisé afin
d’estimer la fonction de demande en gaz naturel. Le résultat obtenu est particulièrement
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intéressant : la forme fonctionnelle que nous déduisons tient compte de la substitution entre
combustibles. Ainsi, nous incluons au sein même de la fonction de demande en gaz naturel,
à la fois le prix du pétrole et celui du charbon. Par ailleurs, nous avons pu appréhender les
effets d’élasticités de court/long-terme dans la demande en gaz naturel ainsi que les inerties
de consommation.

– Nous avons réussi à rendre les contrats long-terme liant chaque paire de producteur/trader
endogènes à GaMMES. Pour ce faire, nous avons modélisé certaines clauses de TOP dans un
marché virtuel de contrats long-terme où les producteurs décident de l’offre et les traders de
la demande. Une contrainte d’égalisation de l’offre et de la demande permet d’estimer le prix
du contrat long-terme. Celui-ci est déduit de la variable duale associée à cette contrainte.
Cette particularité de notre représentation fait de GaMMES un problème de type Nash-
Cournot généralisé. L’application de notre modèle au marché européen a permis d’avoir
une estimation des volumes et des prix des différents contrats long-terme, que nous avons
confrontée à la réalité du marché.

– La structure économique (à double niveau) producteurs/traders/consommateurs a été prise
en compte dans notre modèle de marché. Elle permet, en particulier, de doter les producteurs
et les traders de pouvoirs de marché non symétriques. En effet, les producteurs possèdent
un avantage par rapport aux traders dans la mesure où ils ont la possibilité de choisir entre
les ventes aux traders sur les contrats long-terme (LTC) et les ventes aux consommateurs
finaux sur les marchés spot. Par conséquent, on constate qu’ils acquièrent une plus grande
part de marché, dans la consommation européenne, en comparaison avec les traders. Ainsi,
ce fort pouvoir de marché de la part des producteurs se fera sentir de plus en plus au niveau
des prix spot, dès que la production européenne aura commencé à décliner, à partir de 2015.

– Le modèle GaMMES montre que les prix des contrats sont en général inférieurs aux prix
spot. Cela s’explique de manière assez simple : d’un point de vue économique, les contrats
long-terme représentent le seul moyen pour les traders de s’approvisionner auprès des pro-
ducteurs. Ainsi, les prix LTC peuvent être considérés comme des coûts marginaux d’appro-
visionnement de long-terme pour les traders. Puisque le prix spot est directement relié au
profit des traders, on déduit qu’une situation favorable de vente sur un marché de consom-
mation se présente dès que le prix spot est supérieur au coût marginal d’approvisionnement,
soit le prix LTC. En outre, le modèle GaMMES nous indique qu’un trader s’entend générale-
ment avec les producteurs sur un même prix d’approvisionnement. Ceci se justifie par le fait
que les producteurs n’exercent pas un pouvoir de marché explicite au niveau intermédiaire
de l’échange long-terme.

– Le modèle S-GaMMES est une extension stochastique du modèle GaMMES où l’aléa est
porté par le prix du pétrole. Etant donné les fortes fluctuations de ce dernier, nous l’avons
modélisé comme une variable aléatoire dont la loi de probabilité a été estimée par une étude
économétrique. L’avantage de S-GaMMES est qu’il permet de quantifier l’impact de telles
fluctuations sur les marchés gaziers. Ainsi, il nous a été possible de réaliser des scénarii
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d’évolution des paramètres du marché en fonction de la trajectoire suivie par le prix du
pétrole. Par ailleurs, l’impact des fluctuations sur les contrats long-terme a été appréhendé
et quantifié. En effet, dans la mesure où les contrats long-terme permettent aux producteurs
de couvrir leur risque d’investissement et aux traders d’assurer une fourniture sûre du gaz,
la prise en compte du caractère aléatoire de la demande modifie sensiblement les paramètres
des contrats. 3 Par conséquent, une comparaison entre des modélisations déterministe et sto-
chastique au niveau des LTC nous a permis de comprendre comment l’incertitude (au niveau
du prix du pétrole) modifie le comportement de couverture des producteurs. Finalement,
nous avons défini et estimé une mesure de l’effet de la prise en compte des fluctuations du
prix du pétrole dans les programmes d’optimisation des acteurs stratégiques et non stra-
tégiques. Cette mesure (value of the stochastic solution) permet d’identifier les acteurs qui
bénéficient de la prise en compte de l’aléa et ceux qui voient leur utilité décroître lorsqu’ils
l’intègrent dans leurs décisions (ou subissent des pertes).

Bien entendu, les différents modèles que nous avons élaborés dans le cadre de cette thèse pré-
sentent quelques limites. La plus importante est sans doute la simplification de la réalité qu’ils
engendrent dans la plupart des cas. Ainsi, l’hypothèse de rationalité des acteurs peut être re-
mise en question puisque dans la réalité, elle peut être altérée notamment par des considérations
d’ordre géopolitique dont il est difficile de rendre compte. Aussi, notre représentation de la struc-
ture économique et du fonctionnement du marché présente quelques difficultés. Au niveau des
contrats long-terme, l’indexation directe de leurs prix sur le prix du pétrole ou du charbon n’est
pas modélisée. Concernant les volumes, leur détermination est le fruit d’une négociation complexe
et directe entre les producteurs et les traders. Dans le modèle GaMMES, nous laissons le marché
décider à la fois des quantités et des prix grâce à une contrainte d’égalisation de l’offre et de la
demande au niveau des LTC. Par ailleurs, les consommateurs sont représentés par leur fonction
de demande inverse, ce qui ne leur accorde aucun pouvoir de déterminer directement leur consom-
mation. Cependant, cette simplification semble nécessaire dans les problèmes de type concurrence
à la Cournot. Au niveau du transport et du stockage, l’hypothèse d’absence d’exercice de pouvoir
de marché en Europe reste discutable mais cette simplification permet de mieux comprendre les
interactions stratégiques des autres agents.

Concernant notre étude de la sécurité d’approvisionnement, l’hypothèse la plus forte est sans
doute celle qui conduit chaque producteur à vendre son gaz aux différents traders au même prix, et
à interrompre son approvisionnement à l’ensemble de ses clients, en cas de rupture (ceci implique
que nous considérons seulement les ruptures d’ordre technique). Cette hypothèse est néanmoins
nécessaire si l’on souhaite résoudre analytiquement les équations du modèle.

Notre représentation des fluctuations du prix du pétrole utilise un arbre de scénarii issu d’une
évolution du prix déterminée par une chaîne de Markov. Cette approche est bien entendu simpli-
ficatrice dans la mesure où elle implique une absence de "mémoire" (au-delà de deux périodes)
dans la formation du prix du pétrole. Aussi, nous avons dû négliger d’autres facteurs nécessitant

3. Nous rappelons que le prix du pétrole influence la demande en gaz naturel à cause de la substitution énergé-
tique.
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une modélisation stochastique de la demande, tels que la saisonnalité. En outre, le caractère incer-
tain ne concerne évidemment pas uniquement la demande. Ainsi, l’offre présente également une
dimension aléatoire. A titre d’exemple, on peut évoquer les nouveaux producteurs de la mer Cas-
pienne qui sont susceptibles de fournir l’Europe dans les prochaines années. A cet effet, le pipeline
NABUCCO, dimensionné pour transporter 30 Bcm/an, sera opérationnel en 2017 et desservira
plusieurs pays dépendant du gaz russe, tels que la Hongrie. En outre, la récente guerre en Lybie
souligne à quel point la production du gaz naturel peut être incertaine, puisque beaucoup de pays
assurant l’offre au niveau mondial sont politiquement instables.

En amont de l’industrie du gaz naturel, l’intuition économique nous indique que les produc-
teurs exercent intrinsèquement plus de pouvoir de marché que les traders. A cet égard, il est
possible de considérer les producteurs comme leaders du jeu et les traders comme suiveurs. Tou-
tefois, le fait d’introduire un jeu dynamique à la Stackelberg complique fortement l’analyse de la
détermination des ventes optimales. C’est pour cette raison que dans le modèle GaMMES, nous
ne considérons que le cas d’un jeu simultané entre producteurs et traders.

Enfin, la représentation de la demande se concentre sur la substitution énergétique entre les
trois énergies fossiles (gaz naturel, pétrole et charbon) et néglige les interactions avec d’autres
formes de production énergétique telle que les renouvelables et le nucléaire. En réalité, concernant
cette dernière, il nous a été très difficile d’obtenir des données publiques d’estimation directe du
coût de l’utilisation du nucléaire (investissement + utilisation + démantèlement).

Au vu des différentes limites et difficultés reoncontrées dans notre étude, quelques extensions
de ce travail de thèse sont possibles.

Au niveau de la structure économique des marchés, il serait intéressant de modéliser l’interac-
tion stratégique entre les producteurs et les traders comme une concurrence à la Stackelberg où
les producteurs seraient leaders et les traders suiveurs. Bien entendu, cette représentation doterait
les producteurs d’une pouvoir de marché plus important que celui qui est pris en compte dans
GaMMES. Toutefois, cette modélisation pourrait présenter un inconvénient majeur, à savoir une
incohérence temporelle, qui constitue une particularité notoire des modèles de type Stackelberg.
Cette dernière intervient lorsque la trajectoire optimale décidée par un joueur est susceptible de
changer avec l’origine temporelle du programme d’optimisation. Par ailleurs, il est à noter que les
techniques numériques de résolution de tels problèmes sont très peu nombreuses et font l’objet
d’une part importante de la recherche actuelle en mathématiques appliquées. 4

Sur la base de notre modèle GaMMES, il est possible d’intégrer de nouveaux gisements de gaz
naturel afin d’analyser des situations de géopolitique européenne actuelle. Par exemple, il permet-
trait de connaître l’impact de la pénétration des gaz non conventionnels, en particulier le gaz de
schiste sur l’évolution des marchés. Ce gaz non conventionnel a été découvert dans plusieurs pays
de l’Union Européenne il y a quelques années. Les réserves les plus importantes seraient localisées

4. Une modélisation complexe de type Stackelberg fait intervenir des problèmes de type MPEC (Maths Pro-
gramming with Equilibrium Constraints) ou EPEC (Equilibrium Problem with Equilibrium Constraints).
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en Pologne, en Allemagne, en France et au Royaume-Uni. Aujourd’hui, l’exploitation du gaz de
schiste en Europe se heurte à une forte contestation de l’opinion publique, essentiellement due
aux techniques usuelles d’extraction. A l’instar des Etats-Unis, la production de gaz de schiste
en Europe emploierait principalement la fracturation hydraulique, méthode présentant un impact
très négatif sur l’environnement notamment à cause de sa forte pollution des nappes phréatiques.
Toutefois, les motivations politiques et économiques restent très fortes pour certains pays désirant
limiter leur dépendance énergétique vis-à-vis des producteurs usuels. Ainsi, une potentielle exploi-
tation du gaz de schiste permettrait à la Pologne de produire la totalité de sa consommation, voire
de devenir un nouvel exportateur. Cette situation changerait certainement la donne énergétique
au niveau de l’Europe et aurait tendance à diminuer les prix et augmenter la consommation du
gaz naturel, en favorisant la concurrence en amont. Le modèle GaMMES permettrait ainsi d’étu-
dier et surtout de quantifier les divers effets relatifs à la possible pénétration du gaz de schiste
en Europe. Cela serait possible si le modèle était calibré à une échelle plus large, incluant plus
de pays consommateurs (tels que la Pologne). Cette étude nous paraît constituer une extension
intéressante de notre modèle.

La substitution énergétique pourrait être élargie en considérant les énergies renouvelables ainsi
que l’énergie nucléaire. En effet, une calibration de notre approche de type systèmes dynamiques
incluant plus de types d’énergies constituerait également une extension importante de notre tra-
vail. Par ailleurs, la dépréciation anticipée des brûleurs dans le cas où le prix de marché associé
devient très élevé peut être prise en compte directement dans le cadre de notre modélisation.

Notre traitement de la problématique de sécurité d’approvisionnement peut également être
approfondi. Ainsi, l’introduction des risques de rupture à caractère politique, ainsi que la possi-
bilité de mieux cibler les victimes de la crise constituent une extension intéressante de notre travail.

Enfin, nous avons résolu le modèle stochastique S-GaMMES dans sa forme extensive, sans
chercher à utiliser des moyens numériques de réduction du temps de calcul. Par conséquent, une
extension du périmètre géographique ou temporel de notre étude conduirait à un problème de
très grande taille qu’il n’est pas aisé de résoudre directement. Ainsi, conviendrait-il d’employer
des méthodes spécifiques de résolution, utilisant par exemple la décomposition (décomposition de
Benders) ou la réduction de scénarii. L’application de ces techniques constituerait incontestable-
ment une augmentation importante des possibilités d’utilisation de notre étude.

Le travail accompli lors de cette thèse constitue en définitive une base de modélisation, d’ana-
lyse et de réflexion permettant une meilleure compréhension du fonctionnement du marché du gaz
naturel et ouvre la voie à un grand nombre d’extensions ou de raffinements.
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