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Summary

In the field of aeronautics, shape morphing has been used to identify those aircraft that un-
dergo certain geometrical changes to enhance or adapt to their mission profile. Different form
the classical solution the shape morphing required: distributed high-power density actuation,
structural mechanization, flexible skins, and control law development. In these scenario, model
able to capture the insertion of new generation sensor and actuator, and able to minimize the
computational cost become very interesting. This work try to affront two different aspect of the
problem. In the first part the following question has been exploited:for a given problem, ge-
ometry, loading, boundary condition etc... which is the most accurate model in term of results
fidelity with the lowest computational cost? Two different approaches have been used to give
an answer. The Best Plate Theory Diagram (BPTD) has been drawn. Trough the BPTD it is
possible, for a given problem, to identify those models with the lowest computational time and a
good results fidelity. An advanced mono-dimensional multi-field FEM model is presented in the
second part of the thesis. The model is able to capture the insertion of piezo-electric elements
in composite wing. It has been developed starting from the Carrera Unified Formulation and
from the electro-mechanical constitutive equation. Comparison with the bibliography have be
done in order to validate the results.





Sommario

Nel campo dell’aeronautica il termine shape morphing identifica quei velivoli in grado di ap-
portare determinati cambiamenti geometrici al fine di adattarsi a diversi profili di missione. Di-
versamente dalle soluzioni convenzionali la progettazione di velivoli shape morphing richiede :
un’attuazione distribuita, uno skin flessibile in grado di pemettere le deformazioni e delle leggi
di controllo. Divengono quindi di notevole interesse modelli in grado di cogliere l’inserzione di
attuatori e sensori di nuova generazione all’interno dell’ala, e di esibire al contempo un basto
costo computazionale. Nel lavoro presentato in questa tesi vengono trattati entrabi gli aspetti.
Nella prima parte si è andati a dare una risposta alla segunete domanda: per un dato problema,
geometria, condizioni di carico, etc..., qual è il modello più accurato, in termini di fedeltà dei
risultati, che presenta il minor costo computazionale? Il problema è stato affrontato attraverso
due differenti approcci, che hanno portato alla creazione della "Best Plate Theory Curve", at-
traverso la quale è possibile, per un dato problema, identificare il modello più idoneo in termini
di fedeltà dei risultati e di costo computazionale. Nella seconda parte del lavoro viene presen-
tato un modello mono-dimensionale multi-campo avanzato in grado di cogliere l’inserzione di
elementi piezo-elettrici in ali in materiale composito. Questo elemento è stato viluppato par-
tendo dalla Carrera Unified Formulation e dalle equazioni costitutive elettromeccaniche. Sono
state effettuate poi delle validazioni attraverso confronti con la bibliografia.
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Chapter 1

Smart Wing

1.1 Introduction
In the field of aeronautics, shape morphing has been used to identify those aircraft that undergo
certain geometrical changes to enhance or adapt to their mission profile. In spite of there is not a
clear definition for an enabling shape morphing, it is a general agreement that the conventional
hinged control surfaces or high lift device, shuch as flap or slat that provide discrete geometry
changes cannot be considered as morphing. No matter how one would choose to define the wing
morphing, Reich and Sanders (1) listed the major challenges of shape morphing aircraft design
to be: the requirement for distributed high-power density actuation, structural mechanization,
flexible skins, and control law development. In this chapter we focus our attention on adaptive
wing schemes of varying complexity including the adaptation of complete wing (airfoils), the
adaptation of individual component, such as variable-camber leading and trailing edge. A col-
lecting of articles relating to smart wing solution is presented to illustrate the state of art in this
field.

1.2 Adaptive Wing Technology
As it is possible to read in the Adaptive Structures - Engineering Application book (2), in the
framework of the synthesis of a shape-adaptable structural system, mechanical design deals
with the task of choosing the properties and distribution of load-carrying material and actuator
in order to fulfil:

◦ a set of deformability requirements specifying the geometrical changes which system
under consideration must be able to perform;

◦ a set of stiffness requirements which define the allowed deviations from the desired shape
under given loads;

◦ strength requirements which specify the load to be carried by the system without damage;

◦ activability reqirements which state that the desired deformation is achievable by loading
through the actuator system; and possibly
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Figure 1.1 Smart wing mechanism

◦ a set of further requirements - mostly coupled with another and related to possible payload
requirements - which define boundaries for the system’s weight and energy consumption.

Of course, mechanical design as definite above does not constitute a closed task since the exact
definition of the single requirements is not a priori aviable, but is somehow part of the unknowns
of the whole synthesis problem. For this reason, mechanical issues cover only a limited portion
of the complexity involved in the global design process (essential question like, for instance,
sensor and control design or energy reserve allocation are not considered in this context). Still,
the issue of mechanical design is highly representative, since it concerns component with a
strong impact on the overall system weight and therefore involves some crucial challenges of
shape-morphing flight. An example of shape-morphing complexity it can possible find in the
case of the classical shape adaptation problem: the realisation of aerofoils with changeable cam-
ber for the purpose of regulating lift (see Fig. 1.1). A substantial conflict occurs between the
deformability requirements, defining the change in camber which must be allowed by the air-
foil, and the stiffness requirement, which limit the shape changes under load. The conventional
solution based on an actuated flap implements an almost complete separation between the task
of producing the desired geometry changes and that of carrying loads. A rigid-body mechanism
(the flap and the fixed part of the airfoil, mutually connected by a hinge) guarantees unrestricted
deformability in one single degree of freedom; all the remaining degrees of freedom can then
be provided with sufficient load-carrying capabilities (strength and stiffness) without interacting
with the system’s deformability. In this way, the conflict between load-carrying capabilities and
deformability is restricted to the single degree of freedom of the rigid-body mechanism and can
be easily solved by providing the actuator with proper strength and (active or passive) stiffness.
By coupling a larger number of degrees of freedom and harmonising the contribution of active
and passive elements, alternative solution are possible. Such systems show typically a better
performance (in particular, smoother geometry changes and weight savings through load dis-
tribution) but are definitely more complex to design. Conciliating the conflicting requirements
of deformability, load-carrying capability and low weight is the dominant issue in the mechan-
ical design of shape-adaptable systems. While established technologies and disciplines which
successfully deal with the fulfilment of just two out of the three requirements are presently avail-
able, the simultaneous accomplishment of all three of them represents a real challenge. Filling
this gap is likely to keep busy a large number of researchers in the near future. Even though
the coupling with the actuator system can play an important role in this context, in particular
with regard to stiffness aspects, the above-addressed challenge concerns primarily the passive
part of the system. Let us now look at the diagram in Figure 1.2. The first "binary" discipline is
lightweight design, which covers a large spectrum of procedures, criteria and techniques for the
analysis and synthesis of structures with a high strength-to-weight ratio. Lightweight structures,
however, are typically provided with a low degree of deformability. This is a direct consequence
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Figure 1.2 Adaptive Structures Diagram

of the key principle of lightweight design, which tends to realise a stress state with mainly mem-
brane loading and to avoid bending and torsion loading of single components. Under certain
conditions, maximising stiffness is equiv-alent to minimising weight and this criterion is often
used as the basis of structural optimisation procedures. The second discipline which is capa-
ble of joining two of the three above-mentioned requirements is machine engineering, or, in
particular, the science of conventional mechanisms. They are highly deformable and able to
carry high loads, but far from being lightweight optimised. Finally, a third speciality deals with
the remaining couple of requirements: the science of compliant systems, i.e. systems designed
to reach a given level of deformability by exploiting structural strain. They offer an excellent
combination of deformability and low weight, but are limited, at the present state of the art,
in their load-carrying capability: systems with lumped compli-ance, provided with cut-outs or
other kinds of solid-state hinges, typically suffer from stress concentration effects in the com-
pliant regions, whereas systems with spread compliance are more difficult to control owing to
their low stiffness in a large number of degrees of freedom. Compliant systems will also be ad-
dressed later in more detail, since they are likely to provide the basis for the future development
of light, high-load, high-deformability systems. In the course of the history of aeronautics and
all the way till today, a large number of inventions were elaborated which aimed at realising
smooth shape changes as well as at increasing the number of controllable geometry degrees
of freedom on the basis of conventional mechanisms, but they generally turned out not to be
feasible. Still, the resulting patent literature offers an excellent insight into how significant this
issue has always been to aircraft engineers and which kinds of advantages were expected from
airfoils with enhanced geometry management. In the following paragraph we shall accordingly
discuss adaptive wing scheme of varying complexity. Emphasis will be placed on the possible
structural realization and penalties associate, we also consider the aerodinamic and load control
benefits.
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Figure 1.3 Chordwise and spanwise differential camber variation of Fowler flaps with an enhanced camber-
ing function.

1.2.1 Variable camber

Changing the airfoil camber is the most investigated approach of shape morphing. The airfoil
camber can be uniformly changed along the span in a similar manner to the rotation of the
ailerons. It is of special interest to achieve a chord-wise and span-wise differential camber
variation with one structural system providing a smooth contour having no additional gaps.
The camber variation concentrates on the trailing edge since under aerodynamic as well as
structural aspects this region has the highest efficiency. On civil transport aircraft the Fowler
flaps and ailerons are positioned in this region. Therefore, it is important to develop a cambering
system that on the one hand can be used to enhance the Fowler flaps by an additional cambering
function and on the other hand enables a complete substitution of an aileron. Fig. 1.3 shows
this principle for a Fowler flap with enhanced cambering. The cambering system should also be
constructed such that during its actuation the structural stiffness does not change. This ensures
that sudden changes in loading caused by a gust, for example, lead to failure. When the Fowler
flaps are enhanced by an additional cambering function they should still retain their primary
function as a high-lift device. If the ailerons are replaced with such a cambering system the
actuators have to be positioned inside the structure. In addition, it is important to be able to
adapt the profile contour to different types of aerodynamic and geometric requirements for the
median line. Considering the remarks made above, the following basic requirements can be
defined:

◦ the structural system has to be suitable for replacement and enhancement of a given flap
system;

◦ a chord wise and span-wise differential camber variation has to be achieved with one
structural system;

◦ a smooth contour having no additional gaps has to be provided;
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◦ the actuators have to be integrated into the flap structure;

◦ the profile contour has to be able to be adapted to different types of aerodynamic and
geometric requirements;

◦ the structural stiffness is not allowed to change during actuation.

Both chord-wise and span-wise differential camber variation are expected to have various effects
on aerodynamic and structural efficiency. The following improvements over fixed geometry
wings are expected:

◦ higher aerodynamic efficiency due to optimized lift/drag (L/D) ratio leads to an extended
cruise range and reduction in fuel consumption;

◦ improved operational flexibility by shifting the maximum L/D ratio to higher values;

◦ extended buffet boundary enlarges the operative range and reduces structural weight;

◦ reduction of wing root bending moment leads to a reduction of structural weight;

◦ increased stretch potential leads to a significant reduction of development costs.

Alternatively, gradual changes of the airfoil camber along the span can create controllable twist-
ing of the wing. The necessary camber change is pursued either by the reconfiguration of the
underlying structure (e.g. ribs) or the morphing of the wing skin. Here the following clas-
sification is used for the airfoil camber change methods: (a) using internal mechanisms, (b)
piezoelectric actuation, and (c) shape memory alloy actuation.

Camber change by using classical kinematics

During the 1980’s, the Flight Dynamics Laboratory conduced a flight demonstration program
called the Mission Adaptive Wing (MAW), in which a F-111 was retrofitted with wings whose
camber could be actively varied using hydraulic actuators (Smith et.al. (3), Powers et.al. (4),
and Thornton (5)). Using conventional rigid-link mechanisms and fibreglass flex-panels, adap-
tive wing geometry proved its aerodynamic superiority over conventional leading and trailing-
edge flaps. The flap system consisted of six independent trailing-edge flap segments (three per
wing) and two leading edge flap segments (one per wing) providing smooth, continuously vari-
able wing camber by using flexible fibreglass skins on the upper and sliding panels for the lower
surface.
MAW results : Drag polar optimizationFcruise/maneuver camber control
An extensive wind-tunnel and flight-test program has been performed with the MAW aircraft
(AFTI) to predict the aerodynamic performance benefits of the smooth-skin variable camber
wing. For the former, test conditions covered a Mach number range of M = 0.25 to 2.50 at
Reynolds numbers ranging from Re = 6e6 to 26e6/m. Configuration variables included wing
sweep, discrete variable-camber flap deflections and angle of attack. Adaptation implies here
that at any given lift coefficient there is an optimum camber setting that produces minimum
drag. The locus of combined variable-camber leading- and trailing-edge flap deflections pro-
viding minimum drag as function of lift constitutes the variable-camber drag polar as shown
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Figure 1.4 The AFT/F-111 in flight with flaps deflected.

Figure 1.5 MAW Technology
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(a) (b)

Figure 1.6 Polar

in Figure 1.6 (a): in the present example (M = 0.60), there is obviously only little improve-
ment due to variable camber at the lower lift coefficients, CL < 0.60; but noticeable gains at
higher lift. Also indicated in Figure 1.6 (a) are lift levels corresponding to the aircraft flight
envelope. Especially at manoeuvre conditions, i.e., conditions where the fixed-wing aircraft
would be completely stalled, considerable improvements are possible due to variable camber.
The improvements are also demonstrated by flight test results obtained for the variable-camber
(AFTI/F-111) and the fixed-wing (TACT) aircraft, respectively, at two Mach numbers, Figure
1.6 (b): appreciable drag reductions are possible due to the MAW at the higher lift coefficients.
It should be noted that the drag reduction in the cruise regime, i.e., CL = 0,40; M = 0,85; is
essentially due to the still more refined supercritical airfoil design of the AFTI wing, whereas
the large drag reduction at the higher lift coefficients is entirely due to the application of the
variable-camber concept.

MAW results : Maneuver-load control (MLC)
Manoeuvre-load control is the technique of changing the span-wise lift distribution of the wing
to move the center of lift inboard thus reducing the wing bending moments. This can be ac-
complished by changing the wing span-wise camber distribution, which the AFTI aircraft is
well able to do by corresponding deflections of the three independent trailing-edge maneuver
flaps provided on each wing, Fig. 1.7. Corresponding results obtained in actual flight tests
with the AFTI aircraft at M = 0,80 are presented in Fig. 1.7 for three flap settings, namely,
δLE=δTE (inboard and mid-span)/δTE (outboard)= 5/10/10, 5/10/4 and 5/10/ − 1. Here,
5/10/10 corresponds to the base-line (elliptic) configuration. One observes that the wing-root
bending moment, which is the most critical parameter in limiting wing loads, is considerably
reduced by the load redistribute on assuming the same equivalent load factor ’ge’, or, in other
words, the load factor can be increased by ∆ge = 1 for the same wing root bending moment no-
ticeably improving manoeuvrability. Such control can, of course, also be applied to a transport
aircraft to raise the buffet boundary or to eliminate gust loads.



22 chapter 1

Figure 1.7 Wing root bending moment

Unfortunately, drawbacks in the mechanical design resulted in weight penalties and overall
system complexity, significantly offsetting the aerodynamics and load control benefits and pro-
hibited further development.

Recent solutions
In more recent paper new mechanical devices, lighter than the previous, have been developed in
order to realize the adaptive wing. In the work of Hans Peter Monner (6), is described the design
of a flexible flap system for an adaptive wing to be used in civil transport aircraft that allows
both a chord-wise as well as span-wise differential variation of the wing camber for mission
duration. As shown in Fig. 1.8, the basic concept for the design of the flexible Fowler flaps con-
sists of replacing the stiff inflexible rib elements reaching into the flexible section (dark gray) by
active deformable elements with high stiffness. This means the skin fields must then be able to
glide on the flexible ribs. The basic design of the front fixed part (light gray) is changed as little
as possible to avoid a totally new design concept for the fixed flap section. The flexible ribs were
realized by combining separate plate like elements with revolute joints having the kinematics
described in figure 1.9 (a). Figure 1.9 (b) represents one rib of the flexible section. Each rib only
has to be actuated at one single point. The rotation of the driven element is transferred gradually
from element to element by the kinematics, and this way provides the wanted rib contour. The
kinematics will be described by referring to the first three elements (1 to 3): an actuator (7) is
supported by the fixed first element (1) which represents the continuation of the rib in the front
fixed section. The actuator (7) drives a second element (2) which is attached to the first element
(1) by a revolute joint (8). The second element (2), too, is connected to the third element (3)
by a revolute joint (9). In addition the third element (3) is connected to the first one (1) by a
prismatic joint (13). By putting the actuator (7) into motion the second element (2) rotates about
revolute joint (8). Due to revolute joint (9) the third element (3) rotates about revolute joint (8),
too, and is supported by the first element (1) in prismatic joint (13). This way the third element
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Figure 1.8 Load control by means of variable camber

Figure 1.9 Kinematics of active deformable rib.
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Figure 1.10 Kinematics of flexible rib with additional lever.

(3) is bent towards the second one (2) about revolute joint (9). These kinematics can be applied
to an unlimited number of elements. To provide functionality at least three elements must be
used. A variation of the individual length between the joints (e.g. the region between the joints
(8) and (9), (8) and (13) as well as (9) and (13)) allows a precise adjustment of the rib contour.
Figure 1.10 shows a modification of the active deformable rib with an additional lever (17) in
order to reduce structural loads and the driving force. The kinematics of the active deformable
rib remains the same with the exception that the actuator (7) is attached to lever (17) and not
to element (2). The lever is connected to the first element (1) by revolute joint (8) and with
element (4) by a prismatic joint (18). To provide functionality at least four elements must be
used. The design of the upper and lower skin is presented in figure. As shown in section A-A
the stringers are interrupted by a linear slide bearing. At the upper and lower part of the rib
elements, counterparts are attached which make up the inside part of the linear slide bearing.
These bearings allow a chord-wise displacement between the rib and the upper and lower skin.
Simultaneously, a lift-off of the upper and lower skin due to aerodynamic loads is prevented.
At the trailing edge the upper and lower skins are combined by a linear slide bearing allowing a
chord-wise translation here, too. In addition the trailing edge can easily be replaced if damaged.
As described, every rib element is connected to the upper and lower skin by linear slide bear-
ings. These are individually dimensioned and positioned on the skin according to the loading
that appears. For reasons of a better description of the kinematics the ribs are driven by a linear
actuator. Since with this type of activation every rib has to be driven by an individual actuator,
the number of them is quite high. Moreover, the total loading is introduced directly into the ac-
tuator requiring a powerful drive. By using a transmission beam together with a wedge system
the amount as well as the loading of the actuator can be reduced. In figure 1.12 this drive sys-
tem is presented with five ribs coupled to each other. The first rib element is provided with an
opening where the transmission beam and the wedges are positioned. Since the beam is driven
altogether by two actuators, less drives than ribs are needed. The actuators are mounted on the
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(a)

(b)

Figure 1.11 Design of upper and lower skin.

Figure 1.12 Drive system.
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Figure 1.13 A structurally optimized compliant gripper illustrating distributed compliance

rear spar. When they are activated, the transmission beam to which the wedges are attached
moves horizontally. This way cambered, an extension results in added camber. When actuated
in the opposite direction a span-wise differential cambering is provided.

Camber change by using compliant kinematics

Kota (7) has been active in the field of compliant mechanism. Saggere and Kota (8), (9) designed
a wing section with internal compliant system. A compliant mechanism is a class of mecha-
nism that relies on elastic deformation of its constituent elements to transmit motion and/or
force. These monolithic structures, an example is shown in Fig. 1.13, are in fact mechanisms
without any joints, neither conventional hinges nor flexural hinges. Many practical benefits can
be realized by exploiting compliance in engineering design. These include: reduced complexity,
zero backlash and wear, sub-micron accuracy, and embedded actuation/sensing. Mechanisms
that possess distributed compliance, as opposed to lumped compliance, are much more fatigue
resistant and easier to manufacture. Distributed compliant mechanisms derive their flexibility
due to the topology and shape of the material continuum rather than concentrated flexion at
few regions such as flexural hinges. Several computational approaches have been developed to
design compliant mechanisms for desired force-displacement characteristics and more recently
for generalized shape change. In addition, these novel mechanisms can be readily integrated
with both conventional and unconventional (smart materials) actuation schemes. Because of
these advantages, properly designed compliant mechanisms are well suited for shape morphing
applications such as variable geometry leading and trailing edge surfaces, engine inlets, and
other aircraft components. Their unitized construction makes their manufacture relatively sim-
ple, eliminating most complex assembly operations, and in many cases, the absence of joints
can offer additional weight savings. Furthermore, problems due to wear, backlash and lubrica-
tion are eliminated. Compliant mechanisms can be designed for desired stiffness with a variety
of materials including titanium, aluminium, steel, and composites. The primary challenge for
compliant shape morphing systems is to create an efficient structure that can distribute local ac-
tuation power to the surface of the airfoil to produce a specified shape change. This system must
provide the appropriate shape control over the surface while meeting stiffness, power, weight,
packaging, and survivability constraints. The work of Kota (8) highlights ongoing work to de-
sign novel compliant mechanisms that efficiently morph aircraft structures in order to exploit
aerodynamic benefits. It study to different types of morphing systems: (a) variable geometry
wing and (b) high-frequency vortex generators for active flow control. In this document has
been reported only the system (a). The purpose of the variable geometry leading edge was to
challenge compliant mechanism technology to create a camber morphing mechanism that can
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(a) Scheme (b) Prototype

Figure 1.14 The belt rib configuration for the A340 landing flap.

maintain structural integrity under severe loads required by modern fighter aircraft. The design
study essentially called for a retro-fit, or replacement, of an existing high performance fighter
leading edge flap. This approach was valid to compare baseline power and weight with a base-
line conventional flap design. It is desired to make the compliant mechanism flexible enough
to undergo intended deformation by expending minimum actuator energy; however, it should
be also be stiff enough to withstand the external air loads within structural and aeroelastic con-
straints. The optimized compliant structure embraces these conflicting design requirements.
Effectively, the compliant mechanism is 400 times stiffer relative to external aerodynamic pres-
sure loads (actuators locked) than it is for the actuators to cause intended deformation alone (no
pressure load). The optimization algorithm effectively develops a structure that has maximum
stiffness relative to external loads and minimum stiffness relative to intended deformation. This
ensures that the actuator is primarily working against the reaction forces created by the aerody-
namic loads while providing minimal effort deforming the structure. Whit the same technology
a variable geometry trailing edge flap has been developed. The purpose of the variable geome-
try trailing edge flap was to create a seamless, hingeless flap that could effectively change wing
camber and minimize drag over a wide lift range. In comparison, deflecting a conventional flap
to try and accomplish this produces flow separation and increased drag. In the works of Kota
((8), (9)) it is possible to read over the benefits in weight and aerodynamic.

Campanile and Sachau (10) investigated another compliant structure called "belt-rib". The
belt-rib frame was consisted of a closed shell (belt) reinforced by in-plane stiffeners (spokes).
The belt rib concept evolved at DLR in the framework of the Adaptive Wing project (ADIF)
with the purpose of reducing or eliminating the above mentioned disadvantages of conventional
mechanisms by using flexible components instead of moveable parts. The basic idea of the
belt-rib structural concept for airfoils is the replacement of the plate-fashioned rib in the con-
ventional box-girder wing construction with an optimised compliant planar mechanism (see
Fig. 1.14). The primary purpose is an active modification of the airfoil section; other modes
of deformation, like twisting or bending, can be attained as a secondary effect by exploiting
structural or aeroelastic coupling. The airfoil is provided with a closed skin of conventional
kind which is bonded to the outer surface of the belt ribs. The belt-rib construction preferably
does not include spars; the nose and trailing-edge skin panels are used as shear webs instead.
Alternative designs with a single rear spar and/or a compliant fore spar are possible options. A
belt-rib airfoil segment Fig. 1.15 (a) is exemplarily shown in the next figure, together with the
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(a) (b)

Figure 1.15 Belt-rib airfoil segment

corresponding set of belt ribs Fig. 1.15 (b). The belt-rib airfoil structure is conceived to retain
most of the structural qualities of a conventional, fixed-shape wing construction while allowing
a substantial degree of deformability. It is devised as a continuous, fully compliance-based,
shape-adaptable system without sliding parts. In its basic layout, the belt-rib airfoil is a com-
pliant system of mixed kind. The skin and the outer shell of the ribs (belt) are provided with
distributed compliance; the spokes, which are responsible for stiffening the ribs in their plane,
are designed as rigid elements; finally the connections between spokes and belt are realized as
flexural hinges (lumped compliance). Alternative design options with entirely distributed com-
pliance are conceivable as well. The spokes’ configuration is optimised to be compliant to a
previously chosen deformation mode, which somehow represents the kinematics of the belt rib
as a mechanism. The deformation mode defines the target shape change of the airfoil section
but for a single parameter, which can be controlled by a proper actuator. For deflections which
are to conform to the deformation mode the belt rib shows virtually the same stiffness as the
sole belt, whereas the stiffness related to other deformation components is comparable with that
of a conventional plate rib. The belt rib’s kinematics is freely configurable; the only limitation
which applies to the choice of the deformation mode is the inextensibility condition: to avoid
a membrane stress state during activation, only deflection patterns with constant arc length are
allowed. The optimisation of the spokes’ layout is performed on the basis of a modal procedure
specially developed for this purpose. The restriction of the belt-rib’s kinematics to virtually one
mode (or to a small number of modes, if the above-mentioned layout optimisation is extended
to more than one deformation mode) allows a broad choice of options for actuation. Linear
actuators obliquely connecting one point on the upper side of the belt with one point on its
lower side (see Figure) represent perhaps the simplest option. If externally activated tendons
(e.g. Bowden cables) or shape-memory alloys are used, a truss configuration allows working
only with tension actuator forces. Alternatively, active material can be embedded into the belt,
which can in this way be directly activated in a bending mode. A peculiar characteristic of
the belt-rib design philosophy is the absence of a general claim for maximum compliance; on
the contrary, stiffness is intentionally kept over a prescribed bound, usually by acting on the
belt design. By choosing a higher bending stiffness of the belt, the system’s structural redun-
dancy can be enhanced and the forces acting on the actuator in the presence of external loads
decreased. Furthermore, a stiffer belt guarantees contour smoothness and reduces undesired
deflections under load. The belt-rib interfaces to the rest of the airfoil construction essentially
like a conventional rib. The airfoil skin is bonded to the rib and follows its deformation pattern
while keeping a closed contour.
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Camber change by using bi-stable laminate composite structure

Bistable or multi-stable structures are good candidates to be used as morphing structures be-
cause of their ability to remain in natural equilibrium after a shape change occurs. One can
attuate such structures form one sable shape to another using device such as piezoceramic,
shape memory alloy or conventional actuators. Although multi-stability can be achieved with
the traditional isotropic materials, for morphing aerospace structures, fibre-reinforced laminated
composites seem to be better suited because of their superior mechanical properties. Moreover,
these laminated composites allow one to design their mechanical properties for a particular ap-
plication by tailoring their laminate configuration. A non-symmetric laminated composite plate
can take multiple cylindrical shapes when cooled from an elevated temperature to the room
temperature. This structure can snap-through from one cylindrical shape to another by applying
moments along the opposite edges of the laminate. The bi-stability phenomenon is a coupling
between the residual stresses induced by cooling and the geometric non-linearities given by the
large out-of-plane deflections that appear within the structure. Diaconu et al., (11) have con-
sidered the use of bi-stable plates to provide the necessary deformations to alter the camber. A
square bi-stable composite plate was inserted into the airfoil section along the chord (see Fig
1.16 (a)). The leading edge side of the bi-stable composite plate was clamped to the airfoil at its
spar connection. On the other side, the trailing edge of the plate is hinged to the airfoil surface
in order to allow relative movement of the skin during actuation. The top skin is allowed to
slide over the bottom skin during actuation. By actuating the bi-stable plate, the airfoil section
is morphed between two different stable shapes (see Fig. 1.16 (b)). The transition between the
two stable configurations in the presence of applied load was not discussed in their paper.

1.2.2 Complete airfoil adaptation

The most complex adaptation to changing flight conditions involves adjusting the entire wing
geometry or changing the air foil section geometry in response to a change in lift coefficient, for
instance, due to fuel-burn, or a scheduled or inadvertent change in cruise Mach number (Fig.
1.17). Varying the airfoil geometry can be accomplished by a set of discrete actuators capable
of moving the surface while paying attention to keep the geometry changes or surface deflec-
tions small so as not to overstress the surface skin and avoid interfering with the landing/take-off
high-lift devices. In addition, it is desired to utilize a minimum number of actuators to facil-
itate surface changes and to keep the weight of the active control devices, hence installation
penalties, low. Several researchers have explored the ways to alter the aerodynamic properties
of the wing by the reshaping of the airfoil profile (without significant change of its camber),
Table 1.1. To do so the upper and/or lower camber of the airfoil is changed without major
changes of the mean camber line. Variable length trusses were examined by Austin et al. (12)
to reshape the airfoil. They attached linear displacement actuators inside the wing section in a
diagonal manner (Fig. 1.18). The airfoil shape could therefore be modified by the expansion or
contraction of the actuators. They constructed a model of an adaptive rib with 14 mechanical
ball-screw actuators to demonstrate their shape-control concept. A theoretical model was de-
veloped, and validated, which could be implemented to determine the optimal airfoil shape for
various flight conditions. Joo and Sanders (13) outlined an approach to change the airfoil shape
by connecting internal mechanisms to a compliant skin material. Their method could be used
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(a)

(b)

Figure 1.16 Stable shapes for camber change of airfoil section.

Figure 1.17 Airfoil adaptation.

Figure 1.18 Mechanisms
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Table 1.1 Reshaping of airfoil profile studies.

Author Morphed Geometry Actuator Skin Prototype Wind Tunnel Test Flight test
Austin et al. (12) Airfoil Conventional Flexible y n n
Joo and Sanders (13) Airfoil Conventional Flexible y n n
Strelec et al. (14) Airfoil SMA Flexible y n n
Dong et al. (15) Airfoil SMA Flexible y n n
Georges et al. (16) Airfoil SMA Flexible n n n
Pinkerton et al. (17) Airfoil PZT Flexible y y n

to find appropriate compliant structures capable of achieving target profile shapes. To do so,
they synthesized a mechanism that could be reconfigured to meet a set of target profile shapes
while keeping the actuator loads under a certain limit. The patent database and aircraft design
archives contain many similar airfoil adjustment concepts which require conventional actuators.
Such mechanical systems in general result in significant weight penalty and are therefore not
considered in this paper any further. The suitability of SMA (Shaper Memory Alloy) actuation
for morphing of aircraft wing has been first demonstrated by the designs that changed the airfoil
profile. A prominent sample is the design by Strelec et al. (14). They attached SMA wire ac-
tuators to points at the inside of an airfoil. By the actuation of the SMA wires, the airfoil could
be reshaped. They developed an optimization method to determine the proper placement of the
SMA wire actuators within the wing. The results from the structural, thermal, and aerodynamic
analysis could be put into their global optimization method to find the best configuration for the
SMA wires placement. A prototype of a reconfigurable wing was fabricated by them to assess
the predicted structural and aerodynamic responses for optimality. Wind tunnel tests indicated
that an increase in the lift is feasible for a given flow velocity and angle of attack by activating
the SMA wire actuators. In an alternate approach Dong et al. (15) placed SMA springs between
the wing skin and its supporting wing-box. The wing-box in their design consisted of rigid steel
ribs and spars. The covering skin was allowed to slide over a cushion at the leading edge spar.
The resizing of the SMA spring length upon heating and cooling could alter the wing thickness.
In another concept developed by Georges et al. (16), SMA linear actuators were connected to
a flexible skin through a cam based transmission system. Contraction of the SMA wire upon
heating could rotate the cam and transfer the displacement of the SMA wire to a flexible skin
by means of a crank. The flexible structure of the morphing wing could create the biasing force
which is necessary for the reversible actuation of the compliant SMA system. Although they
did not fabricate a prototype of an actuated wing, they examined the performance properties of
SMA actuators. Pinkerton et al. (17) used an out-of-plane piezoelectric actuator (PZT), called
thin layer composite-unimorph ferroelectric driver and sensor (THUNDER) (18), to reshape
the airfoil. One end of the actuator at the trailing edge side was fixed to the airfoil to permit
relatively free expansion and contraction under an applied voltage. Out of plane deformations
of up to 2.5 mm was achieved for a sub-scale 125 mm long airfoil at 400 V. After testing for
two weeks in the wind tunnel, the overall displacement performance of the THUNDER wafer
began to degrade, noticeably.
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1.2.3 Actuation systems

In this paragraph will be analysed only the new generation actuation systems, piezoeletric mate-
rials and shape memory alloy, that allowed a reduction of weight respect the classical actuation
systems. The reduction of the actuation system weight is very important in the field of smart
wing. In fact the need for a distributed actuation system requires a larger number of actuators
respect the conventional control surface. In the following paragraphs will be analysed different
works which dealing about piezoelectric and SMA actuation systems.

Piezoelectric actuation

Wang et al. (19) report that PZT actuation was considered for the Smart Wing 2 program by
DARPA for high-rate actuation of hingeless control surfaces. The concept relied on the bending
moment distribution by means of piezoelectric stacks. The stacks were mounted locally between
two reacting "vertebrae" which provided the necessary arm to convert the linear extension of the
stack into local moments. While this concept initially seemed promising, it was quickly found to
be inappropriate because the targeted deflection was unachievable with the small induced strain
of the best known PZT stacks. Although using mechanical amplifiers with multiple levers were
exploited to address the limited stroke of the PZT actuators, such concepts were later discarded
because of the space limitation and the high flexural stresses at the mechanical amplification
linkage. They also considered using fluidic amplifiers, but eventually the PZT-based designs
were not pursued in the Smart Wing program. In another effort, Vos et al. (20) investigated
the use of PZT to deform the center plate of a prototype wing. Their approach was different
from the Smart Wing program in that they used stretchable skin to enhance the deformations.
The PZT actuators in their design were used to deform a post-buckled plate (PBP). The PBP
actuator consisted of two conventional piezoelectric sheets bonded to either side of a structurally
stiff center plate. Asymmetrical electrical potential was applied to the two piezoelectric sheets
to expand one and contract the other to cause the center plate to bend. They achieved trailing-
edge deflections of +/- 3.1. Wind tunnel and flight tests showed that the post-buckled pre-
compressed morphing wing increased the roll control authority of a UAV (with 1.4 m span),
and also reduced power consumption. Lim et al. (21) used lightweight PZT composite actuators
called LIPCA to deform the trailing edge of an airfoil section. The LIPCA actuators in their
design were embedded between three glass/epoxy and graphite/epoxy layers in a non-symmetric
stacking sequence. Two models were made. In the first, only the top layer was active, while
for the second design both top and bottom layers were active. They achieved 5 of trailing
edge deformation at 300 V input at load-free condition. The effect of out-of-plane aerodynamic
forces on the trailing edge should have been investigated for any shape morphing application.
Heinze and Karpel (22) also explored the application of a Lead Zirconate Titanate biomorph
PZT plate to rotate a tab for aeroelastic positioning of a trailing edge flap. The tab occupied
the rear 25% of a free-floating trailing edge flap. The actuator mechanism was fixed to a frame
inside the flap. Voltage excitation of the bi-morph actuator resulted in the vertical displacement
of the actuator tip, located halfway between the flap hinge and the tab axis, leading to the
rotation of the tab. Flap deflection of 4.6 was obtained by a −2.5 tab rotation.
The research demonstrated the feasibility of piezoelectric materials for aeroelastic shape control
of control surfaces.
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Figure 1.19 Shape morphing aero control surface in two configurations.

Shape memory alloy actuation

Shape memory alloy was also a candidate actuating material for the DARPA Smart Wing pro-
gram (Wang et al. (19)). Two SMA linear actuators were connected to tip of a flexible trailing
edge in their concept. The other ends were connected to the top and bottom of the trailing
edge spar in an antagonistic way. The contraction of the actuators could bend the trailing edge
respectively. Wang reports that the gained deformations were not satisfactory because the abil-
ity of the actuator to displace the trailing edge tip was reduced as a result of wasting of the
shape memory recovery force due to the undesired in-plane compression of the center sheet. To
address the above issue, Sofla et al. (23) (24) developed a series of SMA-actuated flexural struc-
tures which could be used to deform wing sections. Their actuated structures were based on a
concept called antagonistic flexural unit cell (AFC) in which a pair of one-way SMA actuators
were placed at either side of a highly flexible unit core structure (with large in-plane stiffness).
The contraction of one SMA actuator upon heating, results in the extension of the opposing
SMA actuator mechanically. The contraction by heating of the now-extended actuator, later in
the cycle, reverses the actuation. High authority shape morphing beams can be made by the
linear replication of the AFCs. Such actuated beams (Elzey et. al. (25) , (26)) can be used in the
making of reconfigurable wing boxes for shape morphing wing structures. Fig. 1.19 shows a
wing section prototype capable of undergoing camber changes (Elzey et. al. (26)). Although the
slow cooling rate of the SMA actuation is not appropriate for the flight control applications, the
achievable aerodynamic changes are still suitable for in-flight mission adaptation of the wing.
The AFC based actuated structures are attractive for wing morphing applications because: (1)
the distributed SMA actuators carry aerodynamic load and therefore reduce the weight penalty,
and (2) the new wing shapes after the cooling of each SMA actuator are retained without re-
quiring power, which can eventually result in saving fuel and increasing the aircraft endurance.
Berton (27) also used SMA wire in an antagonistic manner to rotate a flap, but the wires were
connected in a linear set up (different from the AFC concept). One end of the two wires in their
prototype was connected together with a simple joint and the other ends were fixed inside the
wing-box. Contraction of one wire due to the heating displaced the joint between the two wires.
This displacement was then transmitted to the trailing edge by means of a linkage. The flap
could rotate 45 for the overall length of SMA wires of 1200 mm. A major disadvantage of the
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system is the relative complexity of the transmission mechanism which was consisted of several
linkages. In a compliant approach for SMA actuation, Yang et al. (28) attached the SMA wires
to the bottom skin of a wing. Contraction by heating of the SMA actuators could deform the
wing. The wing could restore its initial shape upon cooling of the SMA. The main disadvantage
of the compliant SMA actuation is that the new shape is retained until the temperature of the
SMA wire is maintained above its Martensite start transformation temperature. The compliant
SMA actuation method is not therefore suitable for long term applications. Liu et al. (29) also
used a SMA wire to deform a compliant wing section, in which the top skin was fixed to the
spar while the bottom skin could slide into the spar to accommodate the rotation of the trailing
edge. In their design one end of the SMA wire was fixed in the wing-box, and the other end was
attached to a point next to the trailing edge. The trailing edge could therefore be rotated by the
contraction of the SMA wire. The reliance of their concept on the compliance of the top skin to
return the trailing edge to the original shape is questionable.

1.3 Present work objectives and outline
The field of shape morphing aircraft has attracted the attention of hundreds of research groups
during the past century. Although many interesting concepts have been synthesized, only a
handful of such reconfigurable planes have been ever produced (all of them supersonic and con-
sisted of pivoting wings). Although several conceptual designs of small or low speed aircraft
has made it to the wind tunnel testing stage, only very limited number of such shape morphing
prototypes have ever been fabricated or flight tested. The explosive growth of satellite services
during the past few years has made the UAVs the technology of choice for many routine ap-
plications such as border patrol, environmental monitoring, meteorology, military operations
and search and rescue. In addition, the recent advances in smart materials research includ-
ing the developments in the actuation technology, constitutive law and modelling, optimization
and control, and failure prediction, demands more purposeful steps in the progress of variable
geometry small aircraft. In general, any successful wing morphing scenario must overcome
the weight penalty due to the added actuation systems. Compared to supersonic aircraft, the
small or low speed planes require more dramatic wing variations for a noticeable and practical
change in their aerodynamic properties. This points us to the crux of the development of low
speed/small shape morphing planes which is the large weight penalty over gross weight ratio.
To address the above challenge, any successful conceptual design for shape morphing of low
speed/small aircraft should:
◦ Undergo large geometry changes.

◦ Use smart materials for actuation.

◦ Use the smart material actuators for supporting part of the aerodynamic loads.

◦ Have integrated and distributed actuators to avoid transmission mechanisms.

◦ Use advanced light-weight composites for the fixed structure and the skin.
This work is aimed to the development of a multifield formulation based on higher-order struc-
tural models. CUF 1D models are exploited for the structural modeling.
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Reduced Finite models

2.1 Introduction
Laminated shell/plate structures such as traditional composite and sandwich panels are found
frequently in aerospace vehicles applications. High transverse shear and normal deformabil-
ity as well as discontinuity of physical properties make the use of structural models difficult.
Accurate stress and strain fields evaluation demand the development of ad hoc theories for the
analysis of these non traditional structures. So-called C0

z requirements (Carrera (30)) could
be considered for the development of appropriate theories for layered structures. Many excel-
lent review papers are available on multilayered structure modelling, which refer to the fol-
lowing relevant articles and books, Lekhnitskii (31), Ambartsumian (32–35), Grigolyuk and
Kogan (36), Leissa (37), Librescu and Reddy (38), Grigoliuk and Kulikov(39), Kapania and
Raciti(40), Kapania (41), Vasiliev and Lure(42), Noor and Burton (43; 44), Noor et al. (45),
Jemlelita (46), Reddy and Robbins(47), Lure and Shumova(48), Grigorenko (49), Grigorenko
and Vasilenko(50), Altenbach (51), Carrera (30; 52), Reddy (53),Qatu (54). The above articles
and monographs cover the state of the art of layered theories and computational methods for
plates and shells, including mixed theories and Zig-Zag models. In most of the applications
the constituent layer show in-plane orthotropic behavior whose orientation in each layer is a
result of an optimization process (the so-called tailoring design of laminated composites). Fur-
thermore, the layered construction introduces, by definition, transverse anisotropy. As a result
the transverse anisotropy is always accomplished by in-plane anisotropic behaviour. In-plane
and out-of-plane anisotropy introduce further complications due to the solution of governing
equations related to given structural problems involving laminates (bending, vibration, buck-
ling, dynamic response etc). Closed form solutions are available only in very few cases and
the use of computational methods such as Finite Element Methods (FEM) becomes mandatory
in practical problems. A large amount of two-dimensional models and finite element imple-
mentation can be obtained by combining the available laminated theories (see the reviews in
Kapania and Raciti(40), Kapania (41), Noor and Burton (43; 44), Noor and Burton and Bert
(45) and Carrera (55)). In the case of layered structures the so-called Zig-Zag (ZZ) theories
are particularly noteworthy since they include the ZZ effect through-the-thickness variation and
the Interlaminar Continuity (IC) of transverse shear and normal stresses within the equivalent
single layer approach. A historical overview(52) has established that the ZZ theories can be

35
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grouped as: Lekhnitskii’s Multilayered Theories (LMTs); Ambartsumian’s Multilayered Theo-
ries (AMTs) and Reissner’s Multilayered Theories (RMTs).
Refined plate theories offer significant advantages in terms of accuracy of the solution and de-
tection of non-classical effects. The drawback of these theories is that a higher computational
cost is incurred because of the presence of a large number of displacement variables. Such
an increase could become prohibitive in the case of the application of computational methods
such as the Finite Element Method. To control the behaviour of an actuated wing are necessary
model with a low computational time. In fact the computational time must be lower than the
characteristic time of the controlled phenomenon.
The smart wing field required to giving an answer to the following question: for a given problem
(geometry, loading, boundary conditions, lamination lay-out) what is the most accurate theory
in terms of a fixed accuracy with the lowest computational time?
An effective comparison of resulting theories could be done if and only if it would a possibility
to ’run’ the various theories for an assigned problem (materials, geometry, lamination lay-out,
boundary conditions) at the same time. For this purpose the Carrera has proposed in the last
decade the Carrera Unified Formulation (CUF) (56),(57),(58), with some finite element appli-
cations provided in (59), (60) and (55). CUF permits the formulation/comparison of Equivalent
Single Layer or Layer-Wise, linear, parabolic and higher expansion orders. Classical theories
such as CLT and FSDT can be retrieved as particular cases. In their work, Carrera and Petrolo
(61) analysed the effect of various parameters like geometry, lamination, material, boundary and
loading conditions on the accuracy of a given theory. The focus was on closed form solutions
and effects and orthotropic simply supported plates loaded by harmonic distribution of trans-
verse loading. In their work the contribution of each term to the accuracy of the solution has
been evaluated, introducing the so-called mixed axiomatic/asymptotic method, which is able to
recognize the effectiveness of each displacement variable of an arbitrary refined plate theory.
It can be stated that the choice of the plate model which suits the accuracy requirements for a
given problem is dominated by :

1. the length-to-thickness ratio

2. the orthotropic ratio

3. the lamination sequence.

It has also been found that each displacement/stress component would require its own plate
model (which differs according to the change in outputs) to obtain exact results. Moreover, the
accuracy of the solution also depends on the thickness coordinate z. From the work of Carrera
and Petrolo (61) following points need to be mentioned:

◦ The number of retained variables is very closely related to the geometrical/mechanical
configuration of the considered problem.

◦ Remarkable benefits, in terms of total amount of problem variables, are obtained for thin
plates or for symmetrical laminations.

◦ The use of full models is mandatory when a complete set of results is needed.
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CUF has shown to be well able to deal with a method that could be stated as a mixed as-
siomatic/asymptotic structural analysis of different plate structures. Its usage has made it possi-
ble to consider the plate theory as well as the structural configuration as free parameters of the
analysis. Two main benefits can be obtained using CUF:

◦ It permits the accuracy of each problem variable to be evaluated by comparing the re-
sults with more detailed analyses (also provided by CUF); no mathematical/variational
techniques are needed as in the case of asymptotic-type analyses.

◦ It offers the possibility of considering the accuracy of the results as an input, whereas
the output is represented by the set of displacement variables which are able to fulfill the
requirement.

Starting from the work of Carrera and Petrolo (61) a more general method able to evaluate the
effectiveness of each terms is developed. In order to evaluate to study more configuration than
Carrera and Petrolo (61) the Finite Element Method is used. As in the Carrera and Petrolo (61)
work only plate theories with generalized displacement variables are considered. These theories
can be divided on the basis of the variables description:

1. Layer-Wise Models (LWMs) in which the number of unknown variable depend upon the
number of layers.

2. Equivalent Single Layer Models (ESLMs) in which a laminate plate is reduced to a single
lamina of "equivalent" characteristics.

These theories can further be classified according to the expansion adopted for the unknown
displacement variables in the plate/layer thickness directions:

1. classical models with linear expansion such as Classical lamination theories CLT and First
order shear deformation theories FSDT, based on Kirchhoff (62) and Reissner-Mindlin
(63), (64) assumptions, respectively.

2. Refined models with higher order expansions of the displacement components on the
reference surface.

Examples of these theories can be found in the previously mentioned review works.

2.2 Geometry and material arrays
The coordinate reference frame is shown in Fig. 4.9, where x and y are the in-plane coordinates
while z is the thickness coordinate. The displacement vector, uk, of a single layer is defined as:

uk(x, y, z) =
�

uk
x uk

y uk
z

�T
(2.1)

The superscript "T" represents the transpose operator. Stress and strain components are grouped
as follows:
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Figure 2.1 Plate geometry

where p indicates the in-plane components and n the out-of-plane components. Linear strain-
displacement relations are defined as:

�p
k = Dpu

k

�n
k = Dnu

k = (DnΩ + Dnz) u
k (2.3)

where:
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The stress components in the material reference coordinates are obtained by the constitutive
law:

σm

k = C�m
k (2.5)

where C, σm and �m are written in the material coordinates (see Fig. 2.2) and C is defined as
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For every layer a rotation matrix is obtained as

T k =


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cos2 θ sin2 θ − sin 2θ 0 0 0
sin2 θ cos2 θ sin 2θ 0 0 0
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(2.8)

where θ is the angle between the 1-coordinate and the x-coordinate. It is possible to write the
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Figure 2.2 Material coordinates and plate coordinates.

stresses and the strains in the plate coordinates

σ = Tσm � = T
T�m (2.9)

Using equation 2.9, equation 2.5 becomes

σ = TCT
T� (2.10)

Denoting C̃ as
C̃ = TCT

T (2.11)

it is possible to rewrite the constitutive law in plate coordinates as

σ = C̃� (2.12)

or (according to Eq. 3.19),

σk
p = C̃

k
pp�

k
p + C̃

k
pn�

k
n

σk
n = C̃

k
np�

k
p + C̃

k
nn�

k
n

(2.13)
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The material matrices can be grouped as

C̃
k
pp =




C̃11 C̃12 C̃16

C̃21 C̃22 C̃26

C̃61 C̃62 C̃66




k

C̃
k
nn =




C̃55 C̃54 0
C̃45 C̃44 0
0 0 C̃33




k

C̃
k
pn = C̃

kT
np =




0 0 C̃13

0 0 C̃23

0 0 C̃36




k

(2.14)

For the sake of brevity, the expression of the coefficient C̃k
i j are not reported here, but can be

found in the books by Tsai (65)

2.3 Carrera Unified Formulation - 2D Formulation
In the framework of the Carrera Unified Formulation, the displacement components uk

x, uk
y and

uk
z of the k-layers (the total number of layers is indicated by Nl) are postulated, in the z-direction,

according to the expansion

u
k
x = Ftu

k
xt + Fru

k
xr + Fbu

k
xb

u
k
y = Ftu

k
yt + Fru

k
yr + Fbu

k
yb r = 2, 3, ...,N

u
k
z = Ftu

k
zt + Fru

k
zr + Fbu

k
zb

(2.15)

The subscript t and b denote values related to the top and bottom layer surfaces, respectively.
Ft,Fr, and Fb are base functions of z. Through the model (2.15) the continuity of the displace-
ment can be imposed to the layer interfaces. Equation (2.15) can be written in a compact manner
as

u
k = Ftu

k
t + Fru

k
r + Fbu

k
b = Fτuk

τ τ = t, r, b; r = 2, 3,N (2.16)

where the components of u
k
τ are

u
k
t =




uk
xt

uk
yt

uk
zt




u
k
r =




uk
xr

uk
yr

uk
zr




u
k
b =




uk
xb

uk
yb

uk
zb




(2.17)

From (2.15) any-order displacement fields, Layer Wise (LW) and Equivalent Single Layer
(ESL), can be adopted. Imposing the conditions

uk
xt = ux1 uk

xr = uxr uk
xb = uxN+1 Ft = 1

uk
yt = uy1 uk

yr = uyr uk
yb = uyN+1 Fr = zr−1

uk
zt = uz1 uk

zr = uzr uk
zb = uzN+1 Fb = zN

(2.18)

and discarding k it is possible to obtain an ESL displacement field. For example if N = 4 it is
possible to obtain the following displacement field

ux = ux1 + zux2 + z2ux3 + z3ux4 + z4ux5

uy = uy1 + zuy2 + z2uy3 + z3uy4 + z4uy5

uz = uz1 + zuz2 + z2uz3 + z3uz4 + z4uz5

(2.19)
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Classical plate theories can also be obtained. The Reissner-Mindlin plate model approximation
(see Reissner and Mindlin (63; 64)), also known as First Order Shear Deformation Theory,
FSDT, in the case of laminates, requires two conditions: 1) First-order approximation kinematic
fields, 2) the displacement component uz has to be constant above the cross-section, i.e. uz2 = 0.
The resultant displacement model is:

ux = ux1 + z ux2

uy = uy1 + z uy2

uz = uz1

(2.20)

The Kirchhoff-type approximation (see Kirchhoff (62)), also known as Classical Laminate The-
ory or CLT, can also be obtained using a penalty technique for the shear correction factor. First-
order models require the use of reduced material stiffness coefficients to correct the thickness
locking (see Carrera and Brischetto (66; 67)). Higher-order theories from open literature can
also be obtained via CUF. Some of these models are considered in this paper for comparison
purposes. They are obtained via CUF. According to Pandya (see Pandya (68)), the displacement
components are given by:

ux = ux1 + z ux2 + z2 ux3 + z3 ux4

uy = uy1 + z uy2 + z2 uy3 + z3 uy4

uz = uz1

(2.21)

Kant (see Kant (69)) also expanded the displacement component uz(x, y, z) in Taylor’s series of
the thickness coordinate (hereinafter referred to as Kant-1):

ux = ux1 + z ux2 + z2 ux3 + z3 ux4

uy = uy1 + z uy2 + z2 uy3 + z3 uy4

uz = uz1 + z uz2 + z2 uz3 + z3 uz4

(2.22)

A further theory by Kant (see Kant (70)) is considered in this work (hereinafter referred to as
Kant-2):

ux = z ux2 + z3 ux4

uy = z uy2 + z3 uy4

uz = uz1 + z2 uz3

(2.23)

It is important to underline that CUF allows us to choose the higher-order terms to be included
with no restrictions. For instance, one can consider a plate theory where incomplete fourth-order
expansions are adopted:

ux = +z ux2 + +z3 ux4 + z4 ux5

uy = +z uy2 + z2 uy3 + +z4 uy5

uz = uz1 + z uz2 + z2 uz3 + +z4 uz5

(2.24)
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2.4 FE Governing Equations
The shape functions, Ni, and the nodal displacement vector, qk

τi, are introduced to rewrite the
displacement vector uk:

qk
τi =
�
qk

uxτi
qk

uyτi
qk

uzτi

�T
(2.25)

uk = NiFτqk (2.26)

For the sake of brevity, the shape functions are not reported here. The four node plate element
with an assumed shear strain field concept of MITC4 type (see Bathe and Dvorkin (71)) is
adopted in this paper. The extension of the MITC4 element to the Unified Formulation has
already been discussed in Carrera et al.(72).
Upon substitution of Eq. (2.26) in Eq. (2.3) it is possible to obtain:

�kp = FτDp(NiI)qk
τi

�kn = FτDnΩ(NiI)qk
τi + Fτ,zNiqk

τi
(2.27)

where I stands for the identity matrix. The element stiffness matrix and the vector of exter-
nal loadings, which are consistent with the model, are obtained via the Principle of Virtual
Displacements:

δLk
int =

�

V

�
δ�kp

T
σk

p + δ�
k
n

T
σk

n

�
dV = δLk

ext (2.28)

where Lk
int stands for the strain energy, and Lk

ext is the work of the external loadings. δ stands
for the virtual variation. The virtual variation of the strain energy is rewritten in compact form
using Eqs. (2.3), (2.13) and (2.26) as

δLk
int = δqk

τi
T Kkτsi jqk

s j (2.29)

where Ki jτs is the stiffness matrix in the form of the fundamental nuclei. The fundamental nuclei
form allows us to obtain finite element matrices in a form that does not depend on the plate
theory adopted,(see Carrera (56),(57),(58)). The following notation is introduced to indicate
the line integrals along the thickness direction:
�
Zkτs

pp ,Zkτs
pn ,Zkτs

np ,Zkτs
nn

�
=
�
C̃k

pp, C̃k
pn, C̃k

np, C̃k
nn

�
Eτs

�
Zkτs,z

pn ,Z
kτs,z
nn ,Z

kτ,z s
np ,Z

kτ,z s
nn ,Z

kτ,z s,z
nn

�
=
�
C̃k

pnEτs,z , C̃k
nnEτs,z , C̃k

npEτ,z s, C̃k
nnEτ,z s, C̃k

nnEτ,z s,z

�

�
Eτs, Eτs,z , Eτ,z s, Eτ,z s,z

�
=

�

Ak

�
FτFs, FτFs,z , Fτ,z Fs, Fτ,z Fs,z

�
dz

(2.30)

The compact expression of the stiffness matrix is then outlined:

Kkτsi j = �DT
p (NiI)

�
Zkτs

pp Dp

�
NjI
�
+ Zkτs

pn DnΩ

�
NjI
�
+ Zkτs,z

pn Nj

�
+

+DT
nΩ (NiI)

�
Zkτs

np Dp

�
NjI
�
+ Zkτs

nn DnΩ

�
NjI
�
+ Zkτs,z

nn Nj

�
+

+Ni

�
Zkτ,z s

np Dp

�
NjI
�
+ Zkτ,z s

nn DnΩ

�
NjI
�
+ Zkτ,z s,z

nn Nj

�
�Ω

(2.31)
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The symbols � ...�Ω were introduced to denote integrals on Ωe. The matrix Kτsi j has 3 × 3
components and the 9 terms of Kτsi j are:

Kkτsi j
xx = Z̃kτs

pp11 � Ni,xNj,x �Ω +Z̃kτs
pp16 � Ni,yNj,x �Ω +Z̃kτs

pp16 � Ni,xN j,y �Ω +

+Z̃kτs
pp66 � Ni,yNj,y �Ω +Z̃kτ,z s,z

nn55 � NiNj�Ω

Kkτsi j
xy = Z̃kτs

pp12 � Ni,xNj,y �Ω +Z̃kτs
pp26 � Ni,yN j,y �Ω +Z̃kτs

pp16 � Ni,xN j,x �Ω +

+Z̃kτs
pp66 � Ni,yNj,x �Ω +Z̃kτ,z s,z

nn45 � NiNj�Ω

Kkτsi j
xz = Z̃kτs,z

pn13 � Ni,xNj �Ω +Z̃kτs,z
pn36 � Ni,yN j �Ω +Z̃kτ,z s

nn55 � NiNj,x �Ω +

+Z̃kτ,z s
nn45 � NiNj,y�Ω

Kkτsi j
yx = Z̃kτs

pp12 � Ni,yN j,x �Ω +Z̃kτs
pp16 � Ni,xNj,x �Ω +Z̃kτs

pp26 � Ni,yNj,y �Ω +

+Z̃kτs
pp66 � Ni,xN j,y �Ω +Z̃kτ,z s,z

nn45 � NiNj�Ω

Kkτsi j
yy = Z̃kτs

pp22 � Ni,yN j,y �Ω +Z̃kτs
pp26 � Ni,xN j,y �Ω +Z̃kτs

pp26 � Ni,yNj,x �Ω +

+Z̃kτs
pp66 � Ni,xNj,x �Ω +Z̃kτ,z s,z

nn44 � NiNj�Ω

Kkτsi j
yz = Z̃kτs,z

pn23 � Ni,yN j �Ω +Z̃kτs,z
pn36 � Ni,xNj �Ω +Z̃kτ,z s

nn45 � NiNj,x �Ω +

+Z̃kτ,z s
nn44 � NiNj,y�Ω

Kkτsi j
zx = Z̃kτs,zk

nn55 � Ni,xN j �Ω +Z̃kτs,zk
nn45 � Ni,yN j �Ω +Z̃kτ,z s

np13 � NiNj,x �Ω +

+Z̃kτ,z s
np36 � NiNj,y�Ω

Kkτsi j
zy = Z̃kτs,zk

nn45 � Ni,xN j �Ω +Z̃kτs,zk
nn44 � Ni,yN j �Ω +Z̃kτ,z s

np23 � NiNj,y �Ω +

+Z̃kτ,z s
np36 � NiNj,x�Ω

Kkτsi j
zz = Z̃kτsk

nn55 � Ni,xNj,x �Ω +Z̃kτsk
nn45 � Ni,yN j,x �Ω +Z̃kτsk

nn45 � Ni,xN j,y �Ω +

+Z̃kτsk
nn44 � Ni,yN j,y �Ω +Z̃kτ,z s,z

nn33 � NiNj�Ω

(2.32)

It should be noted that no assumptions on the approximation order were made. It is therefore
possible to obtain refined plate models without changing the formal expression of the funda-
mental nuclei.
The loading vector, which is variationally consistent with the model, is derived in the case of a
generic concentrate load P:

P
k =
�
Pk

ux
Pk

uy
Pk

uz

�
(2.33)

Any other loading condition can be similarly treated as is usual in FE applications. The virtual
work due to P is :

δLk
ext = P

kδukT (2.34)

Substituting Eq. (2.26), the previous equation becomes:

δLk
ext = FτNi P

kδqk
τi

T (2.35)
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The latter equation permits the identification of the components of the nuclei which have to be
loaded. In the case of a first-order expansion and P applied to a node and acting along the x
direction, the virtual external work is:

δLk
ext = Puxδu

k
x1 + zpPuxδu

k
x2 (2.36)

where zp is the thickness coordinate of the loading application point.

2.5 Approach for Evaluating Various Plate Models
Using the Carrera Unified Formulation and starting from the work of Carrera an Petrolo (61) it
is possible to build for a given problem reduce theories. These theories are able to preserve the
accuracy of the refined model with a lower computational cost. Starting from the refined model
it is possible to follow two different way to build reduced plate theories:

◦ Evaluate the influence of each terms.

◦ Genetic optimization method.

In the following paragraph he two methods will be described.

2.5.1 Influence of each terms.

The aim of this method is to better understand the influence of each term of the Taylor expansion
in order to evaluate which variables are needed and which are not. The models on which the
investigation has been carried out are Equivalent Single Layer. The effectiveness of each term
is investigated as follows:

1. The problem data are fixed (i.e. geometry, boundary conditions, loadings, materials).

2. A set of output variables is chosen (e.g. maximum displacement, stress/displacement
component at a given point).

3. A theory is chosen, that is, the terms that have to be considered in the expansion of ux, uy

and uz are established.

4. A reference solution is used to establish the accuracy (the current N = 4 Layer Wise case
is assumed as the best-reference result).

5. CUF is used to generate the finite element solution for the theories considered.

6. The effectiveness of each term is numerically established by measuring the error produced
with respect to the reference solution.

7. Any term which does not give any contribution to the computation of the mechanical
response is not considered as effective in the plate model.
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8. The most suitable plate model is then detected for a given structural layout, in other words,
the plate model requiring the lowest number of terms to accomplish a given accuracy is
built.

A graphic and numerical notation is introduced to make the representation of the obtained re-
sults more readable. Table 2.1 shows all the 15 terms of the expansion. Table 2.2 present the
numerical representation of the different terms. The fourth-order model, N = 4, is related to the
following expression:

ux = ux1 + zux2 + z2ux3 + z3ux4 + z4ux5

uy = uy1 + zuy2 + z2uy3 + z3uy4 + z4uy5

uz = uz1 + zuz2 + z2uz3 + z3uz4 + z4uz5

(2.37)

The first three terms are constant (the 1st column), the second three terms are linear (the 2nd

Table 2.1 Locations of the displacement.

N = 0 N = 1 N = 2 N = 3 N = 4

ux1 ux2 ux3 ux4 ux5

uy1 uy2 uy3 uy4 uy5

uz1 uz2 uz3 uz4 uz5

Table 2.2 Numeric representation of the displacement terms

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

Table 2.3 Symbolic representation of the reduced kinematic model with uy3 discarded.

� � � � �
� � � � �
� � � � �

column), the third three terms are parabolic (the 3rd column), the fourth three terms are cubic
(the 4th column) and the last three terms are fourth-order displacement variables (the 5th col-
umn). A set of symbols are used to denote the active and inactive terms. Each adopted symbol
is related to a given structural case. The black colour indicates that the term is active, that is,
the displacement variable is exploited to compute the results while the white color indicates
that the term is inactive, that is, the displacement variable is removed from the displacement
model. Table 2.3 shows the case where the parabolic term of the in-plane displacement of the
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expansion in the y-direction is discarded. The explicit displacement model related to Table 2.3
is:

ux = ux1 + zux2 + z2ux3 + z3ux4 + z4ux5

uy = uy1 + zuy2 + +z3uy4 + z4uy5

uz = uz1 + zuz2 + z2uz3 + z3uz4 + z4uz5

(2.38)

The elimination of a term, as well as the evaluation of its effectiveness in the analysis, can be
obtained either by rearranging the rows and columns of the stiffness matrix or by exploiting a
penalty technique. The accuracy of a reduced model is evaluated by computing the errors Eu

and Eσ. These quantities are defined according to the following formulas:

Euz =

������
uz − uzre f

uzre f

������ × 100 Eσzz =

������
σzz − σzzre f

σzzre f

������ × 100 (2.39)

where uzre f and σzzre f denote the transversal displacement and stress values computed trough a
Layer Wise Fourth-Order model. A displacement variable of the expansion is considered to be
non-effective with respect to a specific output component when, if discarded (removed from the
formulation), it does not introduce an error in the results according to an accepted error value.
The value of the accepted error is chosen as the error committed by the Equivalent Single Layer
model with all fifteen terms active with respect to the reference model, that is, the Layer Wise
Fourth-Order model.

EA
uz
=

������
uzN4 − uzre f

uzre f

������ × 100 EA
σzz
=

������
σzzN4 − σzzre f

σzzre f

������ × 100 (2.40)

where uzN4 and σzzN4 represent the value determined through the Equivalent Single Layer model
with all fifteen terms active. The approach described allows us to build plate models which
are equivalent to a full Layer Wise higher-order model (N = 4 Layer Wise in this paper) (59)
having a lower number of displacement variables. A further analysis is then conducted on the
reduced models by varying the accepted error. This allows us to build a diagram consisting of a
”number of terms vs. error” curve which can be useful to determine the effectiveness of a given
theory in terms of accuracy and computational cost.

2.5.2 Genetic optimization method

The aim of this method is to apply an optimization process in order to identify the refined plate
theories. The refined plate model have been compute as follows:

1. The problem data are fixed (i.e. geometry, boundary conditions, loadings, materials).

2. A set of output variables is chosen (e.g. maximum displacement, stress/displacement
component at a given point).

3. A theory is chosen, that is, the terms that have to be considered in the expansion of ux, uy

and uz are established.
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4. A reference solution is used to establish the accuracy (the current N = 4 Layer Wise case
is assumed to be the best-reference result).

5. CUF is used to generate the finite element solution for the theories considered.

6. The accuracy of each model is numerically established by measuring the error produced
with respect to the reference solution.

7. An evolutionary multi-objective optimization process has been used.

The genetic algorithms are inspired by the evolution theory explained in ”The origin of species”.
In nature, weak and unfit individuals within their environment are faced with extinction by nat-
ural selection. The strong ones have a greater opportunity to pass their genes down to future
generations via reproduction. In the long run, the species carrying the correct combination in
their genes become dominant in their population. Sometimes, during the slow process of evo-
lution, random changes may occur in the genes. If these changes provide additional advantages
within the challenge of survival, new species evolve from the old ones. Unsuccessful changes
are eliminated by natural selection. In genetic algorithm terminology, a solution vector x ∈ X,
where X is the solution space, is called individual or chromosome. Chromosomes are made
of discrete units called genes. Each gene controls one or more features of the chromosome.
Genetic algorithms use two operators to generate new solutions from existing ones : crossover
and mutation. The crossover operation is the most important operator of genetic algorithms. In
crossover, generally two chromosomes, called parents, are combined together to form a new
chromosome called o f f spring. The parents are selected among existing chromosomes in the
population with the preferences towards fitness, so that the offspring is expected to inherit the
good genes which make the parents fit. The mutation operators introduce random changes into
the characteristics of the chromosome. Mutation is generally applied at gene level. Having
chosen the crossover and mutation operator, it is necessary to identify a method to rank the
individuals in order to reward the best and kill the worst. Each plate theory has been considered
as an individual. The genes are the terms of the expansion along the thickness of the three
displacements. Each gene can be active or not active to identify different displacement fields
in this manner. The deactivation of a term can be obtained, either by rearranging the rows and
columns of the stiffness matrix or by exploiting a penalty technique. A graphical notation is
introduced to make the representation of the plate theories more readable. Fig. 2.3 shows all
the 15 terms of the expansion. The fourth-order model, N = 4, is related to expression (2.41)

ux = ux0 + zux1 + z2ux2 + z3ux3 + z4ux4

uy = uy0 + zuy1 + z2uy2 + z3uy3 + z4uy4

uz = uz0 + zuz1 + z2uz2 + z3uz3 + z4uz4

(2.41)

The first three terms are constant (the first column), the second three terms are linear (the 2nd

column), the third three terms are parabolic (the 3rd column), the fourth three terms are cubic
(the 4th column) and the last three terms are fourth-order displacement variables (the 5th col-
umn). The total number of expansion terms is 15. The matrix representation has been changed
in a vectorial representation (see Fig. 2.3) in order to simplify the explanation of the operations
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          

    

    

    

              



Figure 2.3 Graphical representation of a plate theory

1st Group of Genes 2nd Group of Genes 3rd Group of Genes

Chromosome

Figure 2.4 Genetic representation of a plate theory

of crossover and mutation and in order to better identify the single chromosome and the sin-
gle genes. A set of symbols are used to denote the active and inactive terms. The black color
indicates that the term is active, that is, the displacement variable is exploited to compute the
results while the white color indicates that the term is inactive, that is, the displacement variable
is removed from the displacement model. In Fig. 2.4 the following plate theory is represented:

ux(x, y, z) = zux1(x, y) + z2ux2(x, y) + z4ux4

uy(x, y, z) = zuy1(x, y) + z2uy2(x, y)
uz(x, y, z) = uz0(x, y) + z3uz3(x, y)

(2.42)

In Fig. 2.5 the reproduction of two chromosomes is represented, in order to better illustrate the
crossover operator. The two chromosome parents generate their offspring by exchanging the
group of genes. The individual genes have been divided into three groups of five genes. In Fig.
2.5 the vertical bars show where the parents have been cut for the reproduction process. The
sons are formed by the casual recombination of the parent group of genes. This procedure leads
to the birth of twins. A control algorithm has been developed in order to find and kill the twins,
because copies of the same individual increase the computational times without advantages.
The mutation operates on the single chromosome at gene level with random modification. The
mutation operator makes minimal changes. In Fig. 2.6 the mutation of a chromosome is rep-
resented. The two arrows show which genes have been modified. The original chromosome
indicates the displacement field of equation (2.42) while the mutated chromosome represents
the following plate theories:

ux(x, y, z) = zux1(x, y) + z2ux2(x, y) + z3ux3 + z4ux4

uy(x, y, z) = zuy1(x, y) + z2uy2(x, y) + z4uy4

uz(x, y, z) = uz0(x, y) + z3uz3(x, y)
(2.43)
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Figure 2.5 Reproduction of two individuals.

Original

Mutated

Figure 2.6 Mutation

The mutation operator introduces a certain degree of genetic variability in the population which
is useful to explore the solution space more efficiently. In fact, it forces a new genetic config-
uration into the population which can be potentially better than the existing one. The mutation
operator acts randomly, modifying a number of individuals in each generation. The mutation
intensity, which determines the number of mutations for each individual, varies randomly for
each generation from a minimum of one to a maximum of five in order to increase the con-
vergence velocity. Each individual created by the forementioned methodology reported before
is characterized by the number of active terms and by an error committed in computing the
required output. The error of individuals, that is, the error of the reduced models is evaluated
through the following formulas:

Eσxx =

�h
0

���σxxz − σxxre fz

���
N

(2.44)

where σxxre f denote stress values computed through a Layer Wise Fourth-Order model and N
the number of points used to discretized the stress along the thickness. The error computed
has been adimensionalised through σxxre fmax

. The reduced model population can be represented
by using the number of active terms and the error (see Fig. 2.7 (a)). Each plate theory has a
fitness value based on its rank in the population, not its actual objective function value. Note
that herein all objectives are assumed to be minimized. The population is ranked according
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Figure 2.7 An example of population representation

to dominance rule (Fonseca (73)). The fitness of each chromosome is evaluated through the
following formula :

ri(xi, t) = 1 + nq(xi, t) (2.45)

where nq(x, t) is the number of solutions dominating solution x at generation t. In Fig. 2.7
(b) the dominance area of each individual and its fitness is presented. Each individual has a
dominance area, the dot line, and the fitness of a single chromosome is related to the number
of dominance areas in which it is through equation (2.45). A lower rank corresponds to a better
solution. The fitness of each chromosome determines the number of sons that the chromosome
is able to generate in order to reward the best chromosome and penalize the worst. In fact the
number of sons that a chromosome can generate is inversely proportional to its fitness. The
individuals with the highest fitness are the ones on the Pareto front. In the present example
the solution space is bi-dimensional, that is number of terms versus error in computing a single
variable, in order to better explain the methodology. It can become n-dimensional in order to
identify the best reduced models able to compute different outputs at the same time.



Chapter 3

Electro-mechanical formulation

3.1 Piezoelectri materials
Piezoelectric materials have the ability to convert mechanical energy into electrical energy,
and vice versa, the ability to convert electrical energy into mechanical energy. In 1880 Pierre
and Jacques Curie discovered that certain crystals produce an electrical charge under deforma-
tion, where the amount of charge depends on the deformation magnitude. This effect, which
is shown in Fig. 3.1, is called the direct piezoelectric effect. The inverse of the direct effect,
the so-called converse piezoelectric effect, was demonstrated by the Curie brothers in 1881,
after Gabriel Lippman de- duced it from thermodynamic principles. The converse effect is that
such a crystal is deformed when an electric field is applied. The crystalline materials that show

!"

#$%&

#$%&

'()$*+(&

,-&()$*+(&

!
"

Figure 3.1 The direct and converse piezoelectric effects

piezoelectric properties can be divided in two classes. First are the natural crystals, e.g. Quartz
(S iO2), Rochelle Salt (KNa (C4H4O6) × 4H2O) or Tourmaline (S iO2 + B, Al) and second are
the manufactured ceramics of which typical representants are Barium Titanate (BaTiO3) and
Lead Zirconate Titanate (PZT). The latter group usually offers a much higher piezoelectric re-
sponse than the natural crystals and are today commonly considered for application. A second
group is built by the piezoelectric polymers, semi-crystalline polymers with ferroelectric prop-
erties, the most commonly used representative of which is polyvinylidenfluoride (PVDF). The
polymer materials generally show lower elastic and lower piezoelectric coefficients. Thus these
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Table 3.1 Material properties of selected piezoelectric ceramics (PZT) and polymer (PVDF)

PZT-5H PZT-5A PVDF
E11 GPa 71 69 2
E33 GPa 111 106 2
ν − 0.31 − −
ρ Kg/m3 7450 7700 1800
ε11/ε0 − − 1700 12
ε33/ε0 − 3400 1730 12

d33 m/V × 10−12 593 374 −33
d31 m/V × 10−12 −274 −171 23
d15 m/V × 10−12 741 585 −

materials are preferably used for sensor applications. Furthermore they show a high pyroelec-
tricity, an electric reaction depending to the temperature. This effect is not covered in this work.
Table 1.1 shows the basic parameters of typical representants of state-of-the-art piezoceram-
ics (PZT) and as a comparison the values for the piezoelectric polymer PVDF. Listed are the
elastic moduli E11 and E33 , the Poisson ratio ν, the density ρ, the relative permittivity ε11/ε0

and ε33/ε0 with ε0 = 8.85 × 1012 As/Vm, the piezoelectric coefficients d33 , d31 and d15 and
the Curie temperature TC . The data is taken from (74), not all parameters are available. An
extensive description of piezoelectric materials, including the influence of the different crystal
configurations can be found in Ikeda (75). The piezoelectric effect is related to a polarization
of the crystalline material. In untreated condition, the piezoelectric materials are not polarized
and thus do not show piezoelectric reactions. Although on the microscopic level polarized do-
mains exist, their directions are randomly distributed. To activate the materials, an ex- ternal
polarization is necessary. If a sufficiently high electric field, expressed by the potential φP , is
applied on the crystalline material, the domains reorder more or less in the same direction and
the macroscopic polarization is produced. In the process of the polarization, in industry often
referred to as poling, the material experiences a deformation. After the poling the material has
a remanent polarization and a remanent elongation. In this activated state, any applied potential
lower than the polarization potential φP leads to a temporary deformation and vice versa.

3.2 Generalized Hooke’s law
In a three-dimensional Cartesian coordinate system, it is customary to describe the state of
deformation by six components of strain and stress (see Fig. 3.2). A linear relation between the
six stresses and six strain is known as the generalized Hook’s law, and it can be expressed as,

σk = Ck j� j k = 1, 2, ..., 6 (3.1)

In the homogeneous materials Ck j is constant throughout the material. Ck j are entries in the
k − th row and j − th column of a 6x6 square matrix, but Ck j are not components of a second-
order tensor. The single subscript notation for stress and strain components is based on the
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Figure 3.2 Components of stress in a rectangular cartesian coordinate systems

convention,

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ12, σ5 = σ13, σ6 = σ23

�1 = �11, �2 = �22, �3 = �33, �4 = 2�12, �5 = 2�13, �6 = 2�23
(3.2)

(σ1, σ2, σ4) are the section stresses and (σ3, σ5, σ6) are out of section stresses. Similar termi-
nology is used for the strain components. The thirty six coefficients Ci j are not all independent
of each other. The number of independent constants depends no the material constitution. For
material for which the strain energy density function U0 is such that

∂U0

∂�k
= σk (3.3)

the coefficient Ck j = C jk. The strain energy density of the material may be expressed as

U0 =

� �k

0
σkd�k (3.4)

Substituting Eq. 3.1 into Eq. 3.4 and integrating

U0 =
1
2

Ck j�k� j (3.5)

substituting for U0 from Eq. 3.5 into Eq. 3.3, we arrive at the expression

σk =
1
2

(Ck j +C jk)� j (3.6)

By comparing expression 3.6 and 3.1 it is possible to conclude that Ck j = C jk. Because of this
symmetry, there are only twenty-one independent elastic constants for anisotropic materials. In
matrix form equation 3.1 can be expressed as




σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

sym. C66







�1
�2
�3
�4
�5
�6




(3.7)
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It is understood from Eq. 3.7 that, in general, the elastic coefficients Ci j relating the Cartesian
components of stress and strain depend on the coordinates systems (x1, x2, x3) used. Referred
to another Cartesian coordinate system (x1, x2, x3), the elastic coefficient are Ci j, and in general
Ci j � Ci j. If Ci j = Ci j then they are independent of the coordinate systems and the material is
said to be isotropic.

Monoclinic materials Some anisotropic materials may possess material symmetries and
their constitutive behaviour can be described with fewer than twenty-one constants. When the
elastic coefficients at a point have the same values for every pair of coordinates systems which
are mirror images of each other in a certain plane, that plane is called a plane of elastic sym-
metry for the material at that point. Material with one plane of symmetry are called monoclinic
materials, and the number of elastic coefficients for such materials reduce to thirteen. If the
plane of symmetry is x3 = 0, the constitutive equation relations become:




σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0
C55 0

sym. C66







�1
�2
�3
�4
�5
�6




(3.8)

Orthotropic materials If the material systems has three mutually perpendicular planes of
elastic symmetry, then the number of independent elastic coefficients can be reduced to nine.
Such material are referred as orthotropic. The stress-strain relations for an orthotropic materials
are given by 



σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
sym. C66







�1
�2
�3
�4
�5
�6




(3.9)

The stiffness coefficient Ci j for an orthotropic material may be expressed in terms of the engi-
neering constants

C11 =
E1(1−ν23ν32)

∆
; C12 =

E1(ν21+ν23ν31)
∆

; C13 =
E1(ν31+ν21ν32)

∆
;

C21 =
E2(ν12+ν13ν32)

∆
; C22 =

E2(1−ν13ν31)
∆

; C23 =
E2(ν32+ν12ν31)

∆
;

C31 =
E3(ν13+ν12ν23)

∆
; C32 =

E3(ν23+ν13ν21)
∆

; C33 =
E3(1−ν12ν21)

∆
;

C44 = G12 C55 = G13 C66 = G23

∆ = 1 − ν12ν21 − ν13ν32 − ν23ν32 − ν12ν23ν31 − ν13ν21ν32

(3.10)

where Ei denotes Young’s moduli in the ith-material direction, νi j is the Poisson’s ratio for
transverse strain in the j − th direction when stressed in the i − th direction

νi j = −
� j

�i
(3.11)
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and (G23,G31,G12) are the shear moduli in the 2-3, 3-1, and 2-1 planes, respectively. The three
material directions (x1, x2, x3) are taken perpendicular to the three planes of elastic symmetry.

Isotropic materials For an isotropic material there are infinite number of planes of elastic
symmetry (or no preferred direction), and it can be described in terms of two elastic coefficients.
The stress-strain relations for an isotropic material have the form,




σ1

σ2

σ3

σ4

σ5

σ6




=




C33 C23 C23 0 0 0
C33 C23 0 0 0

C33 0 0 0
�C 0 0
�C 0

sym. �C







�1
�2
�3
�4
�5
�6




(3.12)

where �C = 0.5(C33 − C23). These two coefficients are related to Young’s Modulus E and Pois-
son’s ratio ν by

C33 =
E(1 − ν)

(1 + ν)(1 − 2ν)
C23 =

νE
(1 + ν)(1 − 2ν)

(3.13)

Transformation of material coefficients The constitutive relations in the previous para-
graph for an orthotropic material were written in terms of stress and strain components that are
referred to a coordinates systems which coincides with the principal material coordinate system
(x1, x2, x3). But in the problem formulation the employed coordinates system does not coincide
with the principal material one, for example in composite laminates each layer has it material
coordinate system, and these have different orientations with respect to the most general lami-
nate coordinates called problem coordinate system (x, y, z). In Fig. 3.3 the material coordinate
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Figure 3.3 Fibre orientation angle

system and the problem coordinates system are clearly indicate for a laminate. The angle θ
between the material coordinates (x1, x2, x3) and the problem coordinates (x, y, z) is considered
counter-clockwise, the third coordinates coincide (x1 = z). Each quantity related to material
reference systems is indicates by the subscript m, those related to problem reference system by
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the subscript p. The stress tensor can be transformed according to:



σzz

σxx

σyy

σxz

σyz

σxy




=




1 0 0 0 0 0
0 cos(θ)2 sin(θ)2 0 0 −2cos(θ)sin(θ)
0 sin(θ)2 cos(θ)2 0 0 2cos(θ)sin(θ)
0 0 0 cos(θ) −sin(θ) 0
0 0 0 sin(θ) cos(θ) 0
0 cos(θ)sin(θ) −sin(θ)cos(θ) 0 0 cos(θ)2 − sin(θ)2







σ1

σ2

σ3

σ4

σ5

σ6




(3.14)

The Eq. 3.14 in a compact form can be expressed as:

{σ}p = [T ] {σ}m (3.15)

The same procedure can be applied for the transformation of strain components. Trough the ma-
trix [T ] it is possible to perform the transformation from the coordinates system to the problem
coordinates. The material stiffness Ci j can be easily obtain as

{σ}p = [T ] {σ}m = [T ][C]m {�}m = [T ][Cm][T ]T {�}p = [Cp] {�}p (3.16)

where [C]m is the 6x6 material stiffness matrix in the material coordinates and [T ] is the trans-
formation matrix in Ed. 3.14. It is possible to define [C̃] as

[C̃] = [T ][C][T ]T (3.17)

In the case of orthotropic materials the stress-strain relations in the problem coordinates is



σzz

σxx

σzx

σzy

σxy

σyy




=




C̃11 C̃12 0 0 C̃16 C̃13

C̃21 C̃22 0 0 C̃26 C̃23

0 0 C̃44 C̃45 0 0
0 0 C̃54 C̃55 0 0

C̃61 C̃62 0 0 C̃66 C̃63

C̃31 C̃32 0 0 C̃36 C̃33







�zz

�xx

�zx

�zy

�xy

�yy




(3.18)

where the stress and strain component are reordered in order to divide the in section components
and the out of section components according the the system reference of Fig. 3.4.

3.3 Constitutive equations for piezoelectric problems
The coordinate reference frame is shown in Fig. 3.4. In pure mechanical cases the stress, σ,
and strain, �, components are grouped as

σ =
�
σzz σxx σzxσzy σxy σyy

�T

� =
�
�zz �xx �zx�zy �xy �yy

�T (3.19)

and are related via the Hooke’s law
σ = C̃� (3.20)
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Figure 3.5 Polarization Axes

where C̃ is the elasticity tensor of the materials in the problem reference systems. The electric
problem can be described by the electric field strength E and the dielectric displacement D. In
Fig. 3.5 are reported the polarization axes and the external polarization field used to build the
piezo-material. The electrical properties of the piezo-material are expressed in function of the
polarization axes of Fig. 3.5.

De = {D1 D2 D3}T E = {E1 E2 E3}T (3.21)

Their relation in the uncoupled electrical case states is

De = χE (3.22)

where χ dielectric permittivity tensor of the materials.

χ =




χ11 χ12 0
χ21 χ22 0
0 0 χ33


 (3.23)
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In the case of piezoelectric materials, the mechanical and the electrical systems are coupled.
Therefore the two uncoupled constitutive equations 3.20 and 3.22 have to be extended with
coupling terms.
The coupled constitutive equations can take different forms, depending on the used combi-
nations of the variables. The strains can be expressed in terms of the electric field and the
dielectric displacement in terms of the stresses using the piezoelectric coefficients d and is thus
called d − f orm:

� = S̃σ − dT
E

De = dσ + χE
(3.24)

where d is :

d =




0 0 0 d15 0 0
0 0 d24 0 0 0

d33 d31 0 0 0 d32


 (3.25)

The most often used formulation is the so called e-form, which relates the mechanic stresses to
the electric field and the dielectric displacement to the mechanical strains via the piezoelectric
stiffness coefficients e:

σ = C̃� − eT
E

De = e� + χE
(3.26)

S̃ is the compliance tensor, which is the inverse of the elasticity tensor S̃ = C̃
−1

. The piezoelec-
tric coefficient tensor d and the piezoelectric stiffness tensor e have following relation

e = C̃d (3.27)

The matrix e is:

e =




0 0 e14 e15 0 0
0 0 e24 e25 0 0

e33 e32 0 0 e36 e32


 (3.28)

where

e33 = d31C̃13 + d31C̃12 + d33C̃11

e31 = d32C̃23 + d31C̃22 + d33C̃21

e36 = d32C̃63 + d31C̃62 + d33C̃61

e32 = d32C̃33 + d31C̃32 + d33C̃31

e14 = d15C̃45 e24 = d24C̃44

e15 = d15C̃55 e25 = d24C̃54

(3.29)

Both tensors of piezoelectric coefficients have the form 3 × 6 because they couple the six com-
ponents of the mechanical strains or stresses to the three components of the electric field or
dielectric displacement.
In this work it used the e − f orm 3.26. Mixing together the strain and stress tensors 3.19 with
the electric field and electric displacement tensor 3.21 it is possible to write the constitutive
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equation in a compact manner (it is necessary to change the sign in order to be coherent with
the 3.26)

σ = H̃� (3.30)

where

σ =
�
σzz σxx σzx −D1 −D3 σzy σxy σyy −D2

�T

� =
�
�zz �xx �zx E1 E3 �zy �xy �yy E2

�T (3.31)

and H̃ mix together mechanical constants, electrical constants, and electro-mechanical con-
stants:

H̃ =




C̃11 C̃12 0 0 −e33 0 C̃16 C̃13 0
C̃21 C̃22 0 0 −e31 0 C̃26 C̃23 0
0 0 C̃44 −e14 0 C̃45 0 0 −e24

0 0 −e14 −χ11 0 −e15 0 0 χ12

−e33 −e31 0 0 −χ33 0 −e36 −e32 0
0 0 C̃54 −e15 0 C̃55 0 0 −e25

C̃61 C̃62 0 0 −e36 0 C̃66 C̃63 0
C̃31 C̃32 0 0 −e32 0 C̃36 C̃33 0
0 0 −e24 −χ12 0 −e25 0 0 −χ22




(3.32)

The strains and the electric field are obtained as:

� = Du (3.33)

where
u = {ux, uy, uz, φ} (3.34)

and

D =




0 0 δz 0
δx 0 0 0
δz 0 δx 0
0 0 0 −δx

0 0 0 −δz

0 δz δy 0
δy δx 0 0
0 δy 0 0
0 0 0 −δy




(3.35)

3.4 Carrera Unified Formulations - 1D Formulations
The unified formulation of the beam cross-section unknowns are described by an expansion of
generic functions, Fτ,

u = Fτuτ τ = 1, 2, ...,M (3.36)

where Ftau are the function of the cross-sections coordinates x and z, uτ is the unknowns vector,
and M stand for the number of the terms expansion. According to the Einstein notation, the
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Table 3.2 L3 cross-section element point natural coordinates.

Points r s
1 0 0
2 1 0
3 0 1

! "

#

$

%

(a) L3 element.
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&

(b) L4 element

! " #

$ % &

' ( )

*

+

(c) L9 element

Figure 3.6 Cross-section element in actual reference.

repeated subscribed τ indicates summations. The choice of Ftau and M is arbitrary, that is,
different based functions of any-order can be taken into account to model the unknowns of
a beam above the cross-section. Taylor-type expansion have been exploited in the works of
Carrera and Giunta (77), Carrera and Petrolo (78), and Carrera et. al (79–82). The Euler-
Bernoulli (EBBM) and Timoshenko (TBM) classical theories are derived from the linear Taylor-
type expansion. For the electro-mechanical problem the Lagrange polynomial expansion are not
a good choice. Lagrange polynomial are herein used to describe the cross-section unknowns.

3.4.1 Lagrange polynomial

Three-,L3, four-,L4 and nine-,L9, polynomials are adopted. L3 polynomials are defined on a
triangular domain which is identified by three points. These points define the element that is
used to model the displacement field above the cross-section. Similarly, L4 and L9 cross-section
elements are defined on quadrilateral domains. The isoperimetrical formulations is exploited.
In the case of L3 elements, the interpolation functions are given by Onate (83):

F1 = 1 − r − s F2 = r F3 = s (3.37)

where r and s belong to the triangular domain defined by the points in Table 3.2. Fig. 3.6 a
shows the point locations in actual coordinates. The L4 elements interpolation functions are
given by:

Fτ =
1
4

(1 + rrτ)(1 + ssτ) τ = 1, 2, 3, 4 (3.38)

where r and s vary from −1 to 1. Fig. 3.6 b shows the point locations and Table 3.3 reports the
point natural coordinates. In the case of a L9 element the interpolation functions are given by:
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Table 3.3 L4 cross-section element point natural coordinates.

Points r s
1 -1 -1
2 1 -1
3 1 1
4 -1 1

Table 3.4 L4 cross-section element point natural coordinates.

Points r s
1 -1 -1
2 0 -1
3 1 -1
4 1 0
5 1 1
6 0 1
7 -1 1
8 -1 0
9 0 0

Fτ =
1
4

(r2 + rrτ)(s2 + ssτ) τ = 1, 3, 5, 7

Fτ =
1
2

s2
τ(s2 − ssτ)(1 − r2) +

1
2

r2
τ(r

2 − rrτ)(1 − s2) τ = 2, 4, 6, 8

Fτ = (1 − r2)(1 − s2) τ = 9

(3.39)

where r and s from 1 to +1. Fig. 3.6 c shows the point locations and Table 3.4 reports the point
natural coordinates. The cross-section unknowns given by an L4 element are:

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4

uy = F1uy1 + F2uy2 + F3uy3 + F4uy4

uz = F1uz1 + F2uz2 + F3uz3 + F4uz4

φ = F1φ1 + F2φ2 + F3φ3 + F4φ4

(3.40)

where ux1 , ..., uz4 are the displacement variables of the problem and they represent the trans-
lational displacement components of each of the four points of the L4 element and φ1, ..., φ4

are the voltage component of the problem and they represent the voltage component of each of
the four points of the L4 elements. The cross-section can be discretized by means of several
L-elements. Fig. 3.7 shows the assembly of 2 L9 which share a common edge and three points.
The discretization along the beam axis is conducted via a classical finite element approach.

3.5 Finite Element
The unknowns vector is given by:

uτ = NiFτqτi (3.41)
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!
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Figure 3.7 Two assembled L9 elements.

where Ni stands for the shape functions and qτi for the nodal unknowns vector:

qτi = {quxτi
, quxτi
, quxτi
, qφτi } (3.42)

Beam elements with two, B2, three, B3, and four, B4, nodes are here considered whose shape
functions are

N1 =
1
2

(1 − r), N2 =
1
2

(1 + r), {r1 = −1, r2 = 1}

N1 =
1
2

r(r − 1), N2 =
1
2

r(r + 1), N3 = −(1 + r)(1 − r), {r1 = −1, r2 = 1, r3 = 0}

N1 = −
9

16
(r +

1
3

)(r − 1
3

)(r − 1), N2 =
9

16
(r +

1
3

)(r − 1
3

)(r + 1),

{r1 = −1, r2 = +1, r3 = −
1
3
, r4 = +

1
3
}

N3 =
27
16

(r + 1)(r − 1
3

)(r − 1), N4 = −
27
16

(r + 1)(r − 1
3

)(r − 1)

(3.43)

where the natural coordinate, r, varies from 1 to +1 and ri indicates the position of the node
within the natural beam boundaries. The beam model order is given by the expansion on the
cross-section, and the number of nodes per each element is related to the approximation along
the longitudinal axis. An N -order beam model is therefore a theory that exploits an N -order
Lagrange polynomial to describe the kinematics of the beam cross-section.

3.5.1 Stiffness Matrix

The first step in assembling finite element arrays is represented by the use of a proper variational
statement. The principle of virtual displacements (PVD) is here exploited

δLint =

�

V
(δ�Tσ)dV = δLext (3.44)
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where Lint stands for the strain energy, Lext is the work of the external loadings, and δ stands for
the virtual variation. Introducing equations 3.30, 3.33, and 3.41 equation 3.44 become

δLint = δq
T
τi

�

V
(NiIFτ)T

D
T

H̃D(NjIFs))dV qs j = δLext (3.45)

where

I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




(3.46)

From equation 3.45 it is possible to obtain the stiffness matrix written in the form of the funda-
mental nuclei

K
i jτs =

�

V
(NiIFτ)T

D
T

H̃D(NjIFs))dV (3.47)

The unified form of the virtual variation of the strain energy can be write as follow.

δLint = δq
T
τiK

i jτs
qs j (3.48)

Superscripts indicate the four indexes exploited to assemble the matrix: i and j are related to the
shape functions, τ and s are related to the expansion functions. The component of the stiffness
matrix are reported in the Appendix (mettere riferimento). The fundamental nucleus is a 4 × 4
array which is formally independent of the order of the beam model and on the choice of the Fτ
expansion polynomials.
These are the key-point of CUF which permits, with only nine FORTRAN statements, to im-
plement any-order of multiple class theories. The assembly procedure of the stiffness matrix is
based on the use of the four indexes τ , s, i, and j which are opportunely exploited to implement
the FORTRAN statements. The core indexes are those related to the expansion functions Fτ and
Fs , and the fundamental nucleus is computed by varying τ and s, as shown in Fig. 3.8 where
the construction of the so-called τ s-Block, which coincides with the node stiffness matrix, can
be observed. Each τ s-Block is then inserted into the element stiffness matrix, as shown in Fig.
3.10. The element stiffness matrix is derived from the assembly of all the i j-Blocks, as shown
in Fig. 3.6 Any-order beam theory can be computed since the definition of the order acts on the
τ s-loop.

3.5.2 Mass Matrix

The virtual variation of the work of the inertial loadings is

δLine =

�

v
ρüδuT dV (3.49)

where ρ stands for the density of the material, and ü is the acceleration vector. Equation 3.49
can now be rewritten using Eqs. 3.33 and 3.41,

δLine = δq
T
τi

�

v
Ni(FτI)ρ(FsI)NjdV q̈s j (3.50)
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Figure 3.8 Graphic assembly procedure of the node stiffness matrix.
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Figure 3.9 Graphic assembly procedure of the element stiffness matrix.
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!"#$#%&'()

Figure 3.10 Graphic assembly procedure of the element stiffness matrix.

where q̈ is the nodal acceleration vector and I is

I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




(3.51)

because Line is not affected by electrical components. The last equation can be rewritten in the
following compact manner:

δLine = δq
T
τi M

i jτs
q̈s j (3.52)

where M
i jτs is the mass matrix in the form of the fundamental nucleus. The dimension of the

array is 4 × 4. The non-zero components of the matrix are:

M
i jτs
11 = M

i jτs
22 = M

i jτs
33 = ρ

�

Ω

FτFsdΩ
�

l
NiNjdy (3.53)

It is possible to see that the fourth terms on the matrix diagonal is zero, because the electrical
part is neglected in the mas matrix. The undamped dynamic problem can be written as follows:

Mä + Ka = p (3.54)

where a is the vector of the nodal unknowns and p is the loading vector. Introducing harmonic
solutions, it is possible to compute the natural frequencies, ωi , for the homogenous case, by
solving an eigenvalue problem,

(−ω2
i M + K)ai = 0 (3.55)

where ai is the i − th eigenvector.
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3.5.3 Loading Vector

The loading vector that is variationally coherent to the model, in the case of a generic concen-
trated load P, is

P = {Pux Puy Puz0} (3.56)

the virtual work due to P is
δLext = PδuT (3.57)

the virtual variation of u in the framework of CUF is

δLext = FτPδuT
τ (3.58)

by introducing the nodal displacements and the shape functions, the previous equation becomes

δLext = FτNi Pδu
T
τi (3.59)
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Results and discussion

4.1 Influence of each term

4.1.1 Isotropic Plate

An isotropic plate is considered. The Young modulus, E, is equal to 73 [GPa] and the Poisson
ratio, ν, is equal to 0.34. The geometry of the plate is shown in Fig. 4.9, where a is 0.1 [m],
and b is equal to a. uz, σxx, σyy, and σzz are computed at [a/2, b/2, 0], while σxz is computed
at [0, b/2, h/2] and σyz is computed at [a/2, 0, h/2]. Stresses are computed through Hooke’s
laws. Four-node plate elements have been used, and a uniform mesh of 15 × 15 elements has
been adopted after a convergence study.

!

"

#

$

%

&

Figure 4.1 Plate geometry.
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Boundary Condition Effects The investigation of the role of each displacement variable
under different boundary conditions is conducted as a first assessment. Four different boundary
condition sets are considered:

1. ssss, four simply-supported edges;

2. c f c f , two clamped and two free edges;

3. cccc, four clamped edges;

4. scsc, two simply-supported and two clamped edges.

Fig. 4.2 shows each set and Table 4.1 presents the relative symbolic representation, which is
exploited to report the results in a compact manner. A bi-sinusoidal transverse distributed load

Table 4.1 Symbols that indicate the status of a displacement variable for different boundary conditions:
clamped, ’c’, simply-supported, ’s’, free, ’f’.

Active term Inactive term

� � ssss

� � c f c f

� � cccc

� ♦ scsc

is applied at the top surface. Its expression is:

Pz = pzsin
�mx

a

�
cos
�ny

b

�
(4.1)

Where pz is the amplitude and is equal to 1 [kPa]; m and n are the wave numbers in the
two in-plane plate directions, both of them are equal to 1. A 3D solution is used to identify
which order of the expansion has to be used to obtain 3D-like results, that is, which higher-
order plate model is needed to detect a 3D exact solution. Table 4.2 shows the comparison
of the 3D solution and the fourth-order FEM one. The fourth-order model solution, N = 4,

Table 4.2 Comparison of the the 3D model and the fourth order FEM model solutions in the case of simply-
supported plate with a distributed load. ūz = uz

100ET h3

¯pza4 . σ̄xx = σxx
p̄z(a/h) . σ̄xz = σxz

p̄z(a/h)2 . σ̄zz = σzz
p̄z(a/h) .

ūzN=4FEM
ūz3D σ̄xxN=4FEM

σ̄xx3D σ̄xzN=4FEM
σ̄xz3D σ̄zzN=4FEM

σ̄zz3D

a/h = 100 2.7134 2.7248 0.2040 0.2037 0.2390 0.2387 0.0866 0.0100

a/h = 10 2.8255 2.8345 0.2070 0.2068 0.2386 0.2383 0.1041 0.1000

a/h = 5 3.1978 3.2056 0.2172 0.2168 0.2378 0.2371 0.2024 0.2002

a/h = 2 7.3840 7.3826 0.3171 0.3145 0.2308 0.2277 0.5099 0.5000
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offers an excellent match with the exact solution for about all the length-to-thickness ratios and
considered outputs, therefore it has been chosen as the reference for the following analyses. The
effectiveness of each term is investigated for each set of boundary conditions. Table 4.3 shows
the analysis of a moderately thick simply-supported plate. The first column shows the plate
models considered. The remaining columns report model accuracies in determining a given
output variable compared to a full fourth-order model. Table 4.4 has been obtained by exploiting
Table 4.3: the sets of displacement variables which are needed to exactly detect various output
variables are given. Each row refers to an output variable. Each column considers a different
set of boundary conditions. Me indicates the number of terms (i.e. the computational cost)
of the models that are equivalent to the fourth-order one. The last row shows the expansion
terms needed to detect all the considered outputs. The latter combined models are used to build
Table 4.5 which shows a comparison with the accuracies given by CPT, FSDT, and Kant-2 plate
models. Table 4.6 summarizes the combined displacement fields which are needed to detect
the exact solution for all the considered boundary conditions. The results which have been
shown so far give us the reduced plate models which detect a 3D-like solution. Starting from
these reduced models, it is possible to determine further theories which provide solutions with
a certain degree of error compared to the full fourth-order one. Fig. 4.3 and Fig. 4.4 shows
the number of terms which are needed to detect an output variable with a given error. The
corresponding plate models are also indicated. For the linear models, the results are reported
with and without the correction of the thickness locking. Models from the open literature have
also been included. The accepted error range varies from 0 % to 10 %. The analyses undertaken
suggest what follows.

1. The reduced plate models which are equivalent to a fourth-order theory vary significantly
if different output variables are considered.

2. The influence of boundary conditions is not high.

3. Classical models are inadequate to deal with shear stresses.

4. A significant computational cost reduction is obtained only if a limited number of output
variables has to be detected.

5. The number of terms vs. error diagram shows that all the theories derived from the present
approach are able to satisfy a given error requirement with a lower computational cost
than the open literature models considered. This shows the strength of the present tech-
nique for detecting the possible best theories for a given structural problem.

Loading Effects The effect of the loading conditions is herein investigated. A simply-
supported plate is considered. Three different loading conditions are taken into account:

1. a bi-sinusoidal distributed load (Fig. 4.5 (a));

2. a point load (Fig. 4.5 (b));

3. four point loads (Fig. 4.5 (c)).
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The point load which is applied at the top surface of the plate has an intensity of 10 N while the
four point loads have an intensity of 2.5 N each. Table 4.7 reports the symbolic representation
of each loading set. Table 4.8 shows the fourth-order FEM solution for the point load condition.
Table 4.2 values are used for the distributed loading case. The sets of displacement variables
which are needed to detect various outputs precisely are given in Table 4.9. Each row refers to a
different output variable. Each column considers a different loading condition. Me indicates the
number of terms of the models that are equivalent to the fourth-order one. The last row shows
the plate models which are needed to detect all the considered outputs precisely. The latter
combined models are used to build Table 4.10 which shows a comparison of the accuracies given
by CPT, FSDT, and Kant-2 plate models. Table 4.11 summarizes the combined displacement
fields which are able to detect the exact solution for all the considered loading conditions. Fig.
4.6 shows the number of terms which are needed to compute an output variable with a given
error. The corresponding plate models are also indicated together with models retrieved from
open literature. For the linear models, the results are reported with and without the thickness
locking correction. The accepted error range varies from 0 % to 10 %. No differences between
the one point load case and the four point load one have been observed, therefore the graphs
related to the four point load are not reported. The following remarks arise from the analyses
carried out.

1. The sets of effective displacement variables vary if distributed or concentrated loads are
considered, whereas there are no differences if one or multiple point loads are used.

2. The effect of the considered output variable is significant in the case of distributed load,
it is almost negligible if point loads are considered.

3. The validity of the number of terms vs. error diagram for providing guidelines for the
construction of plate theories accomplishing a given accuracy is confirmed. As the error
is fixed, the theories derived generally lie beneath classical and other refined models,
that is, the proposed models are able to fulfil a certain accuracy demand with a lower
computational cost.

Boundary Condition, and Thickness Effects The combined effect of loading and bound-
ary conditions is considered. The influence of the length-to-thickness ratio, a/h, is also in-
vestigated. The loading sets considered are the same as those seen in the previous analyses.
Each output variable is associated to a symbol as shown in Table 4.12. A thin plate is first
considered by assuming a/h equals 100. Table 4.13 shows the sets of displacement variables
which are needed to detect various output variables previously. Each row refers to a different
loading condition, each column to different boundary conditions. Table 4.14 reports the plate
models that precisely detect all the considered outputs for all the considered boundary and load-
ing conditions. Tables 4.15 to 4.18 report the same type of results for a/h equal to 10 and 5,
respectively. The obtained plate models are summarized in
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!!

!

!

(a) Simply-supported.

!

"

!

"

(b) Two clamped and two free edges.

!

!

!

!

(c) Four clamped edges.

!

"

!

"

(d) Two simply-supported and two clamped edges.

Figure 4.2 Adopted boundary conditions.
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Table 4.3 Influence of each displacement variable of a fourth order model on the solution. Simply-supported
plate with a distributed load, a/h= 10.

δuz [%] δσxx [%] δσxz [%] δσzz [%]
� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.0

� � � � �
� � � � �
� � � � �

100.0 100.5 100.0 100.1

� � � � �
� � � � �
� � � � �

100.0 99.9 100.0 100.1

� � � � �
� � � � �
� � � � �

0.13 1.18 1.27 75.59

� � � � �
� � � � �
� � � � �

19.5 14.7 269.3 93.9

� � � � �
� � � � �
� � � � �

19.5 18.8 16.11 93.90

� � � � �
� � � � �
� � � � �

100.0 101.4 100.0 136.3

� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.1

� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.1

� � � � �
� � � � �
� � � � �

95.4 76.6 101.6 −598.1

� � � � �
� � � � �
� � � � �

99.7 99.7 72.2 100.0

� � � � �
� � � � �
� � � � �

99.7 99.7 99.9 100.0

� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.5

� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.0

� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.0

� � � � �
� � � � �
� � � � �

100.0 100.7 100.0 125.7
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Table 4.4 Comparison of the sets of effective terms for a plate with a distributed load with different boundary
conditions, a/h = 10.

ssss c f c f cccc scsc

Me = 6 Me = 7 Me = 7 Me = 7

uz
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

♦ � ♦ � ♦
♦ � ♦ � ♦
� � � ♦ ♦

Me = 10 Me = 10 Me = 10 Me = 9

σxx
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � ♦ � ♦
♦ � ♦ � ♦
� � � ♦ �

Me = 10 Me = 10 Me = 10 Me = 10

σyy
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � ♦ � ♦
� � ♦ � ♦
� � � ♦ �

Me = 6 Me = 6 Me = 7 Me = 6

σxz
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

♦ � ♦ � ♦
♦ � ♦ � ♦
� ♦ � ♦ ♦

Me = 6 Me = 7 Me = 7 Me = 6

σyz
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

♦ � ♦ ♦ ♦
♦ � ♦ � ♦
� ♦ � ♦ �

Me = 11 Me = 12 Me = 13 Me = 12

σzz
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � ♦ ♦
� � � � ♦
� � � � �

Me = 13 Me = 13 Me = 13 Me = 13

COMBINED
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � ♦
� � � � ♦
� � � � �
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Table 4.5 Accuracy of different models for a plate with a distributed load, a/h= 10.

δuz [%] δσxx [%] δσyy [%] δσxz [%] δσyz [%] δσzz [%]

ssss
� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.0 100.0 100.0

CPT 96.1 98.4 98.4 66.8 66.8 1974.2

FSDT 100.9 98.4 98.4 66.8 66.8 1974.2

Kant-2 99.9 100.2 100.2 100.0 100.0 79.4

cfcf
� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.0 100.0 100.0

CPT 91.2 98.3 94.9 239.5 −67.86 1171.3

FSDT 103.1 98.7 97.2 83.2 65.4 1183.7

Kant-2 99.9 100.0 101.0 98.8 99.7 80.4

cccc
� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.0 100.0 100.0

CPT 88.4 96.2 96.2 87.5 87.5 1074.0

FSDT 102.8 97.1 97.1 81.4 81.4 1084.8

Kant-2 99.8 99.9 99.9 98.9 98.9 80.0

scsc
� � � � ♦
� � � � ♦
� � � � �

100.0 100.0 100.0 100.0 100.0 100.0

CPT 90.2 94.6 97.7 66.1 84.7 1281.1

FSDT 102.4 98.3 97.9 67.3 81.8 1304.3

Kant-2 99.8 100.6 100.0 100.0 98.9 79.8
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Table 4.6 Sets of effective terms for all the considered boundary conditions.

���� ���� ���� ���� � ��♦
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(a) Simply-supported plate. Output uz.
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(b) Simply-supported plate. Output σxz.
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(c) Two clamped e two free edges plate. Output uz.
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(d) Two clamped e two free edges plate. Output σxz.

Figure 4.3 Number of terms vs. error for different output variables by various models for a simply-supported
plate and two edges free and two edges clamped plate with a distributed load, a/h = 10. � model with the
thickness locking corrected.



76 chapter 4
!"

#
$%
&'(

)'*
%&
#
+

,&&(&'-
./..0 ./.0 ./0 0 0.

123450

623782

123459
:6*;<=*

0>

09

0.

?

>

@

(a) Clamped Plate. Output uz.
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(b) Clamped Plate. Output σxz.
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(c) Two simply-supported and two clamped edges
plate. Output uz.
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(d) Two simply-supported and two clamped edges
plate. Output σxz.

Figure 4.4 Number of terms vs. error for different output variables by various models for a clamped plate
and two simply-supported edges and two clamped edges plate with a distributed load, a/h = 10. � model with
the thickness locking corrected.

Table 4.7 Symbols that indicate the status of a displacement variable for different loading conditions.

Active term Inactive term

� � Distributed Load
!

!

!

!

� � Point Load
!

!

!

!

� � Four Point Loads
! !

!

!
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(a) Distributed load. (b) Point load.

(c) Point loads.

Figure 4.5 Adopted loading conditions.

Table 4.8 Fourth order FEM model solutions in the case of simply-supported plate subject to point loading
conditions, a/h = 10.

uzN=4 [m] σxxN=4 [Pa] σyzN=4 [Pa] σzzN=4 [Pa]

Point Load 1.7662 × 10−7 1.9336 × 105 7.0444 × 103 3.1373 × 104

Four Point Loads 1.7662 × 10−7 1.9336 × 105 6.2392 × 103 3.1373 × 104
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Table 4.9 Comparison of the sets of effective terms for a simply-supported plate subject to different loading
conditions.

!

!

!

!

!

!

!

!

! !

!

!

Me = 6 Me = 6 Me = 6

uz
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Me = 10 Me = 7 Me = 7

σxx
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Me = 10 Me = 7 Me = 7

σyy
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Me = 6 Me = 7 Me = 7

σxz
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Me = 6 Me = 7 Me = 7

σyz
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Me = 11 Me = 7 Me = 7

σzz
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Me = 13 Me = 7 Me = 7

COMBINED
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
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Table 4.10 Accuracy of different plate models for a simply-supported plate subject to various loading condi-
tions, a/h= 10.

δuz [%] δσxx [%] δσyy [%] δσxz [%] δσxz [%] δσzz [%]

!

!

!

!

� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.0 100.0 100.0

CPT 96.1 98.4 98.4 66.8 66.8 1974.2

FSDT 100.9 98.4 98.4 66.8 66.8 1974.2

Kant-2 99.9 100.3 100.3 100.0 100.0 79.4

!

!

!

!

� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.0 100.0 100.0

CPT 91.4 83.7 83.7 67.0 67.0 540.1

FSDT 99.9 83.7 83.7 67.0 67.0 540.1

Kant-2 100.0 96.5 96.5 99.9 99.9 39.5

! !

!

!

� � � � �
� � � � �
� � � � �

100.0 100.0 100.0 100.0 100.0 100.0

CPT 91.4 83.7 83.7 67.0 67.0 540.1

FSDT 99.9 83.7 83.7 67.0 67.0 540.1

Kant-2 100.0 96.5 96.5 99.9 99.9 39.5
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Table 4.11 Sets of effective terms for the considered loading conditions.
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(a) Distributed load. Output uz.
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(b) Point load. Output uz.
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(c) Distributed load. Output σxx.
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(d) Point load. Output σxx.
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(e) Distributed load. Output σxz.

!"

!#

!$

%

&

"
$'$$! $'$! $'! ! !$

()*+,!

-)*./)

()*+,#

01
2
34
567

869
45
2
:

;55756<

(f) Point load. Output σxz.

Figure 4.6 Number of terms vs. error for different output variables and loading conditions by various models
for a simply-supported plate, a/h = 10. � model with the thickness locking corrected.
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Table 4.12 Symbols that indicate the status of a displacement variable for different output variables.

Active term Inactive term

� � uz

� � σxx

� � σxz

� ♦ σzz

Table 4.13 Comparison of the sets of effective terms for plates with different boundary and loading condi-
tions, a/h = 100. � = uz, � = σxx, � = σxz and � = σzz

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
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Table 4.14 Sets of effective terms for the considered boundary and loading conditions, a/h = 100
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Table 4.15 Comparison of the sets of effective terms for plates with different boundary and loading condi-
tions, a/h = 10. � = uz, � = σxx, � = σxz and � = σzz
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Table 4.16 Sets of effective terms for all the considered boundary and loading conditions, a/h = 10.
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Table 4.19 where all the considered a/h cases are shown. Table 4.20 presents a comparison
of the accuracies given by the plate models obtained and the classical theories. A plate with
two clamped and two free edges is considered. For the sake of brevity, the accuracy data which
are related to the other boundary conditions are not reported here. The analyses carried out
suggest the following comments.

1. The sets of effective displacement variables depend on all the three considered parame-
ters: loadings, boundary conditions, and thickness.

2. The proper analysis of thick plates require more sophisticated models since the total num-
ber of expansion terms increases as a/h decreases. This result is analogous to that in
Carrera and Petrolo (61).

3. It is confirmed that different output variables require different plate models to be properly
detected.

First conclusion and outline Refined models have been hierarchically obtained by means
of the Carrera Unified Formulation, CUF. The finite element analysis has been used to deal with
arbitrary geometries, loadings, and boundary conditions. Isotropic plates have been considered.
A fourth-order solution has been adopted as reference. The accuracy analysis has been con-
ducted via a so-called mixed asymptotic/axiomatic approach which determines the role of each
displacement variable in computing a given displacement/stress variable. The present approach
has proved its validity in constructing:

1. reduced plate models equivalent to a full higher-order theory;

2. reduced plate models able to fulfil a given accuracy input.

As far as the first type of models is concerned, the following conclusions can be drawn.

◦ All the parameters considered (loadings, boundary conditions, and thickness) are impor-
tant to determine the sets of effective terms, that is, as one of these parameters changes, a
different plate model is required.

◦ The influence of the length-to-thickness ratio is particularly strong.

◦ The use of full models is mandatory when a complete set of results is needed, since only
few can be discarded.

The construction of the second type of plate modes has highlighted that Unified Formulation
allows us, for a given problem, to obtain a diagram that in terms of accuracy (input) gives an
answer to the following fundamental questions (see Fig.s 4.3, 4.4 and 4.6):
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◦ what is the ’minimum’ number of the terms, Nmin, to be used in a Finite Element Plate
model?

◦ Which are the terms to be retained, that is, which are the generalized displacement vari-
ables to be used as FE dof’s?

The present method of analysis is able to create plots like the one in Fig. 4.7 that gives the
number of terms as function of the permitted error. This plot can be defined as Best finite
element Plate Theory Diagram BPTD since it allows us to edit an arbitrary given theory in
order to have a lower amount of terms for a given error (vertical shift, ∆N) or, to increase the
accuracy keeping the computational cost constant (horizontal shift, ∆error). Most times, the plot
presented appears as an hyperbole. CUF makes the computation of such a plot possible. Note
that the diagram has the following properties:

◦ it changes by changing problems (a/h, loadings, boundary conditions, etc.);

◦ it changes by changing output variable (displacement/stress components, or a combina-
tion of these).

The validity of the BPTD is tested by computing the accuracy of all the plate models obtainable
as a combination of the 15 terms of the fourth-order theory. The results are reported in Fig.
4.8 in the case of a simply-supported plate loaded by a distributed load, uz is considered as
output variable. The BPTD perfectly matches the lower boundaries of the region where all the
models lie. This confirms that the BPTD represents the best theory (i.e. the least cumbersome)
for a given error. The BPTD permits the evaluation of any existing plate FE elements, as in
the previous sections. The distance from the BPTD of a given known FE model represents a
guideline to recommend any other plate theory.
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Figure 4.7 An example of Best Plate Theory Diagram (BPTD).
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Figure 4.8 Accuracy of all the possible combinations of plate models in computing uz for the simply-
supported plate loaded by a distributed load (each ’+’ indicates a different plate model).

4.1.2 Orthotropic Plate

The geometry of plate is shown in Fig. 4.9, where a is 0.1 [m], and b is equal to a. A simply-
supported orthotropic plate loaded with a distributed load is considered. A bi-sinusoidal trans-
verse distributed load Pz is applied at the top surface:

Pz = pzsin
�mx

a

�
cos
�ny

b

�
(4.2)

where load amplitude pz is equal to 1 [kPa]; m and n are the wave numbers in the two in-plane
plate directions, both of them equal to 1. uz,σxx,σyy and σzz are computed at [a/2, b/2, 0], while
σxz is computed at [0, b/2, h/2] and σyz is computed at [a/2, 0,h/2]. Stresses are computed
directly from the constitutive equations. Four-node plate elements have been used, and a uni-
form mesh of 15 x 15 elements has been adopted. Shear locking problems have been solved
by using mixed interpolation of tensorial components (previous extended to CUF in (72)). A
fourth-order Layer Wise model has been adopted as the reference for the following analysis.
Table 4.21 shows the comparison of the analytical solution, obtained from the work of Carrera
and Petrolo, (61) and the present FEM one. The solutions obtained via FEM model are very
closed to the solution obtained via 3D models or close form. Moreover the finite elements
solutions converge to the 3D solutions with increasing the numbers of elements. Comparison
between some available results from literature and the present FE formulation is considered in
Table 4.22. The solutions obtained by considered plate theories underline that the different con-
sidered theories are able to compute the various required output with a different accuracy. For
example the CLT theory is able to detect almost exactly the normal stress σxx while it is not able
to detect correctly the transversal displacement uz and the shear stress σyz. Further comparison
between the reference model and the equivalent single layer fourth-order plate model is given in
Fig. 4.10. In this figure, various variable are plotted across the thickness direction. The figure
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Figure 4.9 Plate geometry.

plots various variables along the thickness for the different outputs. These results constitute an
assessment of the present FE plate model as detailed in the analysis below.

Length-to-thickness ratio effects The role of each displacement variable for different
length-to-thickness ratio plates is conducted as a first assessment. Three different length-to-
thickness ratio (a/h) sets are considered:

1. very thick plates (a/h = 2.5);

2. thick plates (a/h = 5);

3. thin plates (a/h = 50).

The effectiveness of each term is investigated for each length-to-thickness ratio. An unsymmet-
rical cross-ply (0/90) square plate is considered. EL is equal to 40 GPa. ET and Ez are equal to 1
GPa. νLT and νLz are equal to 0.5 and 0.6 respectively. Fig. 4.11 illustrates the influence of each
variable with respect to reference solution for the three considered plates. The x-axis represents
the terms which are discarded and the related marker represents the error of the consequent re-
duced model compared to the reference model. The reference error, that is, the error determined
through Eq. (2.40), is reported for all outputs and it is represented by the continuous line. From
Fig. 4.11 it is possible to obtain different reduced models, one from each output, discarding all
those terms for which the error marker is under the continuous line. For example form Fig. 4.11
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Figure 4.10 Comparison of the solutions obtained via Equivalent Single Layer fourth-order FEM model
(ED4) and a Layer Wise fourth-order FEM model (LD4) in the case of an unsymmetrical (0/90) cross ply
square simply-supported plate under distributed load.

it is possible to obtain for the output σxz and a/h = 2.5 the following displacement model

ux = ux1 + zux2 + z2ux3 + z3ux4 + z4ux5

uz = uz1
(4.3)

where only the terms having the error marker above the continuous line are considered. Table
4.23 has been obtained exploiting Fig. 4.11. It shows the reduced models obtained for the
thin plate, the moderately thick plate and for the thick plate. For each reduced displacement
model the error is reported and, for a comparison with the models present in literature, the
errors given by the FSDT model and the Kant-2 (70) model are reported always with respect
to the Layer Wise reference model. By varying the accepted error, that is, by varying the
height of the continuous line, it is possible to determine further theories which provide solutions
with a certain degree of error compared to the reference one. The procedure used to obtain
the reduced models can be graphically described (see Fig. 4.12); positioning the continuous
line on the lowest error marker and moving it upwards with discrete steps it is possible to
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determine different reduced models neglecting all the terms which are under the continuous
line. Fig. 4.13 has been built through this procedure. It shows the number of terms which are
needed to detect an output variable with a given error. The corresponding plate models are also
indicated. Models from open literature have also been included. In the figure the evolutions
of the considered outputs along the thickness, compared with the reference model, are also
reported for the reduced model which shows the lowest error in order to give a more realistic
idea of the reduced model behaviour. It is possible to observe that in some cases the evolution
along the thickness of the output obtained through the reduced model is very different from the
output obtained through the reference model. The analysis undertaken suggests the following
discussion:

1. The reduced plate models which are equivalent to a fourth-order theory vary significantly
if different output variables are considered.

2. The influence of length-to-thickness ratio is significant.

3. In some cases the reduced models present errors smaller than those of the full model.

Orthotropic ratio effects The effect of the orthotropic ratio is herein investigated. An un-
symmetrical cross ply (0/90) square plate is considered. ET and Ez are equal to 1 GPa. νLT and
νLz are equal to 0.5 and 0.6 respectively. Each layer is 0.01 m thick. Three different orthotropic
ratios are considered (EL/ET = 5, EL/ET = 40, EL/ET = 100). The effectiveness of each term
is investigated for each orthotropic ratio. Fig. 4.14 illustrate the influence of each term on,
the normal stress σxx and the shear stress σxz. Table 4.24 has been obtained through the same
procedure describe in the previous paragraph from Fig. 4.14. It reports the reduced models ob-
tained for all the considered outputs. In Table 4.24 the errors relative to the reduced model and
the errors relative to models from the open literature are also reported. Varying the accepted
error is possible to develop further theories which provide solutions with a certain degree of
error when compared to the reference one. Figure 4.15 illustrate the number of terms needed to
compute an output variable with a given error. The corresponding plate models are also indi-
cated together with models retrieved from open literature. The analyses carried out suggest the
following comments :

1. The influence of each term varies significantly according to the considered output.

2. The influence of each term depends weakly on the orthotropic ratio.



results and discussion 89

Table 4.17 Comparison of the sets of effective terms for plates with different boundary and loading condi-
tions, a/h = 5. � = uz, � = σxx, � = σxz and � = σzz.
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Table 4.18 Sets of effective terms for the considered boundary and loading conditions, a/h = 5.

���� ���� � ��� ���� � ��♦
���� ���� � ��� ���� � ��♦
���� ���� ���� � ��� ����
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Table 4.19 Influence of a/h on the displacement field terms for combined boundary and loading conditions.

a/h = 100
� ��♦ ���� � ��♦ ���� � ��♦
� ��♦ ���� � ��♦ ���� � ��♦
���� ���� ���� � ��♦ ����

a/h = 10
� ��� ���� � ��� ���� � ��♦
� ��� ���� � ��� ���� � ��♦
���� ���� ���� � ��� ����

a/h = 5
���� ���� � ��� ���� � ��♦
���� ���� � ��� ���� � ��♦
���� ���� ���� � ��� ����
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Figure 4.11 Influence of each displacement variable with respect to the reference ratio ED4/LD4 for differ-
ent length-to-thickness ratios.
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Table 4.20 Accuracy of different displacement models in the case of a plate with two clamped and two free
edges subject to a point load.

δuz [%] δσxx [%] δσyy [%] δσxz [%] δσxz [%] δσzz [%]

a/h = 100
� ��♦ ���� � ��♦ ���� � ��♦
� ��♦ ���� � ��♦ ���� � ��♦
���� ���� ���� � ��♦ ����

100.0 100.0 100.0 100.0 100.0 100.0

CPT 102.7 98.5 98.0 158.6 710.2 1337.4

FSDT 102.9 98.5 98.0 80.0 114.3 1337.6

Kant-2 100.0 100.0 100.0 99.9 117.9 99.0

a/h = 10
� ��� ���� � ��� ���� � ��♦
� ��� ���� � ��� ���� � ��♦
���� ���� ���� � ��� ����

100.0 100.0 100.0 100.0 100.0 100.0

CPT 86.2 82.5 79.2 202.9 −106.014 449.824

FSDT 101.6 82.7 80.24 83.6 72.7 453.2

Kant-2 100.0 96.2 95.7 98.7 97.7 39.8

a/h = 5
���� ���� � ��� ���� � ��♦
���� ���� � ��� ���� � ��♦
���� ���� ���� � ��� ����

100.0 100.0 100.0 100.0 100.0 100.0

CPT 60.7 70.6 65.7 228.9 −90.6 189.9

FSDT 102.8 70.9 68.1 88.7 71.6 193.5

Kant-2 100.4 89.7 88.7 96.0 99.1 −23.1
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Table 4.21 Comparison of the solutions obtained via 3D models, closed form and a Layer Wise fourth order
FEM model in the case of simply-supported orthotropic plate loaded with a Distributed Load. ūz = uz

100ET h3

¯pza4 .
σ̄xx = σxx

p̄z(a/h) . σ̄xz = σxz
p̄z(a/h)2 . σ̄zz = σzz

p̄z(a/h)

ūz σ̄xx σ̄yz

3D (61) 0.6970 0.5827 0.0472

Closed form (61) 0.6970 0.5827 0.0472
Present FEM

FEM(mesh15x15) 0.6948 0.5831 0.0474

FEM(mesh19x19) 0.6956 0.5830 0.0473

FEM(mesh23x23) 0.6960 0.5829 0.0473

FEM(mesh27x27) 0.6963 0.5828 0.0473

FEM(mesh31x31) 0.6964 0.5828 0.0472

Table 4.22 Comparison of the solutions obtained via different plate theories for a simply-supported unsym-
metric cross-ply (0Â°/90Â°) square plate under bi-sinusoidal distributed load. ūz = uz

100ET h3

¯pza4 . σ̄xx = σxx
p̄z(a/h) . σ̄xz

= σxz
p̄z(a/h)2 . σ̄zz = σzz

p̄z(a/h)

ūz σ̄xx σ̄yz

Present ED4 1.5297 0.1132 0.1958

Present LD4∗ 1.5548 0.1163 0.1158

Present CLT 0.7586 0.1026 0.0167

Present FS DT 1.5168 0.1221 0.1992

HOT − 1 by Kant (69) 1.4625 0.1141 0.1965

HOT − 2 by Kant (70) 0.8713 0.0469 0.2275

HOT − 3 by Pandya (68) 1.4959 0.1016 0.2044

(∗ Re f erence solution.)
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Table 4.23 Comparison of the sets of effective terms for an isotropic simply-supported plate loaded with a
distributed load, θ = 0/90 , for different length-to-thickness ratio

a/h = 2.5 a/h = 5 a/h = 50

Theory δ % Theory δ % Theory δ %

uz
� � � � �
� � � � �
� � � � �

99.9
� � � � �
� � � � �
� � � � �

98.3
� � � � �
� � � � �
� � � � �

99.0

FS DT 72.7 FS DT 76.9 FS DT 84.9

Kant − 2 70.7 Kant − 2 57.4 Kant − 2 34.6

σxx
� � � � �
� � � � �
� � � � �

100.0
� � � � �
� � � � �
� � � � �

97.3
� � � � �
� � � � �
� � � � �

98.1

FS DT 47.4 FS DT 86.8 FS DT 146.3

Kant − 2 50.0 Kant − 2 40.1 Kant − 2 29.6

σyy
� � � � �
� � � � �
� � � � �

100.4
� � � � �
� � � � �
� � � � �

97.0
� � � � �
� � � � �
� � � � �

100.3

FS DT 65.5 FS DT 85.7 FS DT 91.1

Kant − 2 92.6 Kant − 2 82.7 Kant − 2 65.4

σxz
� � � � �
� � � � �
� � � � �

76.7
� � � � �
� � � � �
� � � � �

67.8
� � � � �
� � � � �
� � � � �

0.2

FS DT 77.4 FS DT 119.7 FS DT 185.0

Kant − 2 98.0 Kant − 2 169.5 Kant − 2 277.4

σyz
� � � � �
� � � � �
� � � � �

78.0
� � � � �
� � � � �
� � � � �

98.0
� � � � �
� � � � �
� � � � �

256.1

FS DT 103.1 FS DT 134.2 FS DT 185.4

Kant − 2 130.7 Kant − 2 190.1 Kant − 2 277.9

σzz
� � � � �
� � � � �
� � � � �

100.1
� � � � �
� � � � �
� � � � �

93.9
� � � � �
� � � � �
� � � � �

64.3

FS DT 45.0 FS DT 180.5 FS DT 1.0 104

Kant − 2 74.1 Kant − 2 86.0 Kant − 2 68.6
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Figure 4.12 Example of different displacement fields obtained varying the accepted error.



results and discussion 95

!"

!#

!$

%

&

"

#

$

'
(
)
*
+,
-.
/
+,
)
0

1,,-, 2
$3! ! !$ !$$$3$!

!"#$%&

'()*

+ ,-./
01

(a) σxx, a/h = 2.5

!"#$%&
'()*

+ ,-./
01

!"

!#

!$

%

&

"

#

$'! ! !$ !$$233,3 4
56

7
8.

39,
:9*
.3
7
;

(b) σxz, a/h = 2.5

!"

!#

!$

%

&

"

#

$

'
(
)
*
+,
-.
/
+,
)
0

1,,-, 2
! !$ !$$

!"#$%&
'()*

+ ,-./
01

(c) σxx, a/h = 5

!"#$
%&'()*

!"

!#

!$

%

&

"

#

$

!$ !$$

'
(
)
*
+,
-.
/
+,
)
0

1,,-, 2

+ ,-./
01

(d) σxz, a/h = 5
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(f) σxz, a/h = 50

Figure 4.13 Number of terms vs. error for different output variable and different length-to-thickness ratio by
various models for a simply-supported plate with a distributed load.
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Figure 4.14 Influence of each displacement variable with respect to the reference ratio ED4/LD4 for differ-
ent orthotropic ratios.
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Table 4.24 Comparison of the sets of effective terms for an isotropic simply-supported plate loaded with a
distributed load, θ = 0/90, for different ortotropic ratios

EL/ET = 5 EL/ET = 10 EL/ET = 100

Theory δ % Theory δ % Theory δ %

uz
� � � � �
� � � � �
� � � � �

99.9
� � � � �
� � � � �
� � � � �

98.3
� � � � �
� � � � �
� � � � �

97.5

FS DT 71.4 FS DT 76.9 FS DT 68.5

Kant − 2 78.0 Kant − 2 57.4 Kant − 2 56.3

σxx
� � � � �
� � � � �
� � � � �

95.2
� � � � �
� � � � �
� � � � �

98.6
� � � � �
� � � � �
� � � � �

102.0

FS DT 113.5 FS DT 86.8 FS DT 56.5

Kant − 2 70.3 Kant − 2 40.1 Kant − 2 34.3

σyy
� � � � �
� � � � �
� � � � �

98.8
� � � � �
� � � � �
� � � � �

98.6
� � � � �
� � � � �
� � � � �

94.1

FS DT 91.5 FS DT 85.3 FS DT 76.6

Kant − 2 111.3 Kant − 2 82.7 Kant − 2 78.2

σxz
� � � � �
� � � � �
� � � � �

112.4
� � � � �
� � � � �
� � � � �

67.7
� � � � �
� � � � �
� � � � �

7.0

FS DT 73.8 FS DT 119.7 FS DT 148.1

Kant − 2 109.0 Kant − 2 169.5 Kant − 2 198.7

σyz
� � � � �
� � � � �
� � � � �

115.1
� � � � �
� � � � �
� � � � �

101.2
� � � � �
� � � � �
� � � � �

108.9

FS DT 79.5 FS DT 134.2 FS DT 139.6

Kant − 2 117.2 Kant − 2 190.1 Kant − 2 187.2

σzz
� � � � �
� � � � �
� � � � �

101.9
� � � � �
� � � � �
� � � � �

93.9
� � � � �
� � � � �
� � � � �

100.2

FS DT 417.2 FS DT 180.5 FS DT 95.2

Kant − 2 98.1 Kant − 2 86.0 Kant − 2 79.3
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(f) σxz, EL/ET = 100

Figure 4.15 Number of terms vs. error for different output variables and different orthotropy ratios via various
models for a simply-supported plate under a distributed load.
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Angle ply effect The effect of the ply angle is herein investigated. An antisymmetric two
layer plate is considered. EL is equal to 40 GPa. ET and Ez are equal to 1 GPa. νLT and
νLz are equal to 0.5 and 0.6 respectively. Each layer is 0.01 m thick. Three different plates
are considered (θ = −15/15, θ = −30/30, θ = −45/45). The effectiveness of each term is
investigated for each ply angle condition. Fig. 4.16 shows the influence of each term. Table
4.25 has been obtained exploiting Fig. 4.16 with the same procedure describe in paragraph
4.1.2. For each output the reduced model obtained and its error are reported. In order to show a
comparison the errors relative to the models from open literature are also reported. Varying the
accepted error it is possible to determine further theories which provide solutions whit a certain
degree of error compared to the reference one. Fig. 4.17 shows the obtained theories together
with models retrieved from open literature. The analysis undertaken suggests the following
comments:

1. The reduced plate model which are equivalent to the reference model required a great
number of terms in many cases.

2. The influence of ply angle is not significant.

3. A significant computational cost reduction is detected if only one output is considered.

Effect of symmetry in lamination scheme The effect of symmetry in lamination is herein
investigated. Three different square plates are considered. EL is equal to 40 GPa. ET and Ez

are equal to 1 GPa. νLT and νLz are equal to 0.5 and 0.6 respectively. Each layer is 0.01 m
thick. The plates taken into account are (θ = 90/0/90, θ = 90/90/0, θ = 90/0/90/0) For each
plate the effectiveness of each term is investigated. The influence of each term is illustrate
in Fig. 4.18. Table 4.26 has been obtained exploiting Fig. 4.18 with the same procedure
described in paragraph 4.1.2 and reports the reduced model obtained with the relative error for
each reduced displacement field. Fig. 4.19 shows the theories obtained varying the accepted
error with models retrieved from open literature. It can be concluded that:

1. The lamination symmetry has a significant influence on the response especially for the
stress output.

2. A significant computational cost reduction is detected if only one output is considered.

Second conclusion and outline A laminated plate has been considered. Layer wise fourth-
order solution has been adopted as reference. The accuracy analysis has been conducted via
an axiomatic approach which determines the role of each variable computing a given displace-
ment/stress variable. In this work an approach able to construct reduced plate models equivalent
to a full higher-order theory has been presented. For a given problem, we developed a procedure
that is able to find the best plate theory in order to minimize computational costs. As far as the
first type of models is concerned, the following conclusion can be drawn:

1. All parameters considered (thickness, orthotropic ratio, angle ply, lamination, boundary
conditions and loading conditions) are important to determine the set of effective terms,
that is, if only one of these parameters changes, a different plate model will be required.
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2. Computing the output value in a single position, [a/2, b/2, 0] for the normal stress σxx

and [0, b/2, h/2] for the shear stress σxz can lead to an unrealistic value of the error.

3. The different reduced models found for each parameter and for each output describe a
curve that correlates the number of terms (the computational cost) and the error commit-
ted.

From Fig. 4.13, 4.15, 4.17 and 4.19 it is possible to draw a curve close to the best plate diagram
BPTD. From the presented results it is possible to see that the "Influence of each terms" method
is not able to draw the BPTD for composite plate.
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Figure 4.16 Influence of each displacement variable with respect to the reference ratio ED4/LD4 for differ-
ent ply angle.
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Table 4.25 Comparison of the sets of effective terms for an isotropic simply-supported plate loaded with a
distributed load, for different anisotropy values

−15 15 −30 30 −45 45

Theory δ % Theory δ % Theory δ %

uz
� � � � �
� � � � �
� � � � �

98.7
� � � � �
� � � � �
� � � � �

98.5
� � � � �
� � � � �
� � � � �

98.9

FS DT 80.9 FS DT 75.1 FS DT 74.2

Kant − 2 77.4 Kant − 2 69.4 Kant − 2 69.3

σxx
� � � � �
� � � � �
� � � � �

98.3
� � � � �
� � � � �
� � � � �

98.8
� � � � �
� � � � �
� � � � �

100.2

FS DT 63.2 FS DT 66.4 FS DT 72.0

Kant − 2 73.8 Kant − 2 67.1 Kant − 2 77.6

σyy
� � � � �
� � � � �
� � � � �

99.2
� � � � �
� � � � �
� � � � �

104.5
� � � � �
� � � � �
� � � � �

100.2

FS DT 82.3 FS DT 68.8 FS DT 72.0

Kant − 2 73.1 Kant − 2 65.1 Kant − 2 77.7

σxz
� � � � �
� � � � �
� � � � �

104.1
� � � � �
� � � � �
� � � � �

102.3
� � � � �
� � � � �
� � � � �

99.9

FS DT 75.2 FS DT 74.2 FS DT 72.8

Kant − 2 100.7 Kant − 2 99.5 Kant − 2 95.1

σyz
� � � � �
� � � � �
� � � � �

97.0
� � � � �
� � � � �
� � � � �

106.5
� � � � �
� � � � �
� � � � �

99.9

FS DT 83.3 FS DT 85.8 FS DT 72.8

Kant − 2 133.6 Kant − 2 122.1 Kant − 2 95.1

σzz
� � � � �
� � � � �
� � � � �

100.0
� � � � �
� � � � �
� � � � �

99.0
� � � � �
� � � � �
� � � � �

100.0

FS DT 142.4 FS DT 107.0 FS DT 92.8

Kant − 2 84.3 Kant − 2 82.6 Kant − 2 81.6



results and discussion 103

!"

!#

!$

%

&

"

#

$

'
(
)
*
+,
-
.
/
+,
)
0

1,,-, 2
! !$ !$$

!"#$%&
'()*

+ ,-./
01

(a) σxx, θ = −15/15
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(b) σxz, θ = −15/15
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(c) σxx, θ = −30/30
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(e) σxx, θ = −45/45
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(f) σxz, θ = −45/45

Figure 4.17 Number of terms vs. error for different output variable and different anisotropy conditions via
various models for a simply-supported plate under a distributed load.



104 chapter 4

!""

!"

!

!""

!"

!

!""

!"

!

!""

!"

!""

!"

!

!"""

!""

!"
!

# $ % & !" !# !$ !%" # $ % & !" !# !$ !%"

# $ % & !" !# !$ !%" # $ % & !" !# !$ !%"

# $ % & !" !# !$ !%" # $ % & !" !# !$ !%"

'(()(*+
,, ,-

./"0"0 /"1

./"0/"0"1

./"0"0 /"0"1

23(45*637839:3;

Figure 4.18 Influence of each displacement variable with respect to the reference ratio ED4/LD4 for differ-
ent symmetric plate.
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Table 4.26 Comparison of the sets of effective terms for an isotropic simply-supported plate loaded with a
distributed load, for different lamination values

90/0/90 90/90/0 90/0/90/0

Theory δ % Theory δ % Theory δ %

uz
� � � � �
� � � � �
� � � � �

97.8
� � � � �
� � � � �
� � � � �

98.6
� � � � �
� � � � �
� � � � �

98.9

FS DT 84.3 FS DT 76.6 FS DT 76.7

Kant − 2 91.9 Kant − 2 65.3 Kant − 2 69.6

σxx
� � � � �
� � � � �
� � � � �

104, 1
� � � � �
� � � � �
� � � � �

94.7
� � � � �
� � � � �
� � � � �

99.0

FS DT 51.9 FS DT 80.3 FS DT 45.5

Kant − 2 91.7 Kant − 2 91.7 Kant − 2 100.3

σyy
� � � � �
� � � � �
� � � � �

93.8
� � � � �
� � � � �
� � � � �

105.5
� � � � �
� � � � �
� � � � �

100.4

FS DT 44.1 FS DT 29.1 FS DT 13.9

Kant − 2 90.2 Kant − 2 50.0 Kant − 2 58.0

σxz
� � � � �
� � � � �
� � � � �

110.1
� � � � �
� � � � �
� � � � �

66.7
� � � � �
� � � � �
� � � � �

89.7

FS DT 134.9 FS DT 100.7 FS DT 63.1

Kant − 2 197.2 Kant − 2 155.1 Kant − 2 80.0

σyz
� � � � �
� � � � �
� � � � �

98.4
� � � � �
� � � � �
� � � � �

92.6
� � � � �
� � � � �
� � � � �

94.2

FS DT 79.2 FS DT 64.8 FS DT 74.8

Kant − 2 93.9 Kant − 2 66.1 Kant − 2 94.8

σzz
� � � � �
� � � � �
� � � � �

100.4
� � � � �
� � � � �
� � � � �

99.2
� � � � �
� � � � �
� � � � �

101.3

FS DT 77.9 FS DT 66.0 FS DT 22.3

Kant − 2 84.8 Kant − 2 80.4 Kant − 2 74.8
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(a) σxx θ = 90/0/90
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(b) σxz θ = 90/0/90
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(c) σxx θ = 90/90/0
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(d) σxz θ = 90/90/0
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(e) σxx θ = 90/0/90/0
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(f) σxz θ = 90/0/90/0

Figure 4.19 Number of terms vs. error for different output variables and different lamination conditions via
various models for a simply-supported plate under a distributed load.



results and discussion 107

4.2 Genetic optimization method

4.2.1 Laminated Plates

A laminated plate was considered. The geometry of the plate is shown in Fig. 4.9, where a is 0.1
[m], and b is equal to a. σxx is computed at [a/2, b/2,z] with 0 < z < h. Stresses are computed
directly from the constitutive equations. Four-node plate elements were used, and a uniform
mesh of 15 x 15 elements was adopted. Shear locking problems were solved by using mixed
interpolation of tensorial components (previously extended to CUF in (72)). A fourth-order
Layer Wise model was adopted as the reference for the following analysis. A simply-supported
orthotropic plate loaded with a distributed load was considered. A bi-sinusoidal transverse
distributed load Pz was applied at the top surface:

Pz = pzsin
�mx

a

�
cos
�ny

b

�
(4.4)

where load amplitude pz is equal to 1 [kPa]; m and n are the wave numbers in the two in-plane
plate directions, both of them equal to 1. The variation of different parameters was investigated.

Effect of Length-to-thickness ratio Three different length-to-thickness ratio (a/h) sets
were considered:

1. very thick plates (a/h = 50);

2. thick plates (a/h = 5);

3. thin plates (a/h = 2.5).

An unsymmetrical cross-ply (0/90) square plate were considered. EL was considered equal
to 40 GPa. ET and Ez were set equal to 1 GPa. νLT and νLz were defined equal to 0.5 and
0.6 respectively. An initial population of one hundred and fifty different displacement models
was created in a random way. The genetic algorithm was applied on these initial displacement
models in order to obtain the Best Plate Theory Diagram after several generations. In Fig. 4.20
the evolution of the initial population through twenty generations for a very thick plate is shown.
There are five generations between each graph. Each individual is represented in the figure by
a circular marker. The abscissa axis reports the number of active terms of the plate models and
the ordinate axis reports the error that each individual makes. Twenty generations were used,
since the populations reach convergence at this number. Each generation has approximately
three hundred individuals. This number ensures good biodiversity and at the same time keeps
computational time low. The application of the genetic code leads to the results shown in Fig.
4.21 for plates with a different length to thickness ratio. The figures were obtained considering
the stress σxx as output. The figure shows the best plate theory diagram and for three different
plate theories the evolutions of the considered outputs along the thickness are illustrated and,
compared with the reference model. These graphs are reported in order to demonstrate that
the stress computed through the reduced models is very close to the stress computed through
the reference model. Furthermore, through the genetic algorithm it is possible to obtain the
influence of each therm expansion in function of the number of active terms and the problem.
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Figure 4.20 Evolution of an initial population through twenty generations; there are five generations between
each graph.

Monitoring the best individual of each generation and recording their “DNA” it is possible
to draw the graphs of Fig. 4.22 which report the influence of each displacement variable in
function of the number of active terms. For example in Fig. 4.22 (b) it can be seen that the
term 4, u3x4, is fundamental if the number of active terms are two while it is useless if the
number of active terms is six or seven. The scale of the graphics has been normalized in order
to separate the influence of terms from the number of generation. In Fig. 4.23 the BPTDs and
the plate theories obtained from the literature are shown in the same graphs. From Fig. 4.23
it is possible to see that the theories obtained from the literature are not the best for the three
problems considered.

Effect of Orthotropic ratio An unsymmetrical cross ply (0/90) square plate was considered.
ET and Ez were set equal to 1 GPa. νLT and νLz were defined equal to 0.5 and 0.6 respectively.
Each layer was 0.01 m thick. Three different orthotropic ratios were considered (EL/ET = 5,
EL/ET = 40, EL/ET = 100). A genetic optimization code was used to compute the Best Plate
Theory diagram. Twenty generations were used. Each generation is made up of approximately
three hundred individuals. Considering σxx as the output, the BPTD obtained is shown in Fig.
4.24. The figure shows the best plate theory diagram and the evolutions of the considered
outputs along the thickness compared with the reference model for three different plate theories.
Fig. 4.25 shows the importance of each term expansion in function of the number of active terms
and the problem considered. It is possible to see that some terms are either essential or useless
in function of the number of active terms. Fig. 4.26 illustrates the comparison between the
present best plate theory diagrams and some known theories from open literature. For the three
orthotropic ratios considered, the optimization genetic code found the best models in terms of
accuracy vs. computational times. An example can be derived from Fig. 4.26(a); using the
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(a) a/h = 50

(b) a/h = 5

(c) a/h = 2.5

Figure 4.21 Best Plate Theory Diagram for the different length to thickness ratio.
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(a) a/h = 50
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(b) a/h = 5
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(c) a/h = 2.5

Figure 4.22 Influence of the expansion variable in function of the number of active terms and the problem.
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(a) a/h = 50 (b) a/h = 5

(c) a/h = 2.5

Figure 4.23 Comparison between present best plate theory diagrams and some known theories from open
literature.
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(a) EL/ET = 5

(b) EL/ET = 40

(c) EL/ET = 100

Figure 4.24 Best Plate Theory Diagram for the different orthotropic ratio.
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(a) EL/ET = 5
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(b) EL/ET = 40
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(c) EL/ET = 100

Figure 4.25 Influence of the expansion variable in function of the number of active terms and the problem.



114 chapter 4

(a) EL/ET = 5 (b) EL/ET = 40

(c) EL/ET = 100

Figure 4.26 Comparison between present best plate theory diagrams and some known theories from open
literature.
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model obtained through the genetic code:

ux = ux0 + zux1 + z2ux2 + z3ux3 + z4ux4

uy = uy0 + zuy1 + z3uy3

uz = uz0 + zuz1 + z2uz2 + z4uz4

(4.5)

instead of the Kant1 (see Kant (69)):

ux = ux1 + z ux2 + z2 ux3 + z3 ux4

uy = uy1 + z uy2 + z2 uy3 + z3 uy4

uz = uz1 + z uz2 + z2 uz3 + z3 uz4

(4.6)

it is possible to decrease the error with the same computational time.
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Angle ply-plate An antisymmetric two layer plate was considered. EL was considered equal
to 40 GPa. ET and Ez were defined equal to 1 GPa. νLT and νLz were set equal to 0.5 and 0.6
respectively. Each layer was 0.01 m thick. Three different plates were considered (θ = −15/15,
θ = −30/30, θ = −45/45). The genetic optimization code was used to draw the best plate theory
diagram for the three plates considered. The BPTDs are reported in Fig 4.27. In the same graph
the plate theories obtained from the bibliography are also reported.

(a) θ = −15/15 (b) θ = −30/30

(c) θ = −45/45

Figure 4.27 Comparison between present best plate theory diagrams and some known theories from open
literature.

Symmetry in lamination scheme Three different square plates were considered. EL

was equal to 40 GPa. ET and Ez were considered equal to 1 GPa. νLT and νLz were set equal to
0.5 and 0.6 respectively. Each layer was 0.01 m thick. The plates taken into account were (θ
= 90/0/90, θ = 90/90/0) The genetic optimization code was used to draw the best plate theory
diagram for the three plates considered. The BPTDs are reported in Fig 4.28. In the same graph
the plate theories obtained from the bibliography are displayed.

4.2.2 Sandwich plate

A sandwich-thin, rectangular plate was considered. The plate was simply supported in corre-
spondence to its four edges. The plate geometry was as follows: width a = 100 [mm], length b
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(a) θ = 90/90/0 (b) θ = 90/0/90

Figure 4.28 Comparison between present best plate theory diagrams and some known theories from open
literature.

= 200 [mm], total thickness h = 12 [mm]. The faces of the same material had different thick-
nesses: top face thickness h3 = 0.1 [mm], bottom face thickness h1 = 0.5 [mm]. The core
thickness was h2 = 11.4 [mm]. The geometry of the plate is shown in Fig. 4.29. Four-node












 





Figure 4.29 Sandwich Plate Geometry

plate elements were used, and a uniform mesh of 15 x 15 elements was adopted. Shear lock-
ing problems were solved by using mixed interpolation of tensorial components (previously
extended to CUF in (72)). A fourth-order Layer Wise model has been adopted as the reference
for the following analysis. A bi-sinusoidal transverse distributed load Pz was applied at the top
surface:

Pz = pzsin
�mx

a

�
cos
�ny

b

�
(4.7)

where load amplitude pz was equal to 1 [kPa]; m and n are the wave numbers in the two in-
plane plate directions, both of them equal to 1. The two faces had the following material
properties: E1 = 70000[MPa], E2 = 71000[MPa], E3 = 69000[MPa],G13 = 26000[MPa],G23

= 26000[MPa],G12 = 26000[MPa], ν13 = 0.3[MPa], ν23 = 0.3[MPa] and ν12 = 0.3[Mpa]. The
core consisted of metallic foam which had the following material properties: E1 = 3[MPa], E2

= 3[MPa], E3 = 2.8[MPa], G13 = 1[MPa],G23 = 1[MPa],G12 = 1[MPa], ν13 = 0.25[MPa], ν23

= 0.25[MPa], ν12 = 0.25[MPa]. A genetic optimization code was used to computed the Best
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Plate Theory diagram. Twenty generations were imposed. Each generation was composed ap-
proximately of three hundred individuals Fig. 4.30 was obtained considering the stress σxx as
output . Fig. 4.30 shows the Best Plate Theory Diagram and, for two different plate, theories the
evolutions of the considered outputs along the thickness, compared with the reference model.
The BTPD and some plate theories obtained from bibliography are reported in Fig. 4.31.

Figure 4.30 Best Plate Theory Diagram

Figure 4.31 Comparison between present best plate theory diagrams and some known theories from open
literature.

Conclusion and outline The presented results have highlights that it is possible to build a
method able to answer to the following fundamental questions :

◦ what is the ’minimum’ number of the terms, Nmin, to be used in a Finite Element Plate
model?

◦ Which are the terms to be retained, that is, which are the generalized displacement vari-
ables to be used as FE DOFs?

The answer to these questions is summarized in the plots like the one displayed in Fig. 4.7 that
gives the number of terms in function of the allowed error. This plot can be defined as Best finite
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element Plate Theory Diagram (BPTD), since it allows to edit an arbitrary given theory in order
to have a lower amount of terms for a given error (vertical shift, ∆N) or to increase the accuracy
while keeping the computational cost constant (horizontal shift, ∆error). For simple problems it
is possible to build the BPTD only evaluating the influence of each terms, neglecting the an-
useful. For more complicated problems, like for instance the laminated plate, it is necessary
use the genetic optimization method. It is important to understand that the BPTD is strongly
problem dependent, and it has the following properties:

◦ it changes by changing the problem characteristics (a/h, loadings, boundary conditions,
etc.);

◦ it changes by changing output variables (displacement/stress components, or a combina-
tion of these).

In the present work the space solutions considered are bi-dimensional but it is possible to expand
them to an N-dimensional space in order to identify a best plate theory diagram that is able to
satisfy more than one output at the same time. The use of CUF , which makes it possible to
build in a different reduced automatic manner, along with a genetic optimization code, has led
to the possibility of identifying a tool that build up the BPTD.



120 chapter 4

4.3 Piezoelectric analysis
This section deals with structural analysis of isotropic and composite structures. The aim of this
section is to provide numerical examples able to highlight the enhanced capabilities of the 1D
electro-mechanical formulation. The following set of results aims to verify the present method
for cases where piezoelectric material in the structure is used for actuation or sensors.

Piezoelectric polyvinylidene (PVDF) bimorph beam.

Actuator case The structure is a cantilever beam consisting of two layers of PVDF
placed back to back with opposite polarities. The total height or thickness is 0.001 m, the
length is 0.1 m and the width is 0.005 m. The cantilever is fixed on the left end and electric
potential of 1 V is applied across the thickness. The relevant data are shown in Table 4.27. The

Table 4.27 Properties for bimorph cantilever beam.

PVDF
Elastic modulus 2.00 × 109 Pa
Shear modulus 7.75 × 108 Pa
Mass density 1.80 × 103 Kgm−3

Poisson’s ratio 0.29 −−
e31 Piezo 0.046 Cm−2

e32 Piezo 0.046 Cm−2

Elec. perm.χ11 1.06 × 10−10 Fm−1

Elec. perm.χ22 1.06 × 10−10 Fm−1

Elec. perm.χ33 1.06 × 10−10 Fm−1

L length 0.1 m
h height 0.001 m
b width 0.005 m

geometry of the beam is reported in Fig. 4.32. The numerical results for the present method are

Figure 4.32 Geometry of the bimorph cantilever beam.

compared with results from other methods in Table 4.28 Veley and Rao (86) used a 2D plane
stress element modified with pseudo-nodes to include the electric potential DOF. Tzou and Ye
(85), using triangular shell elements which have both mechanical (using FOSDT) and electri-
cal DOFs, showed that they produced better results than the thin solid linear elements used by
Tzou. Both Veley and Rao and Tzou and Ye compared their results with Tzou’s shell theory.
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Table 4.28 Deflections along length of beam. 1V

Position Chee-tong (84) Theory-Tzou (85) FEM-Veley (86) Solid FE-Tzou (85) Shell FE-Tzou/Ye (85) CUF 1D
(m) w(m) w(m) w(m) w(m) w(m) w(m)
0.00 0.000 0.000 0.000 0.000 0.000 0.000
0.02 1.380 × 10−8 1.380 × 10−8 1.38 × 10−8 1.24 × 10−8 1.32 × 10−8 1.316 × 10−8

0.04 5.520 × 10−8 5.520 × 10−8 5.520 × 10−8 5.08 × 10−8 5.280 × 10−8 5.266 × 10−8

0.06 1.242 × 10−7 1.242 × 10−7 1.242 × 10−7 1.16 × 10−7 1.190 × 10−7 1.185 × 10−7

0.08 2.208 × 10−7 2.210 × 10−7 2.210 × 10−7 2.10 × 10−7 2.110 × 10−7 2.106 × 10−7

0.10 3.450 × 10−7 3.450 × 10−7 3.450 × 10−7 3.30 × 10−7 3.300 × 10−7 3.2920 × 10−7

Chee et.al. (84) uses Hermitian beam elements with electric potential incorporated via the lay-
erwise formulation, has a high correlation with Tzou’s theoretical shell solutions and the results
of Veley and Rao. Hwang and Park (87) used a classical displacement field with five plate el-
ements for the same problem. Separate actuator and sensor equations were used to calculate
control forces for actuation and to calculate charges for sensing which were not incorporated
into their FE analysis. The deflection of the cantilever bimorph along the length (same model
as above) using the present method is compared with Hwang and Park (87) (including Tseng’s
data) in fig. 4.33. In addition, the effect of varying the input actuation voltage (0-200 V) was

!"#$%&'#()
*+,$%
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Figure 4.33 Actuator configuration. Deflection of the bimorph cantilever along its length.

found to be linearly proportional to the tip displacements of the bimorph cantilever. This find-
ing agrees very well with Hwang and Park (87) and Tseng and Tzou (data by Tzou and Tseng
were obtained from the 1993 article of Hwang and Park) as shown in fig. 4.34. This cantilever
bimorph PVDF model does not include the e33 , e15 piezoelectric constants hence their effects
are neglected. Thus the linearity between tip displacement and voltage found in this case study
may not necessarily hold for other structural configurations with different property types and
boundary conditions.
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Figure 4.34 Actuator configuration. Tip deflection of the bimorph cantilever as a function of input actuator
voltage.

Sensor case The bimorph is now acting as a sensor and the problem is defined as a can-
tilever with a vertical tip displacement of 1 cm. The aim is to determine the voltage difference
across the top and bottom layers of the PVDF cantilever. The implementation of this case is the
same as case before, except for the boundary (electrical and mechanical) conditions. The total
voltage difference across the PVDF bimorph cantilever is plotted along the length of the can-
tilever as shown in Fig. 4.35. In the model of Hwang and Park there are five pieces of separate
electrodes that cover the entire length of the beam. Each piece of electrode, being an equipo-
tential surface, must have a constant voltage, hence the step distribution in Fig. 4.35. However,
in practice, it should be possible to have point electrodes located at positions of interest.

Three-layer active cantilever.

Actuator Case This three-layered cantilever structure, studied by Saravanos and Heyliger
(88), consists of a substrate (bottom layer), adhesive (middle layer) and piezoelectric material
(top layer). The piezoelectric will act as an actuator with an applied voltage difference of 12.5
kV across the thickness direction (Saravanos and Heyliger used such a high voltage in order to
compare their results with Robbins and Reddy (89) who applied an induced strain actuation of
0.1%) . The substrate is isotropic aluminum or Gr/epoxy composite [0] T300/934. The material
properties and the relevant data are found in Table 4.29. The geometry of the beam is reported in
Fig 4.36. The length and width of the three layers are the same but the thickness of the substrate
and piezoelectric are 1/10 and 1/100 of the length respectively. Two scenarios were studied: an
aluminum substrate and a unidirectional T300/934 substrate. The results are displayed in Fig.
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Figure 4.35 Sensor configuration. Voltage difference across thickness of PVDF at various points along the
length of the cantilever.
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Figure 4.36 Three-layer actuator/sensor cantilever beam.

4.37 together with the results obtained by Saravanos and Heyliger (88) and Chee et.al. (84).
The aluminum beam is deflected more than the Gr/epoxy beam as expected because the latter is
stiffer in the x-direction. From the graph it is possible to see that the CUF formulations is able
to reproduce the results.

Sensor Case In this section, the sensory capability is investigated. The electric potential
at the top and the middle level of the piezoelectric material were taken as free/sensing variables.
A load of 1000 N upwards was applied to the cantilever tip to make the beam bend upwards. Due
to the electro-mechanical coupling, charges were generated on the piezoelectric which resulted
in a potential difference. The mid-plane deflections along the beam and the total voltage across
the thickness of the piezoelectric are plotted in Fig. 4.38 and Fig. 4.39 respectively.

Aluminum cantilever beam with two thin piezo-ceramic PSI-5A-S3 sheets An alu-
minium beam with two thin piezo-ceramic sheets considered in the works of Yocum and Abramovich
(91) is studied. The material property and the geometry of the beam are reported in Table 4.30
and Fig. 4.40. The comparison between the experiment and ADINA results obtained from the
work of Yocum and Abramovich (91) and the present model are reported in Fig. 4.41 and 4.42.
The comparison when one piezo-actuator is activated is reported in Fig. 4.41. The comparison
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Table 4.29 Properties for three-layer cantilever (data obtained from Saravanos and Heyliger (88), Saravanos
(90))

Aluminium T300/934 Adhesive PZT-4
E33 6.8900 × 1010 1.3238 × 1011 6.9000 × 109 8.1300 × 1010 Pa
E11 6.8900 × 1010 1.0760 × 1010 6.9000 × 109 6.4500 × 1010 Pa
ν13 0.25 0.24 0.4 0.43 −
G13 2.7600 × 1010 5.6500 × 109 2.4600 × 109 2.5600 × 1010 Pa
d32 − − − −1.22 × 10−10 m/V

Elec. Perm. χ22 − 3.0989 × 10−11 − 1.3059 × 10−8 F/m
Elec. Perm. χ33 − 2.6562 × 10−11 − 1.1510 × 10−8 F/m

Length L 0.1524 0.1524 0.1524 0.1524 m
Thickness h 0.01524 0.01524 0.000254 0.001524 m

Width b 0.0254 0.0254 0.0254 0.0254 m

Table 4.30 Properties cantilever beam with two thin piezoceramic PSI-5A-S3 sheets

Piezo
Composition Single sheet 5A-S3 (PZT)
Thickness 0.191 ± 0.013 mm
Length 54.5 mm
Width 54.5 mm
Distance form clamped side 30 mm

beam
Composition Aluminium
Thickness 1.6 mm
Length 356 mm
Width 54.5 mm

when both piezo-actuator is activated is reported in Fig. 4.42. It is possible to see that the pre-
sented model is able to to give the same results of the commercial code ADINA. Moreover the
two FEM code are able to capture the experimental results.
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Figure 4.37 Actuator configuration. Deflection by piezoelectric actuation along the normalized length of the
cantilever.
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Figure 4.38 Sensor configuration. Deflection due to load at cantilever tip. The layer of piezoelectric material
will act as a sensor.
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Figure 4.39 Sensor configuration. Voltage difference across the piezoelectric material as a function of
normalized length of cantilever.

Figure 4.40 Cantilever beam with two thin piezoceramic PSI-5A-S3 sheets geometry
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Figure 4.41 Deflection versus applied voltage, one piezo-patch activated.
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Figure 4.42 Deflection versus applied voltage, one piezo-patch activated.
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