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Résumé

Compte-tenu du degré de complexité des interconnexions au sein du système financier
mondial, mis en avant pendant la crise financière 2007-2009, l’adoption des modèles de
réseaux, comme paradigme d’analyse et d’amélioration de la robustesse du système, paraît
particulièrement pertinent, sinon nécessaire. Les institutions financières sont vues comme
des noeuds d’un réseau où les transactions interbancaires constituent les liens au travers
desquels la propagation des chocs se matérialise. En outre, la crise a également mis en
évidence le rôle d’un rationnement de la liquidité comme canal majeur de transmission des
chocs. Cette thèse examine les interactions entre les tensions sur le marché monétaire, la
contagion interbancaire et la structure du réseau, avec une application au marché interban-
caire européen et au système de paiement. La contribution de cette étude à la littérature
sur les réseaux financiers s’articule autour de trois axes. Le premier est un modèle inté-
grant trois canaux de propagation des chocs, à l’oeuvre durant la crise 2007-2009, à savoir
les expositions à un facteur de risque commun, aux risques de contrepartie et, enfin, au
risque de liquidité. Le deuxième axe est une application de ce modèle étudiant les exposi-
tions interbancaires dans le système financier européen entre 2008 et 2012, et ce, au niveau
individuel des agents, i.e. de banque à banque; constituant ainsi, et à notre connaissance,
l’unique contribution académique dans ce domaine. Cette étude souligne notamment le
rôle de la structure du réseau dans la propagation des chocs et reproduit la fragmentation
du marché européen observée en 2011-2012. Enfin, la troisième contribution porte sur la
propension des banques à retarder leurs transactions sur la base des données du système de
paiement TARGET2. Cette étude souligne une divergence des comportements des banques
au niveau de leur gestion de la liquidité intra-journalière. En effet, deux types de comporte-
ments se distinguent à cet égard : le premier consiste à fixer un niveau de liquidité initiale
suffisant pour répondre aux besoins de la journée et un second qui a tendance à gérer cette
liquidité en flux tendus. Les banques adoptant ce deuxième type de comportement sont à
l’origine de la majorité des retards de paiements constatés au niveau du système financier.
L’ampleur des retards de paiement est par ailleurs fortement corrélée au niveau des ten-
sions sur le marché, constituant de ce fait un indicateur avancé d’une éventuelle crise à venir.

Mots-clés: Risque Systémique, Contagion, Réseaux, Marché Interbancaire, Risque de Liq-
uidité, Risque de Contrepartie, Système de Paiement, Retards de Paiements.
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Essays on liquidity, interconnectedness and in-
terbank contagion

Abstract

Given the extent and importance of financial interconnectedness in recent years that
were particularly underlined by the 2007-2009 financial crisis, the adoption of the network
paradigm to analyze and improve robustness of a financial system appears to be fully rele-
vant. Financial institutions are viewed as nodes of a network and their short- or long-term
loans extended to each other as links or exposures through which a shock may propagate.
Moreover, the same crisis accentuated the role of funding shortage as a channel of shock
transmission. This dissertation focuses on the interplay of liquidity stress, interbank con-
tagion and a network structure with application to the European interbank market and
payment system. The contribution of this research to the literature on financial networks
is threefold. The first develops a model that allows analyzing three contagion channels
that happened to be at play during the financial crisis: exposures to a common risk factor;
exposures to credit and counterparty risk in the interbank market; exposures to short-term
liquidity risk. The second contribution is the unique analysis of cross-border contagion in
the European banking system from 2008 to 2012 at the bank level using the developed
model. Overall, the study finds the importance of the network structure for the extent of
contagion propagation and captures the fragmentation of the market observed in 2011-2012.
The third contribution consists of analysis of payment delays in the European payment sys-
tem TARGET2. More specifically, this chapter provides evidence that banks differ in the
way they manage their daily liquidity and can be split into two groups in this regard: those
which put enough initial liquidity into the system, and those which economize on liquidity
and rely on incoming payments to make outgoing transactions. The second group is re-
sponsible for the majority of the delayed payments, particularly during the period of low
liquidity in the market, which constitutes an early warning indicator of stress.
Keywords: Systemic Risk, Contagion, Networks, Interbank Market, Liquidity Risk, Coun-
terparty Risk, Payment Systems, Payment Delays.
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Introduction

La crise financière de 2007-2009 a mis en exergue deux faits caractéristiques du sys-
tème financier actuel. Tout d’abord, elle a montré que le système financier international
est intrinsèquement fragile. Ensuite, elle a souligné qu’aussi bien sa taille que son degré
d’interdépendance avec l’économie réelle constituent une véritable menace pour la stabilité
de cette dernière. Dans les années qui ont précédé la crise financière, les banques centrales
et les superviseurs bancaires ont largement sous-estimé l’importance de la stabilité du sys-
tème dans son ensemble en se concentrant essentiellement sur la santé financière de chaque
établissement indépendamment des autres. Ils ont en effet été grandement séduits par la
sophistication de l’ingénierie financière et notamment sa capacité à valoriser les risques
des actifs et à fluidifier les marchés, faisant ainsi abstraction des vulnérabilités financières
cachées du système existant à l’origine de la crise systémique de 2007-2009.

A contrario, la notion du risque systémique s’articule autour de deux propriétés : i) sa
nature endogène, à savoir, outre le fait de créer le risque lui-même, les actions des agents
financiers sont également susceptibles d’en accentuer l’ampleur; ii) sa nature de système, à
savoir que les agents sont à la fois interconnectés et interdépendants. Cette dernière carac-
téristique a été largement délaissée dans les différentes études et notamment la littérature
académique du fait, entre autres raisons, de l’opacité du système dans son ensemble et du
manque d’informations sur la réalité des expositions des institutions financières des unes
vis-à-vis des autres. Cette ignorance coûteuse a été à la source d’un gel total des marchés in-
terbancaires mondiaux qui a conduit à la faillite de deux des plus grandes et plus anciennes
banques d’investissement américaines, entretenant de ce fait la suspicion et la défiance sur
les marchés financiers.

Le but de la réunion du G20 en 2009, qui s’est tenue à Pittsburg, a justement été de
promouvoir la stabilité financière mondiale en recommandant, entre autre, la collecte des
informations sur les transactions de gré à gré afin d’améliorer la transparence du système
et de mieux appréhender le degré d’interconnectivité des institutions financières. Nombre
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de chercheurs universitaires et de décideurs ont attiré l’attention sur la complexité de la
structure en réseau du système financier et ont promu l’utilisation des modèles de réseaux
comme paradigme d’étude du système financier. Ainsi, dans son discours "Repenser le
réseau financier" en 2009, Andrew Haldane, directeur général du département de la stabilité
financière à la Banque d’Angleterre, s’est longuement attardé sur la capacité des modèles
de réseaux à, d’un côté, "fournir une vue différente sur les vulnérabilités structurelles qui
ont caractérisé le système financier au cours de la dernière décennie", et, de l’autre côté, à
"proposer des moyens d’améliorer la robustesse du système dans la période à venir".1

Sans surprise, la crise financière a été à l’origine d’un fort regain d’intérêt pour les ques-
tions relatives au risque systémique et à la stabilité du système financier. En effet, comme
l’a souligné J. Yellen, présidente de la Reserve Fédérale Américaine, dans son discours sur
l’interconnexion et le risque systémique (Yellen (2013)), le nombre de publications depuis
2007 portant sur ces deux questions a plus que doublé par rapport à ce qui avait été recensé
durant les 20 années précédant la crise.2 Cependant, et malgré cette prolifération d’articles
de recherche, beaucoup de questions restent en suspens et continuent d’alimenter nombre
de nouvelles études. Le chapitre 1 se présente comme une revue structurée de la littérature
qui met l’accent sur la richesse des liens financiers ainsi que la capacité des modèles de
réseaux à analyser et à améliorer la stabilité financière. Cette section couvre l’analyse des
réseaux financiers réels et leur propension à propager des chocs dans un cadre aussi bien
statique que dynamique; l’étude économétrique de la corrélation entre les caractéristiques
financières des noeuds et leurs positions dans le réseau et la pertinence de l’utilisation de
données de marchés ou incomplètes appliquées aux marchés financiers.

L’ensemble de ces études éclairent sur la structure des différents réseaux financiers qu’ils
soient basés sur les crédits interbancaires et les titres, les contrats de CDS ou encore les flux
de paiement. Un des résultats clés et qui est partagé par une majorité de ces études, est le
fait que ces réseaux présentent, malgré leur grande diversité, des propriétés similaires qui
se retrouvent également dans tous les réseaux complexes examinés dans d’autres disciplines
(informatique, microbiologie, etc.).3 En effet, les réseaux complexes sont généralement car-
actérisés par : 1) une faible densité dans le sens où le maillage bancaire est clairsemé, 2) des
distributions de degrés des noeuds suivant une loi de puissance : la majorité des connex-
ions est concentrée autour de quelques noeuds centraux, 3) un coefficient de "clustering"

1Haldane (2009)
2Selon la base de données Econlit, le nombre d’articles académiques mentionnant les termes "’inter-

connexion" ou "risque systémique" dans leurs résumés s’élève à 311 entre la période 1988-2006, ce nombre
atteint à 624 sur la seule période allant de 2007 à 2013. En limitant la recherche aux seuls articles publiés
dans des revues à comité de lecture, ces chiffres s’élèvent à, respectivement, 186 et 375

3Entre autre, Barabasi (2002)
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du réseau relativement bas et 4) le phénomène dit de "petit monde" : le chemin le plus
court moyen entre deux noeuds du réseau ("degré de séparation") est faible. Ces interac-
tions interbancaires utiles, voire nécessaires, car permettant une fluidification des marchés
et un partage des risques, peuvent être à l’origine de troubles susceptibles de menacer
l’existence même d’un ou plusieurs noeuds du réseau voire l’ensemble du système lui-même.
Par ailleurs, et comme le démontrent plusieurs études, des structures de réseaux différentes
engendrent des propriétés de stabilités différentes. Ainsi et s’agissant des réseaux financiers,
les banquiers centraux, à l’instar des milieux académiques, sont particulièrement intéressés
de savoir dans quelle mesure la structure du réseau est susceptible d’influer sur sa stabilité
et sa résilience face à un choc, mais aussi par quels moyens réglementaires aboutir à cette
stabilité: renforcement des noeuds eux-mêmes (exigences supplémentaires en fonds propres
et en liquidité) ou amendement des liaisons entre les noeuds (instauration de seuils ou de
taxes sur les expositions individuelles).

La notion de stabilité du système financier soulève la question cruciale des canaux de
transmission de chocs, et ce d’autant plus qu’en raison de la complexité du système, les
agents financiers sont capables d’activer plusieurs canaux simultanément, multipliant ainsi
les vecteurs de propagation et donc l’amplitude du choc initial. Le rôle de la liquidité
ainsi que la question de la confiance dans le marché a de ce point de vue été longtemps
ignoré. Cependant, la grande incertitude qui a marqué les marchés durant la dernière crise
financière, a été le principal canal de la paralysie de l’activité sur le marché interbancaire qui
a conduit, par la suite, à la faillite de plusieurs institutions financières à court de liquidité, à
la nécessité de renflouement de plusieurs autres et aux injections massives de liquidités par
les banques centrales. Cela incite à développer un modèle de réseau qui permet d’analyser
la façon dont la stabilité du système financier peut être compromise à la fois par le risque
de crédit mais aussi par le risque de liquidité en cas d’une exposition excessive aux marchés
interbancaires.

Le chapitre 2 propose, à ce titre, un modèle d’analyse de trois canaux de contagion qui se
sont révélés particulièrement puissants pendant la crise, à savoir les expositions à un facteur
de risque commun (par ex. au prix de marché de certains actifs), au risque de contrepartie
sur le marché interbancaire et enfin les expositions au risque de refinancement de court
terme (par ex. l’impossibilité de renouveler un emprunt interbancaire au jour le jour ou à
une semaine). La méthodologie développée est suffisamment parcimonieuse et flexible pour
être facilement incluse dans les exercices de stress-tests des banques centrales afin de tenir
compte des effets, généralement négligés, de second tour des chocs macroéconomiques ou
des chocs de marché. En outre, nous développons une nouvelle méthodologie permettant
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de simuler des chocs de marchés basés sur des données détaillés des actifs bancaires. Nous
utilisons ensuite ce modèle afin d’évaluer la résistance du système financier français à la
fin de l’année 2011. Ainsi, et en nous appuyant sur des données bancaires arrêtées au 31
décembre 2011, le système financier français ressort généralement robuste face à des chocs
de marché d’amplitude standard ainsi qu’aux effets de contagion, les pertes en capital dues
aux effets de contagion demeurant relativement modestes. Par ailleurs, et bien que les
pertes dues à la contagion de solvabilité ou de liquidité soient d’ampleurs similaires, les
chocs de liquidité ont la particularité de pouvoir engendrer des pertes en capital même
en absence d’effet de contagion de solvabilité, appuyant de ce fait la pertinence voire la
nécessité d’une modélisation des deux canaux simultanément. Cependant, et à l’instar de
la majorité des études s’intéressant aux systèmes bancaires nationaux, notre approche fait
l’hypothèse restrictive que le système bancaire français évolue dans un système fermé.

Le chapitre 3 se présente comme une extension du chapitre précédent en tenant compte
des expositions des banques françaises aux marchés internationaux, mais aussi en augmen-
tant le modèle pour couvrir 73 groupes bancaires issus de 21 pays européens. La nécessité
de la prise en compte du système financier au niveau européen s’explique notamment par
le processus d’intégration bancaire qui a été fortement encouragé à l’aune de l’intégration
économique et financière du début des années 90. En France, la moitié des banques sont
devenues de grands acteurs européens avec une activité transfrontalière significative et de
relativement, faibles expositions au secteur bancaire national. Cependant, cette nécessité
d’intégrer les expositions transfrontalières se retrouve vite confrontée au problème de la
disponibilité des données. En effet, même les autorités nationales de surveillance finan-
cière n’ont, au mieux, accès qu’à une vue très partielle des expositions internationales des
banques sous leurs contrôles4. Ainsi, certains articles s’intéressant à la question des exter-
nalités transfrontalières, à l’instar de Degryse et al. (2009) et de Halaj and Kok (2013), sont
contraints de procéder à une analyse macroéconomique des effets de contagion, i.e. d’un
système financier à un autre, et non au niveau des institutions individuelles.

Afin de tenir compte des fortes hétérogénéités qui caractérisent les systèmes nationaux et
de dresser une représentation des expositions des banques fidèles à la réalité, nous exploitons
une base de données unique des prêts interbancaires, à différentes échéances, échangés sur
le marché monétaire. Cette base est estimée à partir des données issues de la plateforme de

4En effet, les autorités nationales de surveillance financière n’ont généralement accès qu’aux actifs
dépassant un certain montant et ayant une maturité longue. À titre d’exemple, le registre de crédit allemand
répertorie uniquement les expositions bilatérales - produits dérivés, actifs au bilan et hors bilan - au-dessus
du seuil de 1,5 millions d’euros. En France, la base de données "grands risques" contient les expositions
bilatérales trimestrielles des banques dont le montant est supérieur à 10 % de leur capital ou dépassant 300
millions d’euros.
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paiement européenne TARGET2 (cf. Arciero et al. (2013)). À notre connaissance, notre
étude est la seule qui mobilise une telle base de données pour examiner le potentiel de
contagion transfrontalière à un niveau microéconomique, de banque à banque.

Plus précisément, nous utilisons l’ensemble des prêts interbancaires à échéance inférieure
à un mois pour modéliser le réseau des liens interbancaires de court-terme et établir la
carte de probabilités d’interconnexion entre banques sur le marché monétaire. En paral-
lèle, nous établissons également une carte de probabilité des prêts de long terme en tenant
compte des montants et des fréquences des titres de maturité plus longue. La combinaison
de cette dernière matrice avec le montant total des expositions d’une banque vis-à-vis de
l’ensemble de ses concurrentes européennes permet de simuler un grand nombre de matri-
ces d’exposition de long-terme suivant la nouvelle méthode préconisée par Halaj and Kok
(2013). Nous étendons, par ailleurs, la période d’analyse sur les 5 années allant de 2008 à
2012.

Nos différentes simulations suggèrent que les effets de la contagion, qu’elle soit due à
des chocs de solvabilité ou de liquidité, constituent des risques extrêmes : la moyenne des
pertes sur différents scenarios de stress, de banque initiale en defaut ou sur les réseaux
simulés demeure limitée. Cette moyenne cache néanmoins des pertes excessives bien que
rares. Selon nos simulations, le montant des pertes maximales aurait atteint en 2008 près
du tiers du total du capital du système bancaire; cependant la résilience du système s’est
grandement améliorée au fil des années.

En outre, nos résultats, issus des simulations de différents réseaux, montrent l’impact
crucial de la structure du réseau sur la propagation des chocs, soulignant la nécessité de
tenir compte du caractère dynamique du réseau.

L’ampleur de la crise financière de 2007-2009 a indéniablement surpris, d’autant qu’il
s’agit à l’origine d’une crise des subprime américains censée être limitée par son ampleur
et son extension géographique. En effet, comme nous le montrons dans les chapitres 2
et 3, la multiplicité des vecteurs des transmissions des chocs, conjuguée à l’intégration
financière de plus en plus approfondie, augmente sensiblement la vitesse de propagation
des chocs ainsi que leur ampleur; d’où la nécessité de déterminer des indicateurs avancés
permettant de prévenir une éventuelle intensification de la crise. Par ailleurs, l’analyse des
données de paiements interbancaires montre que lorsqu’une banque souhaite modifier son
comportement, en procédant par exemple à une thésaurisation de sa liquidité, les systèmes
de paiements sont susceptibles de procurer des signes précurseurs d’une éventuelle difficulté
ou d’une réaction anormale des agents. Ainsi, comme le soulignent Benos et al. (2012),
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la faillite de Lehman Brothers a poussé plusieurs banques à retarder leurs paiements et à
réévaluer leur degré d’implication dans le marché interbancaire par crainte du risque, alors
élevé, de contrepartie. Le bon fonctionnement des infrastructures financières, en particulier,
le système de paiement, est crucial pour la stabilité financière dans son ensemble, et peut
donc servir d’indicateur avancé pour prévenir d’éventuels risques systémiques5.

Le Chapitre 4 s’inscrit dans cette nouvelle littérature en s’intéressant particulièrement
à la gestion de la liquidité intra-journalière et à sa capacité à paralyser l’ensemble du
système de paiement. Nous nous focalisons plus précisément sur les retards de paiement
sur le marché interbancaire, à savoir le délai qui s’écoule entre l’introduction de l’ordre de
paiement dans le système et son règlement effectif, en mobilisant des données TARGET2
relatives à deux périodes distinctes : une période sous haute tension correspondant au mois
de septembre 2008 et une période calme correspondant au mois de mai 2014.

A l’instar de Massarenti et al. (2013) et de Heijmans and Heuver (2011), nous constatons
que les banques ont tendance à retarder leurs paiements, et plus particulièrement en période
de crise. Pour expliquer ce phénomène, les articles théoriques qui utilisent une approche
issue de la théorie de jeux suggèrent que les banques prennent des décisions stratégiques
relatives à chaque transaction bilatérale. Or, nos résultats montrent que les banques ont
tendance à prendre des décisions portant sur la gestion de l’ensemble de leur liquidité jour-
nalière. Nous distinguons ainsi deux types de banques : un premier groupe qui fixe un
niveau de liquidité initiale suffisant pour répondre à ses engagements de la journée, et un
deuxième groupe qui restreint systématiquement son niveau initial de liquidité et compte
sur l’exécution des paiements de tiers pour traiter les siens. Bien que ce procédé, atyp-
ique, de gestion de la liquidité journalière ne soit pas nécessairement nocif au système dans
son ensemble, il peut néanmoins conduire à son grippage total et plus particulièrement
en période d’asséchement des marchés. La dynamique de cette divergence de comporte-
ments vis-à-vis des retards de paiement est susceptible de constituer un indicateur avancé
d’éventuelles tensions sur le marché monétaire.

5Se référer à Manning et al. (2009) pour un résumé détaillé de la théorie ainsi que des pratiques
répandues, les retards compris, dans les systèmes de paiement de grande valeur (LVPS). Rochet and Tirole
(1996) fournit un éclairage supplémentaire sur les systèmes de compensation nette et l’architecture du
système de paiement.



Chapter 1

Literature review

1.1 Introduction

For a long time, a banking system was represented by a representative bank without
taking into account the interlinkages of the banking, and larger, financial system. However,
during the 2007-2009 financial crisis, it was precisely those linkages that threatened the
stability of the financial system worldwide. Financial institutions (banks from now on
for simplicity) appeared to be highly interconnected, directly and indirectly, via different
financial products. Direct exposures of one bank to another deplete bank’s capital if its
counterparty defaults on its commitments. These exposures can be through loans, equity
holdings or derivative products such as CDS contracts. On the other hand, banks holding
similar assets are connected indirectly since fire sales of those assets on a distressed market
will impact negatively balance sheets of the banks.

Such interconnectedness is at the core of systemic risk, the risk of a collapse of the entire
financial system, while a network is a natural way of representing a financial system with
multiple linkages. Therefore the network approach as a tool to analyze systemic risk and
test macroprudential regulations has received significant attention from both researchers
and policy makers.

The analysis of complex systems through a network representation has been widely used
in physics, biology and social sciences for a long time. However, researchers in economics
and finance developed an interest in this approach only recently starting with the seminal
paper by Allen and Gale (2000). This interest gained momentum during and after the 2007-
2009 financial crisis, when the level of system interconnectedness threatened the stability

7
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of the financial system worldwide. In the past few years, the financial networks literature
has boomed, and this chapter provides a survey of this vast amount of studies.

The primary question when it comes to analyzing the interconnectedness of the financial
system concerns the data availability on bilateral exposures between institutions. This is
not a trivial question since such data, if they exist, remain highly confidential. Therefore, I
consider important to introduce the reader to the issues related to the sources of the data,
a small history of their availability, as well as problems and solutions found by researchers
to overcome complete absence or partial availability of the data. Particularly, this chapter
will cover methods to simulate bilateral exposures given incomplete information and the
use of market/public data as an alternative approach to obtain information on bilateral
relationships. Additionally, I will describe the main characteristics of different real financial
networks that are well documented by empirical literature and explain how these properties
relate to the functioning of a system.

Seemingly the largest stream of the financial networks literature is on network stress-
testing or counterfactual simulations. These models have been largely developed by central
banks because they allow analyzing how resilient a banking system is to contagion at a given
point in time (snapshot of a network), and especially because central banks have often an
access to the data on bilateral exposures. Upper (2011) provides an excellent survey and
analysis of the studies done by 2011, however, this strand has strongly developed since then.
These studies are characterized primarily by: models that take the network as given; banks’
behavior that is based on rules of thumb; and the major question asked is how losses due
to an initial shock will propagate through the system given certain channels of propagation
and behavioral rules. Two main aspects of such an analysis are particularly interesting, as I
will describe below: which network structure is more vulnerable/resilient to contagion and
how different banks’ characteristics improve system stability.

The evolving nature of network linkages inspired researchers to move forward and analyze
network formation and dynamics, more specifically why and how banks’ strategic decisions
on link creation can lead to the formation of the networks that we observe. Moreover, these
studies address the issue of the optimality of networks created in equilibrium, therefore
providing a link between banks’ incentives and the created network structure that could
have fruitful policy implications. Some findings of this literature show that banks tend to
create too many links while others not enough which builds in dangerous asymmetry in the
network structure, thus pointing out to potential for financial stability regulation.
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The last stream of the financial networks literature that I survey is related to econometric
models which aim at explaining banks’ financial characteristics with their position in a
network. The methodology developed by studies on social networks identifies peer effects
well, thus allowing treating the difficult question of how the behavior of an agent is affected
by others. All these studies agree that the position of a bank in a network as well as the
network architecture itself are important to explain financial characteristics of a node and
a system.

1.2 Data

To represent a financial system as a network, knowledge about bilateral interactions
between the agents is indispensable. With few exceptions, such information is available
only to the participants themselves and sometimes also to an intermediary which provides
post-trade financial services such as clearing and settlement. For instance, the US company
DTCC, that settled $1.7 quadrillion in value of securities transactions worldwide in 2011,
is the main provider of the data on the CDS trades. Three exceptions are (i) the widely
used anonymous intraday data on interbank lending from the e-MID interbank lending
platform1; (ii) the syndicated loans data from Dealogic, and (iii) BIS data on exposures
between banking systems in different countries.

Whereas such opacity attracts little attention during normal times, it becomes a real
problem during a crisis. As a consequence banking supervisors in different countries very
often started to collect information on bilateral exposures after a crisis hit their country’s
financial system: e.g., in Russia in 1998; in Mexico in 2004. In most European countries,
almost the only reliable source of information on bilateral exposures is the quarterly re-
ports of banks to their supervisors, so called credit registers. In the run-up to the crisis,
these data were used mainly for supervision and not for systematic research and analysis
of the interbank bilateral relationships, therefore the data were often of limited quality.
As Upper (2011) documents in his survey, only in Hungary and Italy, were these reports
fairly complete, allowing for full identification of the elements of bilateral exposures matrix;
whereas in the majority of countries, they covered only the largest exposures (Netherlands,
Finland, Sweden, Switzerland) or excluded off-balance sheet exposures (Belgium, Nether-
lands). Moreover, the data often lack information about the breakdown by instrument and
maturity.

1Interbank trading in the e-MID platform reached its maximum of 17% of the interbank unsecured
lending in 2007, however, after the beginning of the crisis its share has significantly reduced.
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The 2007-2009 financial crisis emphasized at the same time the threat posed to the
stability of the system by interlinkages between financial institutions and the complexity of
channels through which a shock can propagate, namely the role of short-term funding and
derivatives exposures. The supervisors in most of the countries were caught by surprise and
did not know how much one institution was exposed to another, which led to significant
bailouts in order to prevent contagion. In 2009, at the G20 Pittsburgh conference, the
G20 Data Gap Initiative was taken which recommends the collection of consistent bank-
level data for joint analysis and enhancements to existing sets of aggregate statistics, and
the enhancement to the BIS international banking statistics. Indeed, the situation with
data collection and data availability started changing: the Bank of England launched the
program in 2011 to collect information about exposures of banks to different financial in-
stitutions distinguished by maturity and type of financial instruments; European Securities
and Market Authority enabled the collection of the data on bilateral derivatives trades since
2014; the European Central Bank has provided access of a small group of researchers within
the Eurosystem to money market loans and payment system data.

At the international level, the situation is even more difficult: whereas the world financial
system is very intertwined with financial institutions investing and having their subsidiaries
all over the world, the regulation and data collection remains to a great extent national.
Cerutti et al. (2012) provide an interesting analysis of existing challenges to global systemic
risk measurement and identify areas where enhancements to data are most needed. In the
euro area, the creation of Banking Union and Single Supervisory Mechanism may soon
change the situation in a positive way since the ECB, as the central prudential supervisor,
should be able to have access to the entirety of the data on national banking systems
including their mutual exposures.

Whatever data on bilateral exposures are concerned, national or international, the prob-
lem is always twofold. First, supervisory agencies lack good quality data themselves and fail
to assess systemic risk in a financial system coming from the interlinkages. Second, these
data are confidential and not available to academics and the public. The first problem is
getting partly solved thanks to the crisis and the ensuing renewed interest in the network
approach as a tool to analyze the stability of a financial system.2 However, it is difficult to
foresee that the data on interbank bilateral exposures will become less confidential. This
limited access to real network data gave birth to two particular streams of the network
literature: first, methods allowing for a reconstruction of exposures matrices from partial

2pioneered by the Bank of England and Andrew Haldane, many central banks have in their agenda the
analysis of systemic risk using a network toolkit.
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publicly available data, such as banks balance sheet data (Section 1.3); second, the esti-
mation of bilateral relationships between listed financial institutions using public data on
equity prices (Section 1.8).

1.3 Incomplete data

In the absence of direct information on bilateral exposures, researchers looked for al-
ternatives, namely to find a way to reconstruct a network from partial data. It turned
out to be a challenging task due to the very particular structure of real financial networks
(discussed in section 1.4). Moreover, the way a network is reconstructed may bias results
of network stability analysis. In this section, I will focus on methods allowing reconstruc-
tion of networks from partial data, and biases that these estimated interconnections may
introduce in the analysis of contagion propagation.

The most easily available information is banks’ balance sheets published on a regular
basis. Among other items, banks report their total interbank assets and liabilities. This
information is the starting point for all the methods reconstructing a network. The key
assumption regards how banks allocate their interbank lending across potential counterpar-
ties, and existing methods differ by the assumptions they make. The first and most widely
used assumption is that banks spread their lending as evenly as possible given the assets
and liabilities reported in the balance sheets of all other banks. This method is known as
the maximum entropy method. This concept originating from physics was first introduced
in the contagion literature by Sheldon and Maurer (1998) and has been often used in the
stress-testing literature. This methodology, however, tends to create complete networks,
thus failing to account for several stylized facts of interbank networks such as sparseness
and power-law degree distribution. Moreover, several studies showed that maximum en-
tropy leads to biased estimations of the severity of contagion (Mistrulli (2011); Degryse et al.
(2009)). Figure 1.1 from Batiz-Zuk et al. (2013) shows the difference between a network
generated under the ME principle and one built using real exposures data.
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Figure 1.1: Figure from Batiz-Zuk et al. (2013). Two networks: one generated with real exposures
(on the left) and the one under the maximum entropy principle (on the right)

Recently, many other approaches have been proposed in order to overcome the limita-
tions of the maximum entropy approach. These studies can be split into two main groups:
the first ones look for additional information to be used as a prior for a distribution of
interbank aggregate assets and liabilities; and the others exploit statistical properties of
observed financial networks as prior information. In the first group, Halaj and Kok (2013)
use a probability map to define the probability that two given banks are connected and
then run an iterative procedure to generate interbank networks by randomly picking a link
between banks and accepting it with a probability taken from the probability map. The
authors recognize that the method does not necessarily generate core-periphery structures.
However, this may very well depend on the assumptions used to construct the probability
map.3 In their other paper, Halaj and Kok (2014) undertake a very different approach
which belongs rather to Section 1.6 where banks allocate interbank exposures while op-
timizing their portfolio with respect to risk and return. Along with the information to
define a probability map, this method requires quite a lot of other market information. The
method proposed in Musmeci et al. (2013) is at the border of the two groups: on the one
hand, the authors aim at reconstructing global topological properties of complex networks
(network density and k-core structure), on the other hand, they assume to know the degree
for a subset of the nodes in the network. The authors use a fitness model, calibrated on the

3In chapter 3 based on the paper "Cross-border interbank contagion in the European Banking System",
we use interbank long-term loans (from 3 months to 1 year) from TARGET2 payment system to construct
a probability map which allows us to obtain simulated networks with core-periphery structure.
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subset of nodes for which degrees are known, in order to generate a set of networks. They
find that a subset of 10% of nodes can be enough to estimate the properties of the network.

In other words, the maximum entropy (ME) method reallocates interbank lending given
no prior information on the distribution. However, from the empirical studies (see Sec-
tion 1.4), we know that real financial networks exhibit several well-documented properties,
namely sparsity (low density) and heterogeneity (power-law degree distribution). The sec-
ond group of methods uses the statistical properties of these findings in order to reconstruct
an interbank network. Moussa (2011) proposes a method which is very similar to the max-
imum entropy with the only difference that the relative entropy is minimized not with the
non-informative uniform prior but with a sparse prior reflecting the belief on the scale-
free structure of a network. The author states that this approach reproduces the observed
degree heterogeneities of interbank networks. Anand et al. (2014), unlike the maximum
entropy principle which has no economic meaning, proceed from an economic assumption
that banks’ networks are sparse because interbank activity is based on relationships and
link creation is costly. This assumption corresponds well to the theoretical literature on en-
dogenous network formation which shows that given that links are costly, banks optimally
choose a star network structure.4 Moreover, Craig and von Peter (2010) show that real
interbank networks tend to have core-periphery structure that is small banks interact with
money center banks. Therefore, Anand et al. (2014) follow an approach that minimizes the
density, called the "minimum density" (MD) approach, where the most probable links are
identified and loaded with the largest possible exposures, while ensuring consistency with
the aggregate lending and borrowing limits for each bank. The authors confront the two
methods (ME and MD) with the true German interbank network and find that minimum
density solution preserves some of the network’s structural features better than maximum
entropy does. Baral and Fique (2012) use copula in order to reconstruct an interbank net-
work given aggregated assets and liabilities. The method exploits the fact that copula allows
capturing asymmetries of a matrix in two dimensions and therefore having different types of
blocks such as core-periphery blocks defined in Craig and von Peter (2010): core-core block
is characterized by intense relationships; periphery-periphery almost zero connections; and
core-periphery, periphery-core by regular links. The authors compare copula methodology
with ME and document that as long as the data are asymmetric and a network is far from
being complete (the case of real networks), the copula method outperforms the ME one.
Mastromatteo et al. (2012) propose a message-passing algorithm to explore the space of
possible network structures producing worst-case configurations in terms of contagion risk.

4More about findings of the theoretical literature in Section 1.6
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The authors show that ME severely underestimates the risk of contagion, whereas their al-
gorithm is able to produce maximally fragile structures, providing a practical upper bound
for the risk of contagion when the actual network structure is unknown.

Almost all the aforementioned studies explicitly compare their performance with the
results given by the maximum entropy approach or with the real networks. Some of them
also analyze how the way a network is reconstructed can bias contagion risk. All find that
their respective methods perform better than ME in obtaining networks that reproduce
some of the stylized characteristics of real networks, and that the ME approach tends
to underestimate the risk of contagion. However, given the differences in the underlying
assumptions and the information required, it is difficult to say which method is better, and
there have not yet been any studies that compare these approaches to each other. To fill this
gap, a group of researchers from the Basel Committee research task force has undertaken
a big effort in order to compare these methods by using them on the same set of different
exposures data and computing the same set of network statistics and contagion indicators.5

It can be foreseen that this exercise is not going to find an outcome "one size fits all", the
performance of the methods will depend to a great extent on the particular data structure.
However, these results will provide important insights into how an interbank exposures
matrix can be reconstructed and bias each method introduces. The results are forthcoming
in a BIS working paper.

1.4 Empirical networks

In this section, I summarize the main findings of studies analyzing the characteristics of
the real financial networks. I provide an economical interpretation of those characteristics
and show how they are linked with systemic risk and financial fragility of the system.

The main findings of this literature are that financial networks have similar character-
istics whatever financial system and data sources are used. Boss et al. (2004) are one of
the first who analyzed the topological properties of an interbank market using the credit
exposures data of Austrian banking system. The authors show that the banking network
shares typical structural features known in numerous complex real world networks: low
density, meaning that interbank networks are highly sparse; degree distributions following
a power law; a low clustering coefficient of the network, and the so called small world phe-
nomenon, meaning that the average shortest path between any two vertices ("degrees of

5I was a part of this group since May 2014.
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separation") in the network are surprisingly small. Many other studies documented similar
stylized facts for different data sets: Bech and Atalay (2008) for the overnight federal funds
market; Cont et al. (2010) for Brazilian interbank exposures; Gabrieli (2011) for the e-MID
interbank market; Peltonen et al. (2014) for worldwide CDS network and Clerc et al. (2014)
for European interbank CDS exposures among others.

A financial network consists of a set of banks (nodes) and a set of relationships (edges)
between the banks. These relationships can be of different nature: interbank overnight
loans, e.g., Bech and Atalay (2008) and Gabrieli (2011); exposures in derivatives such as
CDS contracts or short-term foreign exchange swap contracts, e.g., Clerc et al. (2014);
Peltonen et al. (2014) and Banai et al. (2013) correspondingly; interbank credit exposures,
e.g., Boss et al. (2004); Cont et al. (2010). All these relationships are important for the
analysis of different aspects of interbank activity, however, due to the data availability, most
of the studies focus on relationships that stem from interbank credit exposures, therefore
from now on, I will always refer to a network of credit exposures if not specified otherwise.

Some topology characteristics of graphs are very helpful for the network analysis.

Definition 1.1. A (un)directed graph G = (V,E) consists of a nonempty set V of vertices
(nodes), and a set of (un)ordered pairs of vertices E called edges.

An interbank network is characterized by the exposures (assets) matrix E. The lending
bank provides a loan and holds it as an asset, while the borrowing bank holds this loan as
a liability. In a matrix form, the entries Eij are the loans (exposures) of bank i to bank j.

Definition 1.2. The matrix of bilateral exposures E(G) = [Eij] of an interbank market G
with n banks is the n×n matrix whose entries Eij denote bank i’s exposure to bank j. The
assets ai and liabilities li of bank i are given by ai =

∑n
j=1 Eij and li =

∑n
j=1Eji.

To describe a network, one would start by looking at the number of nodes and the
number of existing links relative to the number of possible links in the graph. The latter
one is called the density of a network or the measure of completeness of a network. While
the number of banks can vary significantly from one banking system to another, the network
density lies in the interval between 0 (no connections) and 1 (complete network), and it
is usually very low in financial networks: Gabrieli (2011) documents that in 2007, e-MID
interbank network consisted of around 120 banks with density of 2.22%; according to Bech
and Atalay (2008), in 2006, around 500 banks were active on the federal fund market
with density of 0.66%. The few exceptions for which network density is close to 1 are
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small concentrated banking systems: the Canadian banking system is a complete network
consisting of 6 banks (Gauthier et al. (2010)); the French banking system represented by
11 banking holding companies forms an almost complete network with density being equal
to 80% (Fourel et al. (2013)).

The interconnectedness of a node can be defined as the in- and out- degree of the node.

Definition 1.3. The adjacency matrix of bilateral exposures A(G) = [aij] of a network
G with n banks is the n × n matrix whose entries aij are equal to 1 if there exists a link
between bank i and bank j and 0 otherwise. The in-degree din(i) and out-degree dout(i)
of node i are defined as: din(i) =

∑n
j=1 aji, dout(i) =

∑n
j=1 aij and give a measure of the

interconnectedness of the node i in a directed graph G(V,E).

Not all nodes in a network have the same node degree or number of edges. Dispersion of
node degrees is characterized by a distribution function P (k), which gives the probability
that a randomly selected node has exactly k edges. And not all networks have the same
distributions of node degrees, therefore, an important concept that allows distinguishing
two different networks is the degree distribution. A class of graphs that has been widely
studied and which serves as a standard for comparison to is random networks, in which
edges are placed randomly with the same probability of having a link between any two
nodes. A majority of the nodes in such graphs have approximately the same degree, close
to the average degree < k >, and the degree distribution follows a Poisson distribution with
a peak at P (< k >). However, a well-established result is that for most large networks,
including financial networks, the degree distribution significantly deviates from a Poisson
distribution and has a power law tail P (k) ∼ k−γ. Such networks are called scale-free
(Barabasi and Albert (1999)).

The scale-free property of real networks describes the substantial heterogeneity of the
node degrees: Bech and Atalay (2008) documents that on average banks lent to (or borrowed
from) 3.3 other banks in 2006, whereas maximum in-degree (out-degree) in the network was
127.6 (48.8). Many other papers obtain similar findings for different data sets, to name but
few, Cont et al. (2010) for a Brazilian network of credit exposures and Clerc et al. (2014)
for the European CDS market, who both document the persistence of this property over
time.

Another important concept of complex networks is the small world property which
means that despite the large size of financial networks, most of them are characterized by
a relatively short path between any two nodes. The average path length of a network is
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defined as the average length of the shortest paths for all pairs of nodes i, j ∈ V . Boss et al.
(2004) show that in Austrian banking system with 900 banks, the average path length is
about three degrees of separation; Gabrieli (2011) and Bech and Atalay (2008) document
similar findings: about two and three degrees of separation with more than 100 banks in
e-MID data and more than 450 banks in Fed Funds Market correspondingly.

The last characteristics to describe a network is the clustering coefficient, introduced by
Watts and Strogatz (1998). Social networks tend to form cliques, group of friends, clubs
and so on. This tendency to clustering is quantified by the clustering coefficient (Watts and
Strogatz (1998)). In simple words, clustering is the probability that two nodes which are
the neighbors of the same node, themselves share a link.

Definition 1.4. Let node i has degree ki. If the first neighbors of the original node were
part of a clique, there would be ki(ki − 1)/2 edges between them. The ratio between the
number Ei of edges that actually exist between these ki nodes and the total number of
ki(ki − 1)/2 gives the value of the clustering coefficient of node i: Ci = 2Ei

ki(ki−1)
. The

clustering coefficient of the whole network is the average of all individual Ci’s.

For most of the real networks and particularly social networks, the clustering coeffi-
cient is typically much larger that it is in a random network of the same characteristics
as pointed out by Watts and Strogatz (1998). Indeed, it is very likely that friends of a
common friend are also friends, or that two people co-writing with the third one may be
co-authors themselves. Here, a link creation has only benefits and no costs, however, it
is not true for financial networks due to the involved trade-off: benefits of an additional
connection vs. a cost to establish a link, or benefits of lending to one more bank vs. po-
tential shock propagation through this connection. In the Austrian banking system, (Boss
et al. (2004)) finds clustering coefficient to be about 0.12; whereas Bech and Atalay (2008)
demonstrate significant asymmetry of in- and out- clustering: in 2006, about 0.10 and 0.28
correspondingly.

Short average path length with low clustering coefficient highlights certain efficiency
of real networks: efficient transfer of resources from one node to another with minimum
number of costly links. Assuming that indirect connections (neighbors of neighbors) are
also beneficial, Jackson and Wolinsky (1996) show in a game theoretic framework that given
such tradeoff the most efficient6 network is a star network with one node in the center and
all other nodes connected to the central node. Real financial networks have a form very
similar to a star, however, in the center there is not one bank but a small group of well

6A network is defined to be efficient if it maximizes the total utility to all players in the society.
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connected banks, the core, and all other banks, the periphery, being mainly connected to
the core banks (Craig and von Peter (2010)). Whereas seemingly efficient (the economic
efficiency of such network structures will be discussed in the overview of the theoretical
literature in Section 1.6), such a structure may be also very fragile, since the whole network
relies on few intermediaries. And in case of attacks targeted at the central nodes, the whole
system may fall apart. Albert et al. (2000) conducted a very interesting study to analyze
which network structure is more resilient, and the main finding is that there is no one-
size-fits-all solution: while being more vulnerable to targeted attacks, scale-free networks
are more resilient to random shocks than random networks. Indeed, in a random network
all the nodes have similar importance, therefore in case of a random shock a network will
be equally significantly impacted whatever node is attacked. However, the probability of
hitting a core node in a random strike is very low since there are only few core nodes and
many periphery ones. On the contrary, if we attack any of the hubs, the damage will be
much higher comparing to the attack on any of the nodes in a random network. The issue
of stability of a financial system is of particular importance, and I will discuss in details the
findings of the stress-testing literature in next section.

1.5 Stress-testing literature

In this section, I focus on the network stress-testing literature. The reviewed studies
differ significantly in the types of data used (real or estimated exposures matrices, fully
simulated networks), contagion channels and resolution models, however, they all have the
same feature: the initial network is taken as given, and it is used to analyze the resilience
of a network to the propagation of contagion after an initial shock.

The first studies date back to early 2000s when Allen and Gale (2000) published their
seminal theoretical paper on the network contagion, and in 2001 and 2003, Eisenberg and
Noe (2001) and Furfine (2003) proposed algorithms to compute the losses due to contagion
in a network system.7 This stimulated numerous papers on contagion in real-world banking
systems, for which Upper (2011) provides an excellent review.8

7Working papers circulated much earlier
8Amundsen and Arnt (2005) in Denmark, Blavarg and Nimander (2002) in Sweden, Degryse et al.

(2009) in Belgium, Elsinger et al. (2006a,b) in Austria, Frisell et al. (2007) in Sweden, Furfine (2003) in
the USA, Guerrero-Gomez and Lopez-Gallo (2004) in Mexico, Lublóy (2005) in Hungary, Mistrulli (2011)
in Italy, Sheldon and Maurer (1998) in Switzerland, Toivanen (2009) in Finland, Upper and Worms (2004)
in Germany, Van Lelyveld and Liedorp (2006) in Netherlands, Wells (2004) in the UK
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The main focus of those studies is the presence and size of the domino effect due to an
idiosyncratic bank failure: if one bank defaults, its counterparty writes off losses and may
default as well, which may lead to other defaults of its own counterparties. This channel
is often called solvency contagion. In this framework, banking systems are subject to a
sudden idiosyncratic default of one bank at a time with few exceptions: Elsinger et al.
(2006a,b) first proposed a shock related to the market price of the assets, Lublóy (2005)
grouped banks according to their FX exposures and let all banks in a given category fail
jointly. No behavioral aspects were analyzed. As discussed in Upper (2011), few clear-cut
results emerge due to the differences in methods and assumptions used and banking systems
analyzed. Nevertheless, according to Upper (2011), the main results can be summarized in
the following way: losses of a magnitude 15-20% of total assets are documented for Italian,
Belgian, British and German banking systems; studies that analyze overnight transactions
find little possibility for contagion (e.g., Amundsen and Arnt (2005) and Furfine (2003))
and some other studies (Lublóy (2005) and Sheldon and Maurer (1998)) find also limited
potential for contagion for Hungary and for Switzerland correspondingly.

Whereas the financial world proves to be more and more interconnected across inter-
national borders9, the lack of the data on interbank bilateral relationships prevents the
analysis of the potential for cross-border contagion. Though, a few studies tried to do it
using BIS banking statistics, e.g. Degryse et al. (2009) and Espinosa-Vega and Sole (2010).
The interesting point of such studies is rather documentation of changes in patterns of cross-
border exposures than levels of contagion since the main assumption of a shock wiping out
a significant percentage of cross-border assets of a certain country remains coarse.

As aforementioned, two main algorithms are used to resolve the problems: Eisenberg and
Noe (2001) and Furfine (2003). A banking system is characterized by an exposure matrix
E. Bank i holds interbank assets Eij and has capital Ci. When some bank j defaults, bank
i writes off losses equal to bank i exposure to bank j, Eij, multiplied by recovery rate R.
Therefore, bank i defaults when its capital Ci is lower than EijR. The default of bank i may
trigger defaults of its own counterparties and so on. Eisenberg and Noe (2001) solve this
problem analytically using the fixed point theorem and find an endogenous repayment vector
R which is proved to be the unique solution to the problem. Furfine (2003) proposes an
algorithm solved numerically, where defaults follow each other sequentially. The recovery
rate is set exogenously. The difference between the two algorithms is quite significant,
whereas the latter looks at defaults step by step: what are the banks that default at this
round due to the defaults at the previous step; the former tells us what would be the defaults

9see, e.g., Cetorelli and Goldberg (2014) for a discussion of measures of complexity of global banks
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in equilibrium if we take into account all the mutually dependent losses and repayments.
Eisenberg and Noe (2001) has an advantage of providing an analytical solution and an
endogenous recovery rate, however the timing of the model is hardly realistic considering
how long it takes for the resolution of a bank default.10 In this sense, Furfine (2003) provides
a more realistic approach, however different recovery rates need to be tested.11

The literature developed methods to analyze contagion in a more realistic way including
both idiosyncratic and correlated market shocks, other channels of contagion and endoge-
nous reactions of banks. Some studies use real exposures data, but most of the researchers
performed their analysis on simulated data. The former counts very few papers, whereas
the framework of simulated networks attracts a lot of researchers due to both its feasibility
and flexibility, and therefore there are multiple papers with a big variety of test settings. I
will start by mentioning the papers using real data. Cont et al. (2010) analyze the Brazilian
banking system and propose a way to simulate a correlated market shock as a one factor
model in the absence of detailed data on the banks’ balance sheet. They underline the
importance of having a correlated market shock vs. an idiosyncratic shock.

Solorzano-Margain et al. (2013), on the contrary, employ rich data on the Mexican
interbank network and analyze the contagion within the system given well-defined macroe-
conomic shocks modeled through a large-scale BVAR. The authors find that some banks
may indeed default due to the market shocks. The same group of researchers from the
Mexican central bank has some other publications analyzing the Mexican interbank data
where they consider other types of exposures (foreign exchange, derivatives and securities)
and a broader financial system including additionally brokerage firms, pensions and invest-
ment funds.12 In terms of quality of the data, coverage of the assets, institutions and time
period, their data and work are unique.

Karas and Schoors (2012) investigate an impact of additional channels of contagion on
the stability of the Russian banking system: funding liquidity losses, fire assets sales and
active liquidity runs on infected banks. Having extremely rich data, the authors perform
their analysis on monthly data from July 1998 to October 2004, thus capturing two instances
of banking crises, namely 1998 and 2004. The paper tests different channels of contagion in
order to be able to reproduce the severity of the crises in terms of the number of defaulted

10see Fleming and Sarkar (2014) for the details of the resolution process of Lehman Brothers which took
several years

11Memmel et al. (2012) conducted a unique analysis of default contagion using stochastic loss given
default, or stochastic recovery rate.

12see e.g. Martinez-Jaramillo et al. (2014, 2010)
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banks. The main finding suggests that only when all the channels are activated, it is possible
to capture both crisis periods.

Vuillemey and Peltonen (2013) analyze the impact of a sovereign credit event affecting 65
major European banks through several channels: direct losses on sovereign bond holdings,
asset fire sales, direct CDS repayment triggered by the credit event, increased collateral
requirements on other non-defaulted CDS reference entities and solvency default cascades.
Their results suggest that losses propagate substantially through bond exposures and to a
lesser extent through CDS exposures. An interesting finding is that the CDS market hardly
play a mitigating role of in case of a sovereign credit event.

Alter et al. (2014) move further than simple stress-test analysis of a banking system and
investigate the effect of capital rules on the German banks, which are connected through
overlapping asset portfolios and interbank loans. These rules depend on both individual
bank characteristics and interconnectivity measures of interbank lending and have to mini-
mize system wide losses. The authors find that reallocation of capital based on eigenvector
centrality decreases twice as many losses in the system as Opsahl, out-degrees or closeness
centrality.13

Going back to the papers analyzing the role of the network structure in propagating
and amplifying shocks to a financial system with the use of simulated networks, Chinazzi
and Fagiolo (2013) provide a nice critical survey of this literature. Here I will follow the
systematization proposed in the survey with which I fully agree: different factors impact the
network capacity to withstand a shock such as connectivity of a network, heterogeneity of
banks’ size, type of the shock hitting a system and channels of propagation. The reviewed
studies analyze these factors in different settings and combinations and provide multiple
insights on the relationships between various characteristics and stability of a network. I
summarize these findings in a concise way in Table 1.1.

Employing methods and concepts of the literature on complex networks, Gai and Ka-
padia (2010) provide a critical result that a financial system exhibits a robust-yet-fragile
property. Higher connectivity improves the stability of the system by reducing the prob-
ability of contagion being triggered, however, once contagion starts, higher connectivity
increases the probability of large default cascades. The probability of contagion is low,
though when it happens, its impact can be disastrous. Acemoglu et al. (2013) propose

13Out-degree centrality is the number of links that originate from each node. Eigenvector centrality, or
Bonacich centrality, is the centrality of a node given the importance of its neighbors. Closeness centrality is
defined by how close a node is to all other nodes. Opsahl centrality has been recently proposed by Opsahl
et al. (2010), and it combines the out degree with the strength of the outgoing links.
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another source of a tipping point: the size of the initial shock which in the model is related
to total excess liquidity in the system. Their main finding shows that the result of Allen
and Gale (2000) about the stability of the complete network is valid only when the shock
is small, however, when the shock is large, this network structure turns out to be the least
resilient and the least stable. Amini et al. (2012) address the important issue of the size
of the exposures with respect to the capital. They define a link to be contagious when the
exposure it represents is larger than the capital of the lending bank. The resilience measure
then links the distribution of in- and out- degrees and the proportion of contagious links.
When the latter are limited, no contagion occurs, however, if the number of contagious
links crosses a certain threshold, an initial shock will spread easily through the system.
Therefore, the authors underline the importance to monitor that banks do not have expo-
sures that exceed their capital. The current regulation in France limits interbank exposures
weighted by their risk to 25% of capital, however non-risk-weighted exposures can be as
high as capital. 14

Iori et al. (2006) documented that heterogeneity of the system in terms of the banks’ size
can be an important source of fragility. They show that a system with banks of different
size becomes prone to knock-on effects whereas in a homogenous banking system inter-
bank relationships univocally stabilize the system. Amini et al. (2013) analyze instead the
heterogeneity of the system in terms of the degree and exposures distribution, or in other
words, number and size of connections of a bank. While keeping the average connectivity
constant, they test the impact of other structures: scale free network with heterogenous
exposures; scale free network with homogenous exposures; and a random graph with ho-
mogenous exposures. The main finding states that the more a system is heterogenous the
less it is resilient.

Nier et al. (2008) and Caccioli et al. (2012) test both forms of heterogeneity: over
assets and degrees. Nier et al. (2008) find that the effect of the degree of connectivity is
non-monotonic: initially a small increase in connectivity increases the contagion effect; but
after a certain threshold value, connectivity improves the ability of a banking system to
absorb shocks, however, this holds only if the banking system is well-capitalized. Another
finding suggests that the lower capitalization magnifies losses due to contagion in a non-
linear way, namely, there is a threshold of the amount of capital in the system below which
the risk of a systemic breakdown surges. Moreover, the size of interbank liabilities tends
to increase the risk of knock-on default. Finally, more concentrated banking systems are
shown to be more prone to systemic risk, all else equal.

14CCLRF (2013)
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Findings by Caccioli et al. (2012) suggest existence of two different regimes: higher
probability of contagion due to the failure of the most connected bank rather than the
biggest one given low average connectivity; and the other way around for high average
connectivity. Additionally, they find that increasing capital buffers of only the biggest
banks is effective in reducing probability of contagion only when banks have heterogenous
balance-sheet sizes.15 This result confirms the one established by Cont et al. (2010). Caccioli
et al. (2012) also analyze the impact of disassortative mixing property of financial networks
- well-connected banks tend to connect with nodes that have few connections - on their
resilience to contagion and finds that this network characteristics does indeed decrease the
instability of the system.

The aforementioned papers mostly focus on solvency cascades, however, a shock can
propagate through various channels. The paper by Cifuentes et al. (2005) is one of the first
to analyze the effect of asset fire sales on network stability. They find that connectivity im-
pacts the number of contagious defaults in a non-linear way. More specifically, without the
price channel, higher connectivity is always beneficial, whereas when prices are marked to
market, higher connectivity may imply more banks selling their illiquid assets and therefore
higher impact due to this additional channel. Nier et al. (2008) also extend their model
to study assets price effects, though they assume that assets are the interbank obligations
of the previously defaulted institutions. The authors find increase in systemic risk in the
presence of these liquidity effects.

Montagna and Kok (2013) add one more layer of contagion on top of the aforementioned
two, therefore analyzing together solvency cascades, assets fire sales and banks’ liquidity
hoarding behavior. They find sizeable non-linearities when taking into account banks’ inter-
actions in all the three segments, namely, losses due to contagion through the three channels
can be significantly larger than the sum of the channel-induced losses when considering each
layer individually.

15According to this finding, new regulatory measures discussed at G20 Summit in Brisbane in November
2014 such as TLAC (Total loss absorbing capacity) and GLAC (Gone-concern loss absorbing capacity)
should improve the resilience of the international financial system to contagion.
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Table 1.1: Comparison of results found by different studies concerning the impact of the network structure and various sources of heterogeneity
on the system resilience to contagion

Impact of network structure and sources of heterogeneity on the system resilience to contagion

Gai and Kapadia (2010) Acemoglu et al. (2013) Amini et al. (2012) Iori et al. (2006) Amini et al. (2013) Caccioli et al. (2012) Nier et al. (2008)

Type of network

Scale-free network x x
Erdos-Renuy random network x x x x x x
Sources of heterogeneity in the system

Shock size x x
Connectivity x x x x x
Deposits size x

Assets heterogeneity x x

Node degree and exposure size x x x

Disassortative mixing x
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1.6 Endogenous networks

While the stress-testing literature takes networks as given and looks at how they will
evolve under certain conditions, studies on endogenous networks aim at answering such
questions as: Why do banking networks have the structure that we observe? Are real
networks optimal? How different regulation policies may change banks’ decisions about
links creation that new network structures would be less prone to contagion risk? Will
banks’ endogenous decision-making under worsening conditions aggravate a crisis? These
and other questions are studied in this literature from two points of view: a static one and
a dynamic one. Network formation in a static setting is a more traditional approach; it
has been widely used in the social networks literature to study social strategic interactions
using game-theoretic techniques. The importance of the dynamics of financial networks has
been underlined by 2007-2009 financial crisis when banks’ own "optimal" behavior created
systemic risk. Since then researchers got interested in modeling not only how networks form
but also how they evolve. However, this stream is still in it infancy.

To the best of my knowledge, the first paper that incorporates an endogenous interbank
network in a theoretical model of banking is Babus (2007). The author constructs a model
where banks form links with each other as an insurance mechanism to reduce the risk of
contagion. The link formation process follows the intuition developed in Allen and Gale
(2000): better connected networks are more resilient to contagion. The model shows the
existence of a connectivity threshold above which the contagion does not occur. If there
were no cost associated with link creation, banks would form a complete network which
would never default due to contagion. However, the implicit cost related to a link prevents
banks from forming more connections than required by the connectivity threshold. The
main economic trade-off is between risk-sharing and the implicit cost of having a link.
Leitner (2005) considers a trade-off between risk sharing and potential for collapse. He finds
that linkages creating the threat of contagion may be optimal because this can motivate
banks to help one another, even if they could not precommit to do so. Whereas Babus
(2007) and Leitner (2005) consider interbank links as the insurance mechanism to reduce
the risk of contagion, Castiglionesi and Navarro (2007) analyze a network formation game
where banks fully anticipate the trade-off between the benefits coming from the liquidity
insurance and the costs (counterparty risk) of participating in the financial network. The
authors find that under the planner problem, the efficient network is complete when there is
sufficient amount of bank capital available in the economy, otherwise the constrained-first-
best (CFB) network is characterized by a core-periphery structure. In a decentralized setup,
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core-periphery structure also emerges as an equilibrium outcome, and when counterparty
risk is low enough the connectivity level of the network coincide with the CFB structure
otherwise it has inefficiently low level of connectivity. Fique (2011) builds on the model
of Castiglionesi and Navarro (2007) and studies the impact of a "network tax" on the
formation of a network. The regulatory tax charges banks according to their exposure to
contagion risk and changes the initial trade-off that motivates the formation of the network
therefore affecting the equilibrium network structure. In a hybrid framework, where banks
decide to make interbank connections in a predefined network, Acemoglu et al. (2013)
confirm known results that banks fail to internalize the externality that they impose on
the network therefore creating a network different from the socially optimal. The authors
find that in equilibrium banks may either "overlend" or may lend to the "wrong" set
of borrowers. Farboodi (2014) looks at the network formation problem from a different
angle: she studies incentives of financial institutions to capture intermediation spreads
through strategic borrowing and lending decisions. She finds that it is the core-periphery
network that emerges endogenously in her model with risky profitable banks being in the
core and playing the role of intermediaries. And she obtains a similar finding that in a
constrained efficient equilibrium, risky core banks "overconnect", exposing themselves to
excessive counterparty risk, while periphery banks who mainly provide funding have too
few connections.

Models of static network formation are good at explaining the intuition why banks create
links and why we observe these particular network structures in equilibrium, however they
cannot explain and predict the dynamics of networks. The empirical studies though show
that while financial networks preserve the same statistical characteristics over time they also
vary quite a lot. An illustrative example is the evolution of the interbank market in the USA
during the 2007-2009 financial crisis (e.g., Afonso et al. (2011)) and in Europe during the
2010-2012 sovereign debt crisis (Abbassi et al. (2013)). The first studies that were interested
in reproducing network dynamics were proposed by physicists (preferential attachment by
Barabasi and Albert (1999)), though they were missing an economic rationale of links
formation. Following attempts used agent-based models where banks are profit-maximizers
with simple rule-of-thumbs to create interbank links to lend or to borrow liquidity. Iori
et al. (2006) were the first ones to use such models to simulate a dynamic interbank market.
They adapt the idea of Allen and Gale (2000) in a dynamic setup where banks trade on
the interbank market in order to counteract fluctuations in liquid assets and stochastic
investment opportunities, and therefore expose themselves to the contagion risk. However,
banks meet randomly in the interbank market forming a random graph, and the authors
do not analyze the network structure explicitly. Their main finding is the role played by
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the heterogeneity of a banking system: in a system with homogenous banks, "an interbank
market unambiguously stabilizes the system", whereas heterogeneity makes knock-on effects
possible. Ladley (2013) extends the model of Iori et al. (2006) in a partial equilibrium setting
where interbank interest rates and banks’ portfolio choice are determined endogenously.
The author obtains a result similar to the one by Acemoglu et al. (2013) that there is
no one-size-fits-all optimal network structure, and the way interbank linkages impact the
stability of the system depends on the shock size: when shocks are limited, the interbank
connections stabilize the system whereas in a system-wide shock, interbank links propagate
instability. Georg (2013) extend the two previous models by including a central bank and
testing different network structures. The author uses a pre-defined network structure for
an interbank market in which lenders and borrowers meet randomly. He states that a
network structure starts playing an important role only during a crisis time and finds that
networks with large average path length are more resilient. If a central bank intervenes
it can mitigate financial distress in the short run, however, it may also cause a crowding-
out effect reducing volumes on the interbank market if it accepts too many bank assets
as collateral. Porter et al. (2014) build on their previous work Iori et al. (2006) enlarging
the interbank model to the real economy sector and endogenizing banks’ decisions about
portfolio allocation, taking into account counterparty risk and regulatory requirements. As
expected, they find that leverage requirements improve the stability of the banking sector
but at the same time hurting the real economy. However, the authors do not focus on the
role of the network structure and analyze a banking system presented by a random graph
network. The network formation mechanism in Halaj and Kok (2014) is also based on a
portfolio optimization model whereby banks allocate their interbank assets while balancing
the return and counterparty defaults risk as well as they diversify their funding sources.
The initial pre-network is defined using the methodology by the same authors (Halaj and
Kok (2013)). The paper examines the impact of regulatory instruments limiting banks’
risk from interbank exposures. It finds that the regulatory large exposure limits can have
a more pronounced impact on contagion risks than the Credit Valuation Adjustment, a
charge on the capital allocated to the interbank asset portfolios. The authors underline
that macro-prudential policies can significantly alter the network formation and therefore
interbank contagion risk. Cohen-Cole et al. (2011) propose a completely different setting:
banks’ strategic interactions are modeled as a Cournot equilibrium game at each period:
banks compete in quantities of lending, and market price (interest rate) is given by the
standard linear inverse market demand. To pass from one period to another, the authors
use a simple diffusion process: a randomly chosen bank creates (deletes) a link with a node
with the highest (lowest) Bonacich centrality with certain probability. The equilibrium of
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the dynamic game is defined as the equilibrium degree distribution in the interbank market
when the proportion of banks with certain number of counterparties in a network stabilizes.

Baral (2012) and Fique and Page (2013) were among the first who analyzed endogenous
network dynamics in an equilibrium game-theoretic framework. Both models build on the
stochastic game approach proposed by Page and Wooders (2009) where Baral (2012) fo-
cuses her attention on the change of the network dynamics when it is hit by a shock while
Fique and Page (2013) are interested in banks’ rollover decisions (carrying on an interbank
connection or dropping it when faced different market conditions). In both models, bor-
rowing/lending opportunities arrive randomly to a couple of banks, but afterwards banks
are faced with endogenous decisions to make: lenders (borrowers) are to ask for repayment
(to repay) or to ask for liquidity from the central bank as in Baral (2012); lenders decide to
rollover or cut the debt of a borrower. Fique and Page (2013) find a tipping point property
and hysteresis: once rollover risk takes place and creditors stop lending, credit relationships
between institutions can take a very long time to establish. Moreover, they show that efforts
needed to restore normal lending relationships are much higher than those to destabilize.
Anand et al. (2012) also study rollover risk in a dynamic network framework and come up
with the same findings. The authors build a dynamic model in a global games framework
of Morris and Shin (2003), therefore explaining the tipping points by coordination failure
issues.

A key question in modeling network dynamics is how banks decide with which counter-
party they want to create a link. A methodology that has attracted much attention due to
its flexibility is a search mechanism borrowed from the labor market literature, where banks
decide on the rate and value of a loan depending on their needs, and then deals are matched
through the search mechanism. Afonso and Lagos (2014) develop a dynamic equilibrium
model of trade in the federal funds market that provides the intraday allocation of reserves
and pricing of overnight loans, while accounting for OTC characteristics of the market:
search for counterparties and bilateral negotiations. Bluhm et al. (2012) build a model,
considering an interbank network as a centralized market, in which dynamic adjustment
results from the endogenous response to shocks of optimizing banks and of the tatonnement
equilibrium process characterizing market adjustment.16 The authors use the model to as-
sess the evolution of the network under various prudential policy regimes and with different
channels of shock propagation: solvency contagion, liquidity hoarding and asset fire-sales

16An equilibrium market price is reached when demand equals supply through a groping process: prices
are announced; agents state how much of each good they would like to offer (supply) or purchase (demand);
no transactions take place at disequilibrium prices; prices are lowered (raised) for goods with excess supply
(demand) and so on until the equilibrium reached.
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externalities. Blasques et al. (2014) analyze the role that credit risk uncertainty plays in
the interbank lending market. Their research suggests that repeated lending between banks
may significantly reduce asymmetric information and improve credit conditions due to lower
credit risk uncertainty, therefore providing foundation for well-known empirical fact that
banks tend to form trading relationships (Cocco et al. (2009)). Moreover, they study the
impact of monetary policy (changes in the ECB interest rate corridor) on the interbank
lending network. Bianchi and Bigio (2014) focus their attention on the role of banks in the
transmission of monetary policy, the centerpiece of policy debates on both sides of Atlantic.
They enlarge their point of view and consider banks’ lending decisions as a part of banks’
liquidity management, therefore the rationale for lending or not lending in the interbank
market is the tradeoff between the profit on a loan and potential own liquidity needs. Using
a dynamic network framework Gofman (2014) focuses on the trade-off between the stability
and efficiency of different financial architectures and the implications of different pricing
mechanisms on trading efficiency. He confirms the findings of Farboodi (2014) that financial
markets that require intermediation are not always efficient in allocating liquidity and risks.
The advantage of his methodology as well as the ones by Blasques et al. (2014), Bianchi and
Bigio (2014) and Afonso and Lagos (2014) is that they allow calibrating network models
on real interbank lending data.

All the aforementioned studies on dynamic networks focus on the interbank lending
market. To the best of our knowledge, only two papers stand out as far as other financial
markets are concerned: Vuillemey and Breton (2014) and Heam and Koch (2014). Vuillemey
and Breton (2014) present a network formation model of an OTC derivatives market where
the network of exposures emerges as the aggregate outcome of CDS contracts where dealers
set trade-specific prices and quantities, taking as given regulatory requirements and the level
of counterparty risk. Heam and Koch (2014) stress the importance of long-term interbank
relationships and test the hypothesis that the latter are caused by banks’ diversification
goals. The authors also underline the need to consider the endogenous evolution of banks’
balance sheets when studying interconnections in long-term perspective.

1.7 Econometrics approach to networks

In this section, I will talk about studies of financial networks using econometrics methods.
I start by mentioning first the developments in the literature on social networks since the
literature on financial networks has borrowed most of the methodologies from it. Indeed,
social networks have gained a lot of attention during the last two decades due to their
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importance and ubiquity. At a general level, a social network represents any pattern of
relationships between agents. Noticeable examples of studies on social networks include
friendship networks among adolescents, coauthorship networks among scientists, networks of
criminals and trade networks between countries. The empirical literature on social networks
was much smaller than theoretical one but has been expanding at a rapid pace. Network
econometrics is particularly useful to treat such a difficult question as how the behavior of
an individual is affected by others, because it allows to well identify such peer effects.

Econometrics of social networks relies on the methods of spatial econometrics which were
initially developed to analyze location and spatial interaction in regional science, urban and
real estate economics and economic geography, though it also faces difficulties specific to
the interaction between agents. Manski (1993) raises three main challenges to identify peer
effects. First, the researcher must determine the appropriate reference groups. Who is
affected by whom? Second, unobserved attributes that are correlated between peers may
generate a problem of confounding variables. For instance, individuals in the same reference
group may face similar environments. Self-selection may also induce the presence of such
correlated effects. Similar individuals tend to interact together, which makes the formation
of the network endogenous. Third, simultaneity in peer behavior may hinder identification
of exogenous effects, i.e., the influence of peer attributes, from endogenous effects, i.e., the
influence of peer outcomes.

In the literature on financial networks, only a few papers use this methodology in order
to identify how a bank’s decision is influenced by decisions of its counterparties. Cohen-Cole
et al. (2010) analyze stock futures markets, such as the Dow and S&P 500, where a large
number of traders exchange contracts. The process of doing so creates a network of traders
that is highly susceptible to shocks. The authors demonstrate that seemingly innocuous
events can cascade into market failure by showing that a shock to one trader’s profits or
losses cascades into the profits or losses of those in the trading network precisely along the
lines of the network architecture. Moreover, the study documents that network patterns
in a fully electronic market can explain more than 80% of the individual level variation in
trading performance. Cohen-Cole et al. (2011) propose a simple model of banks’ profitabil-
ity based on competition incentives and the outcome of a strategic game. As competitors’
loans change, both for closely connected ones and the whole market, banks adjust their
own decisions as a result, generating a ’transmission’ of shocks through the system. This
theoretical model is then reformulated in a regression equation therefore allowing estimat-
ing the model using the data, the authors use e-MID transactions data for the period from
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2002 to 2009. The used approach permits to measure both the degree that shocks are am-
plified by the network structure and the manner in which losses and gains are shared. A
very similar approach is used by Denbee et al. (2013) who analyze banks’ liquidity holding
decisions as a simultaneous game on an interbank borrowing market. Using a sterling inter-
bank network database from 2006 to 2010, the authors find evidence for a substantial, and
time varying, network risk, where the latter is defined as the characteristics of a network
to magnify an individual shock. Craig et al. (2014) analyze the German interbank market
and provide evidence on significant spillover effects between banks’ probabilities of distress
and the financial profiles of connected peers. They show that better capitalized and man-
aged connections reduce the banks’ own risk while higher network centrality reduces the
probability of distress, supporting the notion that more complete networks tend to be more
stable.

Other papers that analyze networks do not focus on the effect of one bank on the network
or on its counterparties, they are rather interested how banks’ characteristics are explained
by their position in a network. Using e-MID data for the period 2006-2008, Gabrieli (2012)
shows that network centrality measures can help explain heterogenous patterns in the inter-
est rates paid to borrow unsecured funds in the e-MID interbank market after controlling
for bank size and other relevant bank and market factors. Abbassi et al. (2013) employ
Target2 interbank loan data and document significant changes in network characteristics in
different segments of the interbank market during the 2007-2009 crisis. Particularly, they
find that the failure of Lehman Brothers provoked a shrinkage of the interbank network and
that the access to liquidity in the market exhibits substantial heterogeneity, depending on a
bank’s position within the network. Craig et al. (2014) also study the question of liquidity
in the interbank market. More precisely, they assess how the concentration of credit rela-
tionships and the position of a bank in the network influence the bank’s ability to meet its
liquidity demand using two data sets: quarterly data of bilateral interbank credit exposures
between all German banks from 2000 to 2008 to measure interbank relationships and the
network characteristics; and bids placed by the individual banks in the European Central
Bank’s weekly repo auctions. Their findings suggest that banks with a more diversified
borrowing structure in the interbank market bid significantly less aggressively and pay a
lower price for liquidity in the ECB’s main refinancing operations. Peltonen et al. (2014)
analyze how different characteristics of the reference entity in the CDS market influence
the corresponding CDS network properties. They document that the CDS market size and
activity is largely impacted by the characteristics of both the underlying bond exposure
(size, collateralization) and CDS risk (volatility, commonality in returns). Whether the ref-
erence entity is European or not has little difference for the network structural properties,
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however, the distinction between sovereign and financial reference entities does matter a
lot.

1.8 Market Data

The last interesting stream of the network literature is again driven by the lack of
bilateral data, but also, by the wish to understand how prices incorporate information
about interconnectedness of the financial system. These studies are also related to the
theory of investment and to risk management, since they are interested in extracting relevant
information from the market data. There has been a number of technical papers by the same
group of physicists and mainly published in physics journals that try different methodologies
to obtain a relevant network structure from public information such as returns on assets of
financial institutions. In this section, I will focus only on a few of them, which I consider
the most relevant from a finance perspective.

Starting from Mantegna (1998), networks were constructed using stock price correlations
with vertices corresponding to stocks and the edges between them to distances, which are
transformed correlation coefficients. One of the main issues when working with market
data is to filter out information from noise. Onnela et al. (2004) propose to use a random
graph theory to establish a null hypothesis of a totally random graph and then compare
the results for empirical graphs against those of random graphs. The deviations from
random behavior are then interpreted as information. In order to do it, they construct a
network differently from previously widely used approach, minimum spanning tree (MST).
MST builds a tree of N − 1 edges with the highest correlations, where N is the number of
nodes. Due to the tree condition, the asset tree fails to capture the strong clustering in the
financial markets. The proposed method does a better job and allows for clustering. By
comparing the obtained asset graph to the random graph, the authors found a number of
differences that they interpret as information, in total they conclude that only 10% of the
edges appear to carry genuine information. Tumminello et al. (2007) propose a different
method to construct a network with clusters, Planar Maximally Filtered Graph (PMFG),
and obtain a network with nice clustering by sectors. They also document that network
properties change depending on the horizon of returns, e.g. 5 minutes or one trading day.
Tse et al. (2010) notice though that such methods lead to a loss of information because of the
particular filtering conditions, and they propose a winner-take-all approach in establishing
edges of the networks. In this approach, two entities are considered to be connected when
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the true value of cross correlation of their stock prices is larger than a certain threshold
value. They consider almost 20000 stocks traded on New York Stock Exchange between
2005 and 2007 and show that the full networks of stock prices, price returns and volumes
are scale-free. The authors therefore conclude that a small number of stocks are having a
strong influence over the entire market.

All the aforementioned approaches construct networks using solely correlations between
stock returns, therefore the networks are undirected by construction. Billio et al. (2012)
solve this issue by using Granger-causality tests to assign directions to the correlations which
are computed using principal component analysis. The authors use monthly returns of hedge
funds, banks, broker/dealers, and insurance companies, and they find that linkages within
and across all four sectors are highly dynamic over time. Over time, all four sectors have
become even more highly interrelated. Another finding points to an important asymmetry
in the connections: the returns of banks and insurers seem to have more significant impact
on the returns of hedge funds and broker/dealers than vice versa. This finding underlines
also the importance to study directed networks even for market data.

Two other papers also construct directed and moreover weighted networks in a com-
pletely different way. Diebold and Yilmaz (2014) propose a methodology to construct
weighted directed networks based on a variance decomposition method widely used in econo-
metrics. They also show that their constructed measures of connectedness are intimately
related to key measures of connectedness in the network literature. And then the authors
track average and daily-varying connectedness of major U.S. financial institutions’ stock
return volatilities during different periods. Muijsson (2014) builds on the method proposed
by Diebold and Yilmaz (2014), but enlarges it by deepening the understanding of the forces
driving the dynamics of equity returns. She aims at disentangling the impact of balance
sheet exposures (asset communality and interbank deposits) from investor behavior (infor-
mation contagion) in interbank contagion. Applying the methodology to the returns of a
number of European SIFIs, the author finds that interbank deposits are the main channel
of transmission, with a smaller importance of information contagion.

Brownlees et al. (2014) propose a method to estimate correlations between prices of listed
companies, therefore constructing an undirected network. They test this methodology on
100 liquid US blue chips and find that the reconstructed network does satisfy the standard
network properties such as low density and power law distribution. The authors also observe
expected industry clustering. Overall their results convey that data have quite a lot of cross-
sectional dependence even after controlling for a common factor, and networks can be a
useful tool to synthesize such a information.
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This strand of the literature is definitely very interesting and promising. However, the
results can only be as good as the information is, and the hypothesis of market efficiency
consistently fails. Also the application of these findings is not obvious, since even if re-
searchers can correctly estimate what is priced by the market, the market-based network
can still be significantly different from the real underlying network. In order to understand,
how such networks can be used, one has to stop thinking that linkages of these networks
correspond to underlying credit exposures. Such reconstructed market webs rather reflect
market perception of certain dependence structure between companies, and as underlined
by Brownlees et al. (2014), indeed provide a practical way to synthesize and visualize this
enormous amount of information.

1.9 Conclusion

In this chapter, we have discussed studies on financial networks using different ap-
proaches from game theory to econometrics. All in all, this literature highlights that
interconnectedness is a key element for the stability of a financial system. Moreover, it
demonstrates the plenitude of methodologies that consider a financial system as a network
and allow for an explicit analysis of interactions between agents.

The main problem faced by any application of the network approach to financial systems
is the lack of data on bilateral relationships. This situation has been improving in recent
years at the level of national banking systems, but there is still a long way to go to access all
the required information at the international level. Moreover, such data will remain highly
confidential. In this regard, studies that aim at estimating matrices of bilateral exposures
from incomplete or market data look particularly promising and useful. Some advances
have already been done especially with incomplete data, however, more is needed when
using market data.

The stress-testing literature has obtained interesting results in identifying dependencies
between network characteristics and the extent of contagious defaults in the system. More
specifically, these studies find that connectivity has non-linear effects on the stability of a
network and its impact interplays with other network characteristics such as heterogeneity
of nodes and the size of a shock. Indeed, for a small shock and a homogenous banking
system, higher interconnectedness univocally reduces the probability of contagion. However,
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if a shock is big and a big bank defaults, higher interconnectedness may lead to knock-
on effects. Moreover, higher interconnectedness is beneficial only when banks are well-
capitalized otherwise contagious defaults will surge. One more finding relates to which
bank defaults first, just any (random attack) or the biggest/most interconnected (targeted
attack): in the first case, the probability of contagion is higher, in the second case, it is its
extent. So, the first suggestion about the network with lower contagion propensity would
be a web of better capitalized banks with certain level of interconnectedness which is high
enough but not complete.

Other findings in this literature suggest that contagion can spread only through conta-
gious exposures, i.e. exposures that are larger than capital of the lending bank, therefore
underlining the necessity to regulate the size of individual exposures. The current regula-
tion moves forward in the right direction. However, existing limits on interbank bilateral
exposures are based on risk-weighted approach. Taking into account that lending to certain
banks, such as well-ranked OECD banks, has zero risk weight, we observe two potential
negative consequences, namely, first, banks may still have individual exposures larger than
their capital, and, second, such regulation forms institutions’ lending incentives, encour-
aging a particular network structure with some some very connected banks in the middle.
This observation echoes some findings of the theoretical literature suggesting that formed
networks tend to have unbalanced structure with big banks having too many links than
optimal and small banks too few. A next important move would be to understand which
policies provide the right incentives for banks to build a more balanced and, thus, more
resilient network.

Other research streams have made important attempts but more work is still needed
in the analysis of other channels of contagion, other interbank segments different from the
credit market such as CDS which may have different dynamics. And particularly, more
understanding about the network dynamics and endogenous agents’ decisions would be a
great step forward in improving financial stability.



Chapter 2

Domino Effects when Banks Hoard

Liquidity: the French Network1

2.1 Introduction

The 2008 financial crisis accentuated again the central role of liquidity and confidence in
the market for the system financial stability. As a consequence of high uncertainty and low
confidence level among agents, interbank market activity froze and central banks intervened
massively by injecting liquidity.2 This paper develops a model that allows analyzing the
effect of funding shortage due to banks’ liquidity hoarding behavior on the system stability
in a stress scenario with solvency contagion.

The following observations of the crisis development motivate our model: a shock to
banks’ common assets weakened capital of the system therefore increasing uncertainty about
banks solvability. This, coupled with already acquired high leverage and banks’ heavy
reliance on short-term wholesale funding, led to shortage of funding for banks and their
liquidity hoarding behavior as a reaction to increased counterparty risk and uncertainty
about future availability of liquidity.3

1This chapter is based on the Banque de France Working paper Fourel et al. (2013). It has been pre-
sented at several conferences: 5th Financial Risks International Forum (Paris, 2012), IFABS 2012 (Valen-
cia), CEF 2012 (Prague), l’AFSE 2012 (Paris), PET13 (Lisbon), FEBS 2013 (Paris), ESRB ATC Workshop
(ECB, 2013)

2For instance, ECB provided liquidity to the market in different ways: SMP and VLTRO programs
through 2009 to 2012 among others, for details see, e.g., http://www.ecb.europa.eu/ecb/html/crisis.en.html

3See, e.g., Acharya and Skeie (2011) and Brunnermeier (2009) for more evidence on the crisis; Berrospide
(2013) documents the evidence of precautionary motives for banks’ liquidity hoarding.

36
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In this paper, we enrich a standard mechanism of default cascades by incorporating
banks’ preemptive actions to secure their liquidity needs and to reduce counterparty risks.
The model consists of three main steps. First, a stochastic common market shock affects
banks’ assets. This shock is calibrated on the true data: supervisory data of banks’ expo-
sures to particular asset types and historic returns of these assets, therefore it affects all
banks according to their respective portfolio composition. The shock abates the system cap-
ital level and signals a state of market distress to affected banks. Second, the shock is then
propagated through the interbank system via total exposures in case of solvency contagion
and via short-term exposures in case of liquidity hoarding behavior (liquidity contagion).
Banks default due to solvency contagion when their capital is lower than exposures to the
defaulted counterparty. Liquidity contagion is transmitted through a different mechanism:
banks stop rolling over short-term loans when they are in distress. Such hoarding behavior
generates cash outflows for the counterparties and lead potentially to funding problems of
the latter. Then, if a bank experiencing significant cash outflow cannot honor its short-
term commitments, it defaults (due to illiquidity). Following the default, more losses have
to be written down by bank’s counterparties, thus generating more hoarding behavior and
funding distress as well as solvency domino effects. Third, we propose a set of indicators in
order to assess the total impact of the shock on the banking system. In our model, the total
impact can be decomposed in three different components in order to evaluate the relative
role of the initial shock and both solvency and liquidity contagion channels.

The main contribution of this paper is threefold. First, we deliver a framework to
analyze how banks’ liquidity hoarding behavior affects a system. The hoarding behavior
is modeled through a reaction function which mimics banks’ heuristics in a crisis time:
losses in capital determine the depth of distress and therefore the amount of liquidity held;
whereas counterparties’ riskiness (leverage is used as a proxy) condition the reallocation of
non-renewed short-term loans among counterparties.

Second, we design an operational approach to implement a market shock. Our method-
ology is suitable for usual stress-tests where shocks are based on scenarios. We extend
the shock methodology to deal with stochastic shocks. The design includes a calibration
step in order to simulate likely stochastic shocks: the actual losses depend on the portfolio
structure of banks as well as the joint distribution of four (observable) common factors.
The stochastic property allows us to analyze the resilience of the banking sector to a shock
either affecting simultaneously all the asset classes or driven by the fall of only one asset
class (such as the burst of a bubble).
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Third, we apply the model to a real case study where we measure the resilience of the
French banking system. On December 31, 2011, the French banking sector appears resilient
to both the market shock and the contagion. We find that losses due to solvency contagion
and losses due to liquidity contagion are of similar order and, moreover, liquidity hoarding
behavior may induce losses to the system even in the absence of solvency contagion; thus
modeling only one contagion channel (such as solvency) would underestimate contagion
risk.

From a different point of view, our paper also contributes to the emerging literature on
multilayer financial networks. In this framework, each layer is a network in one particular
market, e.g. interbank exposures in a CDS market represent one network, whereas exposures
in the interbank money market can represent another network and so on (see Barigozzi et al.
(2010)). All these layers are interconnected: a shock can affect all the networks at the same
time or pass from one layer to another. In our basic model, we consider two networks,
namely, that of long-term interbank exposures and that of interbank short-term exposures.
These two networks propagate different types of contagion. However, a deeper analysis
of the possible interactions between these two networks remains beyond the scope of this
paper.

The paper is organized as follows. Section 2.2 briefly introduces the literature. Section
2.3 presents the model which aims to propose a rationale to explain how solvency defaults
and liquidity hoarding can occur in a banking network when the system is affected by a
market shock. Section 2.4 provides an application of our model to the French banking
system with a comprehensive set of results. Section 2.5 concludes and discusses avenues
for future work.

2.2 Literature review

Our paper mainly builds on the literature analyzing stability of a system via a network
approach. After the seminal paper of Allen and Gale (2000) that proposed a theoretical
model of contagion in a banking system, applied papers by Furfine (2003) on the US data
and by Upper and Worms (2004) on German data opened an avenue for contagion risk
assessment of national banking systems in different countries. Upper (2011) provides an
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overview of the existing literature. Most of the papers4 focus mainly on two aspects: id-
iosyncratic shocks, a default of each institution one at a time; and sole solvency contagion.
Elsinger et al. (2006a,b) and Cont et al. (2010) refined shocks and documented the impor-
tance of having a market shock for contagion propagation. Another improvement concerns
enrichment of models by additional mechanisms. Cifuentes et al. (2005) introduced fire-sale
phenomenon in a framework of solvency contagion. Asset fire-sales are related to scarce
market liquidity for certain assets and, thus, deterioration of the asset value, moreover,
the situation aggravates by banks’ high leverage and their behavior of targeting a certain
solvency ratio. On the other side of the balance sheet, the funding aspect has been intro-
duced by Gai and Kapadia (2011) and Gauthier et al. (2010). They consider funding issues
the way we do but with exogenous sources of lack of liquidity: on the contrary, we regard
that the main source of liquidity needs comes from banks’ own actions. In other words, we
propose a model where the funding issues are endogenous to the banking sector.

From another point of view, our paper is also related to the literature on liquidity aspect
in finance (market liquidity, funding liquidity, fire-sales...) that proposes both an empirical
and a theoretical background for hoarding phenomena. The core activity of banks involves
maturity transformation, which makes them renew regularly their debt, and therefore ex-
poses them to liquidity risk. The interaction of roll-over mechanism and bank’s solvency
was emphasized in a game-theoretical framework by Morris and Shin (2003). Moreover,
banks rationally start hoarding liquidity during crisis times; Acharya and Skeie (2011) and
Brunnermeier (2009) provide rationale for such behavior. More generally speaking, whole-
sale funding is an important tool for balance sheet adjustment (see Damar et al. (2013)).
By modeling hoarding mechanism in a network framework, our paper clearly inherits from
the strand of literature focused on the funding aspect of liquidity. Moreover, this literature
mainly employs a representative agent or homogeneous agents, therefore, we expand this lit-
erature by considering several heterogeneous agents in a network perspective: agents differ
by specific characteristics (in particular their balance sheets) and by their interconnections.
We contribute to this literature by including liquidity-hoarding-based contagion channel,
as well as an application to the French data.

4See among others Mistrulli (2011) for Italy, Van Lelyveld and Liedorp (2006) for the Netherlands or
Toivanen (2009) for Finland.
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2.3 The Model

In this section, we provide a framework to model banks’ liquidity hoarding behavior
together with solvency contagion employing widely used sequential default approach. We
also propose a way of simulating realistic common market shocks.

We consider a set of N banks that are exposed to each other. We distinguish short-
term exposures from long-term exposures. Liquidity contagion only spreads through short-
term exposures whereas long-term exposures are a channel of solvency contagion. We
denote ELT (resp. EST ) the matrix of long-term (resp. short-term) exposures, where
ELT (i, j) (EST (i, j)) represents long-term (short-term) assets of bank i invested in bank
j (for (i, j) ∈ [1;N ]2). Assets consist of loans and securities. The asset side of bank i is
decomposed into several items: interbank exposures (ELT (i, j) and EST (i, j) for j ∈ [1;N ]),
cash CA(i) and other assets OA(i). We denote total assets by TA(i). The liability side
of bank i consists of equity C(i) (hereafter capital), interbank exposures (ELT (j, i) and
EST (j, i) for j ∈ [1;N ] and j 6= i) and all other liabilities gathered in OL(i). The market
shocks affect the OA component of banks’ balance sheets.

Banks start hoarding liquidity when they regard a situation as distressed, and we use a
shock to banks’ economic capital as a signal of the distress in the system. We denote the
economic capital of bank i as EC(i), and we interpret it as the overall level of capital that
is considered by the bank as the capital mandatory to run its business optimally in the long
run. In our application, we use the required capital as a proxy of the economic capital,
therefore the latter corresponds to 8% of the risk-weighted assets (RWA) of an institution
as in Basel regulation framework. At the same time, bank’s leverage ratio gives a public
signal of bank’s fragility. When a bank preemptively withdraws liquidity, it hoards more
from its riskier, more leveraged, counterparties.

Lastly, as we consider an iterative approach with multiple rounds, the variables are
indexed by t for the round of contagion and upper-indexed by k for the algorithmic steps.

A schematic balance sheet of bank i is represented in table 3.1, page 73.

Main elements of the model are presented in the subsequent sections by following the
algorithm process step by step: first, the market shocks trigger initial losses, then the
contagion spreads through solvency and liquidity contagion channels. Finally, we introduce
some indicators that we compute in order to assess system fragility to contagion.
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ASSET LIABILITY

Long Term
Interbank
Assets

↔


ELT
t (i, 1)

...
ELT
t (i, N)

ELT
t (1, i)

...
ELT
t (N, i)

 ↔
Long Term
Interbank
Liability

Short Term
Interbank
Assets

↔


EST
t (i, 1)

...
EST
t (i, N)

EST
t (1, i)

...
EST
t (N, i)

 ↔
Short Term
Interbank
Liability

Cash ↔ Cat(i) OLt(i) ↔ Other Liabilities

Other Assets ↔ OAt(i) CAt(i) ↔ Capital

Total asset ↔ TAt(i) TLt(i) ↔ Total liability

Table 2.1: Bank i’s stylised balance sheet at date t

2.3.1 Market shocks

To assess the impact of default of a particular bank on banking system resilience to
contagion under adverse conditions, we define an external event that will affect the system
stability. As noted in Upper (2011), contagion is likely to occur only when the entire system
is under stress.

Papers differ in the types of shocks they consider. The basic premise is to envisage
idiosyncratic shocks. For instance, Upper and Worms (2004) for Germany, Mistrulli (2011)
for Italy, Van Lelyveld and Liedorp (2006) for the Netherlands, Toivanen (2009) for Finland,
Furfine (2003) for the USA consider the effect of the default of one bank. However, as
underlined in Elsinger et al. (2006a,b), a large common market shock impacting all the
credit institutions of the system at the same time appears to be a necessary condition
to observe contagion propagation. Several papers, e.g., Cont et al. (2010) and Elsinger
et al. (2006a), analyze the resilience of the system by applying shocks with one common
component affecting all the banks in the network.

In this section, we provide a methodology of implementing the common market shocks.
They affect the "Other Assets" category held in the portfolio of each bank (OA) at the
initial date. We define two types of common shocks corresponding to two different ways
of considering stress episodes. In the first exercise, a general common shock is simulated
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Returns Variance Correlation

Equities Sovereign Insurance Corporate
Equity -0.83% 1.07% 1 -0.28 0.23 0.19
Government Bonds 1.15% 0.04% -0.28 1 0.43 0.50
Insurance Bonds 1.28% 0.06% 0.23 0.43 1 0.86
Corporate Bonds 1.44% 0.03% 0.19 0.50 0.86 1

Table 2.2: Statistics of daily returns (02/01/2001-31/12/2011). The average daily return on equities is
−0.83%, its variance is 1.07% and its correlation with Sovereign daily return is −0.28.

so that the whole banking sector is in distress. In the other exercise, we consider specific-
asset-class common market shocks, where distress in the market is defined as a sudden and
dramatic price drop of a particular asset class.

2.3.1.1 Common market shock

Similarly to Elsinger et al. (2006a), we define a common market shock as losses on
banks’ balance sheet component "other assets" (OA) due to a correlated deterioration in
asset prices.

We consider that banks’ other assets OA are composed of four types of assets: equities,
corporate debt, insurance5 debt and sovereign debt with given weights that each asset type
represents in the banks’ portfolio. We exclude retail activity from our analysis, even though
retail assets represent a significant share of banks’ assets. The main reason for this is that
retail assets are much less volatile, for instance, the probability of default of real estate assets
hardly changed during the crisis. The French real estate market has some specific features.
The vast majority of retail activity corresponds to real estate loans given to households
and mainly at fixed interest rates. Unlike most countries (especially the USA and the UK),
French households rarely enter into mortgages. French real estate loans depend on the
household solvability and not on the expected future value of the house purchased. Retail
activity is therefore barely sensitive to the business cycle and unlikely to suffer from a
real estate price collapse. Furthermore, French banks have mitigated their individual retail
activity risk through a risk-pooling mechanism for real estate loans.6

We use time series of prices for each asset class for the period from 02/01/2001 to
31/12/2011: Eurostoxx 50 for equities, JPM Insurance Senior All Index for Insurance, JPM
Euro Area Government Bond All Index and JPM Large Corporate Bond Index. Table 2.2,
page 42 reports a standard statistical analysis of the daily returns.

5It includes all financial institutions except banks.
6For more details of the French real estate risks, see Point and Capitaine (2013)
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First, we estimate marginal probability distributions of four assets classes using the ker-
nel density method on weekly returns between 02/01/2001 and 31/12/2011.7 The method is
widely used to estimate non parametrically marginal distributions taking into account their
specific fat tails. Then the four time series of asset returns are estimated jointly using a
t-Student copula in order to obtain the joint distribution of the asset returns. We replicate
an aggregated banking system portfolio by aggregating the "other assets" of all the banks.
Afterwards, using the correlated returns of the assets and the weights of these assets in
the aggregated portfolio, we compute the profit-and-loss of the system portfolio. Finally,
the shocks that are employed later on to stress the system represent the 5% left tail of the
profit-and-loss distribution of the entire system.

2.3.1.2 Asset-class-specific shock

Several crises were ignited by concerns arising from one particular asset type. Therefore,
it is worth analyzing network resilience to contagion in a case of a significant drop in prices
of a particular asset class. We adapt the framework presented for the "common market
shock" methodology to this perspective.

The data and the whole estimation procedure are exactly the same as in the case of
the common market shock: we take weekly returns of four asset classes (equities, corporate
debt, insurance debt and sovereign debt) between 02/01/2001 and 31/12/2011 and estimate
their joint distribution. However, instead of computing the profit-and-loss distribution of
the aggregated portfolio, we define the shocks as the 5% worst realizations of each asset
class at a time and calculate returns of other assets classes corresponding to the left tail of
the class in distress using the joint distribution. Thus, we obtain four asset-class-specific
shocks corresponding to the distress of each of the considered asset classes.

2.3.2 Mechanisms of contagion

The mechanisms of contagion combine solvency default cascades and defaults induced
by banks’ liquidity hoarding behavior. We first consider a round of pure solvency contagion
occurring during the period (t = 1) right after the initial shock at date (t = 0). Then,
we consider several periods (t = 2, t = 3...) during which liquidity hoarding takes place.
Liquidity hoarding at period t can lead to new defaults. These defaults might involve new

7Weekly returns are chosen in order that asset losses were consistent with the time frame of the model,
since in the framework of our model, contagion spreads quickly in a short period of time. Considering 3 or
10 days time span does not change the results.
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t = 0 – Initial situation

t = 1
– An initial shock hits the system.
– Banks account for the fundamental losses due to this shock.

t = 2
– Solvency defaults propagate through the system
until there are no more defaults.
– Banks record all the losses due to the solvency default contagion.

t = 3

– Solvent banks for which the capital requirement condition is violated
start hoarding liquidity from their solvent counterparties.
– This generates reallocation of resources and possible liquidity defaults,
which in its turn may trigger solvency defaults contagion.
– Liquidity contagion cascades stop when there are no more defaults,
and banks record all the losses.

t = 4, ...

– New waves of liquidity contagion may take place
if there are banks whose capital is lower than the required one.
– And the same process as at t = 3 takes place.
– All the rounds of t ≥ 4 stop when liquidity hoarding leads only to reallocation
of resources and no defaults because of the violation of liquidity conditions.

Table 2.3: Timing of the model

losses due to solvency contagion and a new wave of liquidity hoarding that will happen at
time t+ 1.

The timing of the model is explained in detail in Table 2.3, page 44. As for the variables
characterizing the nodes of the network, they are updated at the end of each period t.

The whole process is presented schematically on Figure 2.1, page 45. We present a
detailed example of contagion mechanisms for a simple network in Appendix 2.A.

2.3.2.1 Solvency contagion

There exist two strands in the literature that address the issue of solvency contagion. The
first one is called the "Clearing Vector Approach" based on the seminal paper by Eisenberg
and Noe (2001). This approach, extended in Gauthier et al. (2010) or in Gourieroux et al.
(2012, 2013), establishes the existence and uniqueness of the debt repayment among banks:
it provides the endogenous recovery rate on interbank assets. The second strand refers
to the "Iterative Default Cascade" developed by Furfine (2003). This algorithm mimics
domino effects: instead of looking for a joint vector of debt repayment, it writes down the
losses step by step as it might happen during a default cascade. This approach is more
relevant to analyze system resilience to contagion during a crisis time, since banks may
not survive while waiting for months before getting reimbursed through the bankruptcy
procedure.
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Solvency Contagion

Liquidity Contagion and following its defaults

Initial situation

Initial shock

Fundamental defaults

There is at least one bank
whose losses are bigger

than its capital

There is at least one bank
whose capital is lower than

its economic one

All its counterparts lose
their exposures

Final situation
Bank(s) start hoarding

liquidity

There is a bank whose
liquidity condition is

violated or it does not have
enough capital

All its counterparts
lose their exposures

t = 0

t = 1

t = 2

False True

False True

False

t+ 1→ t

True

Starting
from k = 0
k ← k + 1

Starting
from k = 0
k ← k + 1

Figure 2.1: Scheme of Default Contagion.
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A bank is defined to be in default when its capital falls to zero. Once a bank has
failed on its commitments, all its counterparties incur losses equal to their exposure to that
defaulted bank, and the losses are absorbed by capital.8 We consider an exogenous recovery
rate for solvency contagion denoted RS. We run a case-sensitive analysis for different levels
of RS in order to ensure the robustness of our results.

At time t = 1, the "other assets" of the N banks are impacted by a shock according to
the methodology previously described. If the initial losses are larger than bank’s capital,
the latter goes into bankruptcy. We can therefore define the set of all banks defaulting due
to a market shock, referred to as "fundamental defaults", as

FD(C) =

i ∈ N : C0(i) +OA0(i)−OA1(i)︸ ︷︷ ︸
initial shock

≤ 0


= {i ∈ N : C1(i) = 0} ,

(2.1)

where C1(i) = (C0(i) + OA0(i) − OA1(i))+ is the capital of bank i just after the initial
shock.

From this situation, we can define a Solvency Default cascade (to use the terminology by
Amini et al. (2013)) as a sequence of capital levels (Ck

2 (i), i ∈ N)k≥0 (where k represents the
algorithmic step) occurring at time t = 2 and corresponding to defaults due to insolvency:{

C0
2(i) = C1(i)

Ck
2 (i) = max(C0

2(i)−
∑
{j, Ck−1

2 (j)=0}(1−RS)× E0(i, j); 0), for k ≥ 1.
(2.2)

The sequence converges (in at most n steps) since (Ck
2 )k is a component-wise decreasing

sequence of positive real numbers. Note that subscripts are used for periods of time and
superscripts for rounds of cascades. By "period", we mean the sequential spread of losses
through different channels. It does not refer to a time line interpretation: we consider that
all the events occurred jointly within a week.

Comparison of the banks initially in default (that is FD(C)) and the banks in default
at the end of t = 2 corresponds to the set of institutions that defaulted only due to solvency
default contagion. We label this set S2.

8As soon as a bank files for bankruptcy, all the agents in the market are aware of it and immediately
take an action without waiting for months of the official resolution of the bankruptcy procedure.
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2.3.2.2 Liquidity hoarding mechanism

The liquidity contagion has been scarcely studied in the literature on financial networks.
However, two main strands of research can be mentioned. The first channel looks at asset,
or market liquidity, and losses in asset value (deterioration of the bank’s balance sheet and
ultimate insolvency) driven by massive sales of the asset. The studies interested in this so
called fire-sales phenomenon aim to model the adverse effects of massive asset sales initi-
ated by one or more financial institutions. For instance, banks hit by a shock will attempt
to improve their leverage ratio by reducing their asset side, and thus selling some assets,
which will deteriorate balance sheets of other banks holding the same assets. Cifuentes
et al. (2005) model banks’ reaction as a mechanical rule of selling assets in order to improve
their solvency ratios. Asset prices drop with the growing volume of assets sold.

Our paper is related to the other strand of the literature, which tackles the issue of
funding liquidity, problems arising on the liability side. The way we model liquidity risk
is similar to the one proposed by Gai and Kapadia (2011) who build a stylized model to
study how banks’ hoarding behavior leads to the propagation of a liquidity shock through
the system. Banks experience liquidity shortage when their counterparties call back their
loans. A different approach is used by Gauthier et al. (2010) who disentangle credit and
liquidity risks in a game theory framework proposed by Morris and Shin (2010).

In our model, after solvency contagion, some banks default while others have enough
capital to absorb their losses. These banks will consider themselves in distress if their new
level of capital no longer satisfies the supervisory requirement. As argued by Acharya and
Skeie (2011) and Brunnermeier (2009), and documented by Berrospide (2013), during the
crisis banks did hoard liquidity for precautionary reasons: in order to secure future liquidity
needs and reduce counterparty risk.9 In the model, we assume that banks can only stop
rolling over existing short-term loans in order to get liquidity, since during a crisis - and
we are only looking at periods of stress - banks will find hard to borrow from the money
market for several reasons such as requirements of higher quality collateral, high interest
rates and increased haircuts. We exclude central banks’ policy tools from our analysis in
order to study what may happen in the absence of any public intervention. The obtained
liquidity is used to improve a liquidity position in view of potential future problems on the
interbank market and to reimburse creditors which have started hoarding liquidity too. If
a bank fails to satisfy its short-term commitments, it defaults due to illiquidity.

To model how much liquidity a bank hoards, and how much it hoards from each
9Note, that in our model, the only reason for hoarding is a precautionary one. In other words, we

exclude any predatory behavior.
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counterparty, we make the following assumptions. First of all, the total amount of liq-
uidity withdrawn depends on the size of the shock to the bank’s capital: the bigger the
losses due to the market shock, the more the bank hoards liquidity. The proportion of
liquidity hoarded by bank i is λ(i) ∈ [0; 1]. It is assumed to depend on the gap be-
tween the institution’s capital C(i) and economic capital EC(i): at time t, we denote

λt(i) = φ(θ1,θ2)

(
(ECt(i)− Ct(i))+

EC(i)

)
, where φ(θ1,θ2)(x) is the cumulative density function

of a Gaussian law with mean of θ1 and variance of θ2.10 We assume that bank i curtails
its positions in the short-term interbank market by stopping rolling over debt for a total
amount λt(i)EST

t (i) where EST
t (i) =

∑
j∈St−1

EST
t−1(i, j) and St−1 is the set of non-defaulted

banks at the end of period t− 1.
Second, the amount of liquidity the bank hoards from each counterparty depends on the

market perception of counterparty risk, for which the leverage ratio can be used as a proxy.
The higher the leverage, the riskier a bank is perceived to be and the more its counterparties
will hoard from it.11 Defining µt(j) as µt(j) = 1 − Ct(j)/TAt(j), we can decompose the
total amount of liquidity hoarded by bank i with respect to the counterparties:

λt(i)E
ST,k−1
t (i) = λt(i)E

ST,k−1
t (i)

∑
j,Ck−1

t (j)≥0

µt(j)E
ST,k−1
t (i, j)

Σhµt(k)EST,k−1
t (i, h)︸ ︷︷ ︸

=1

. (2.3)

When a bank hoards liquidity, it improves its liquidity position, whereas liquidity with-
drawn by its counterparties deteriorates it. Therefore, the following liquidity condition
simply says if bank i has enough liquid assets, either interbank or non-interbank, to pay its
short-term debt:

CAt(i)︸ ︷︷ ︸
cash

+ λt(i)E
ST,k−1
t (i)︸ ︷︷ ︸

hoarding inflows

−
∑

j,Ck−1
t (j)≥0

λt(j)E
ST,k−1
t (j)

µt(i)E
ST,k−1
t (j, i)

Σlµt(l)E
ST,k−1
t (j, l)︸ ︷︷ ︸

hoarding outflows

> 0. (2.4)

The above stated rule for modelling liquidity hoarding and the liquidity condition is a
direct extension of rules applied in the literature. For instance, Gai and Kapadia (2011)
assume that a constant exogenous proportion of liquidity is hoarded in case of distress.
With our notations, it would be expressed as λt(i) = λ. We contribute to the literature by
proposing a hoarding rule that accounts for the magnitude of liquidity hoarding (driven by
a capital gap) and the distribution of it among the counterparties (driven by the respective

10In practice, we test a range of parameters values in order to check the robustness of our results.
11see, e.g., Das and Sy (2012) and Lautenschlager (2013) who discuss the use of leverage as an indicator

of riskiness of a financial institution.
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individual leverage ratios).
In line with the solvency contagion algorithm, we state that a bank is in default when

its capital has been wiped out (solvency condition) or when it cannot satisfy its short-term
commitments (liquidity condition).

C0
t (i) = Ct−1(i)

for k ≥ 1,

Solvency condition:

C ′kt (i) = C0
t (i)−

∑
{j, Ck−1

t (j)=0}(1−RL)EST
t (i, j)

Liquidity condition:

C ′′kt (i) =


0 if CAt(i) + λt(i)E

ST,k−1
t (i)−∑

h,Ck−1
t (h)≥0 λt(h)EST,k−1

t (h)
µt(i)E

ST,k−1
t (h,i)

Σlµt(l)E
ST,k−1
t (h,l)

< 0

C ′jt (i) otherwise
Updating equation:

Ck
t (i) = max(C ′kt (i);C ′′kt (i); 0)

(2.5)

We denote the recovery rate in the liquidity cascade RL. In general, one can distinguish
a recovery rate in the case of a default due to illiquidity from a recovery rate of a default due
to insolvency (RS). And one might argue that the former recovery rate should be higher
since the asset side of an illiquid bank is not impaired. In the proposed algorithm, all banks
that do not satisfy the liquidity condition have their total assets higher than their total
debts (which makes them solvent). Thus, RL is used to represent bankruptcy costs that do
not reflect insolvency but costs associated with the liquidation of an illiquid bank.12

At the end of period t, the algorithm provides the status of each bank (alive or in
default), their capital and their short-term exposures. Some banks may have defaulted
during period t, thus some non-defaulted banks have recorded losses on their capital levels.
If their capital is then lower than their economic capital, another round of liquidity hoarding
dealt with in period t+ 1 will take place.

2.3.3 Indicators

We are interested in losses due to contagion corresponding to the left tail of the market
shock distribution, and for this purpose we present the results using standard risk measures
Value-at-Risk (V aR) and Expected Shortfall (ES) which are informative about the tail of
a loss distribution. In our framework, the V aR(q) is defined as loss due to contagion as a

12Based on a survey for U.S. banks, James (1991) establishes a bankruptcy cost of 10%.
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percentage of total system capital at quantile q, while the ES(q) is the average loss due to
contagion as a percentage of total system capital over the worst q cases.13 Particularly, we
consider the following levels: 5%, 1%, 0.1% and 0.01%.

Moreover, we decompose the sources of losses in three terms: the effects of the "funda-
mental shock" (prior to any contagion), the effects of solvency contagion (subsequent to the
shock and prior to liquidity contagion) and the effects of liquidity contagion (subsequent
to solvency contagion). This allows us to know losses transmitted through each channel in
total losses.

2.4 Application to the French banking system

In this section, we apply our model to a real network. We first introduce the data used
in our framework followed by some descriptive statistics of the French banking system at
the considered date. Lastly the results are presented.

2.4.1 Data

French credit institutions are required to report to the Autorité de Contrôle Prudentiel
(French Prudential Supervisory Authority) a full and detailed description of their balance
sheets (FINREP Report, EBSC (2009a)) and all the large bilateral exposures that they
have to either other credit institutions or even a country or a company (Large Exposure
Report, EBSC (2009b)). Such data allow the French Prudential Supervisory Authority to
closely and continuously monitor the developments in the network and banks’ counterparty
risks. In the Large Exposure report, each credit institution is obliged to communicate all
its exposures amounting to more than 10% of its capital or more than 300 millions of Eu-
ros. We use this unique data set on bilateral exposures and balance sheet composition to
reconstruct the French banking network in December 2011.

Each bilateral exposure corresponds to the gross bilateral sum of both securities and
loans that a bank holds in its portfolio with respect to a certain counterparty. Given the
absence of information about the maturity of the assets held by each bank in the Large
Exposure reports, we extract the ratio of short-term over long-term assets from balance

13for instance, "V aR(1%) = 0.1%" means that the 1% worst losses are greater than 0.1% of total capital;
and "ES(1%) = 0.2%" means that over the 1% worst cases, the losses represent on average 0.2% of total
capital
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sheets.14 We then apply this ratio to the amount of bilateral exposures of the correspond-
ing bank reported in the Large Exposure dataset to obtain an estimation of long-term and
short-term bilateral exposures.

The French banking system consists of more than 300 financial institutions at the solo
level. Nevertheless, the French banking system is highly clustered with five major banking
groups at the consolidated level accounting for more than 80% of the total assets of the
system. We select the 11 largest banking groups such that our study constitutes an almost
complete representation of the French banking sector, both in terms of size and business
models. Indeed, it is composed of several major universal banks (either mutual banks or
purely commercial banks) but also specialized banks (such as those engaged in consumer-
loan activity). French banks also differ in terms of their degree of cross-border activities:
some of them have intensive international activities while others operate mainly, not to
say only, domestically. The sample of selected banks enables us to consider all of these
heterogeneities (bank size, business model, global/local activity).15

Given that we study banks at the group-consolidated level, we do not consider expo-
sures between subsidiaries within a group, since a group will try to avoid any failure of its
subsidiary by reallocating profits and losses between subsidiaries and providing additional
liquidity for instance. Therefore, considering the banking sector at a solo level may bias
contagion analysis by counting intra-group defaults that may not occur in reality.

As documented in almost all the studies on real financial networks, the latter are usually
scale-free, meaning that a few banks are connected to many other banks. This scale-free
characteristic commonly observed for financial networks does not hold when we consider a
small number of banks: in this sense, the network of the French banking system is rather
special, since it is an almost complete one, as we can see in Figure 2.2, page 52.16

14Short-term is defined as "less than 1 month" while long-term is defined as "more than 1 month".
Comparing the one-week base for a shock with this threshold of 1-month maturity for exposures introduces
a conservative bias for the effect of the liquidity condition.

15Société Générale, Groupe Crédit Agricole, BNP Paribas, Banque Populaire-Caisse d’Epargne, La
Banque Postale, Groupe Crédit Mutuel, HSBC France, PSA Finance, RCI Banque, Oséo, Laser Groupe.

16There are few banking systems characterized by a very limited number of banking groups, another
example being Canada (see, e.g., Gauthier et al. (2010)).
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Figure 2.2: The French Banking Network in December 2011. The nodes correspond to the 11 largest
French credit institutions while the edges represent the exposures (loans and securities) between the credit
institutions. The widths of edges are proportional to the exposures.

2.4.2 Descriptive statistics

Table 2.4, page 52 reports some descriptive statistics on the French banking system.

Descriptive statistics

as a % Mean Standard Deviation Median
Interbank Exposures / TA 2.2 2.1 1.6
Interbank Exposures / Cap 34.2 28.2 27.9
Net position / Cash 171.1 557.1 0.0

Table 2.4: Descriptive statistics on the French banking network. "Exposures/TA" corresponds to the
sum of all reported exposures by a bank expressed as a percentage of its total assets. "Exposures/Cap" is
the sum of all reported exposures by a bank expressed as a percentage of its capital. "Net position/Cash" is
the ratio of the difference between all the short-term assets owned by a bank and all its short-term liabilities
vis-a-vis its lenders over its cash holdings.
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The size of interbank exposures among the 11 largest French banks represents about
2.2% of their total assets. This amount may seem small, however, interbank exposures
reach on average 34.2% of total capital.17 The distribution of exposures has a heavy tail
with most of the banks reporting small exposures while a few banks declaring big ones.

The ratio of total interbank assets over total capital can be an indicator of bank’s sen-
sitivity to solvency contagion, with the capital representing a safety cushion against losses.
This ratio has a mean of 34.2% with a standard deviation of 28.2%. As the distribution is
asymmetric, we may consider the median as a "central" indicator. With a 27.9% median for
interbank exposure over capital, a generalized spread of solvency contagion seems unlikely
from a very first analysis based on descriptive statistics.

In addition, another indicator that may help to measure bank’s sensitivity to liquidity
contagion is its net position (all credit granted minus all loans borrowed) with respect to
cash.18 Its net position defines if a bank will hoard liquidity and how well it will cope with
a liquidity shock. A large amount of cash will reduce its probability of getting illiquid.
The range of values observed for this indicator within the sample is ample. The greater
the value, the lower the likelihood that a bank will suffer from its counterparties’ liquidity
hoarding behavior. Comparing a positive mean and a zero median indicates that, in gen-
eral, the liquidity hoarding would not massively impact the network but that a few banks
may be sensitive to this phenomenon.

2.4.3 Results

Since our model relies on several parameters, we have checked the robustness of our
results by running simulations for a large set of parameters (see Appendix 2.B for details).
For the sake of simplicity, we report the results for a representative set of parameters.
First, we present the results for a solvency recovery rate of 40% which is conservative
with respect to the EBA’s stress-tests.19 Second, as becoming illiquid does not necessarily
mean that the value of its assets is subject to a large deterioration, the recovery rate for
banks whose counterparty defaulted due to illiquidity issues is assumed to be equal to 80%

corresponding to twice the bankruptcy cost estimated in James (1991). Third, among the
17These numbers are comparable to the empirical evidence documented by other studies: total exposures

between the 5 Canadian banks represent on average 26.4% of Tier1 capital (see Gauthier et al. (2010)); in
the USA, interbank assets represent about 5% of total assets (see, e.g., BHRPG reports provided by the
Federal Financial Institutions Examination Council, www.ffiec.gov).

18In the model developed in Section 2.3, "cash" refers to the assets immediately available to pay short-
term commitments. In the application to the French banking sector, cash corresponds to "Cash and cash
balances with central banks" defined by IFRS 7.20 (see FINREP Report, EBSC (2009a)).

19The 2011 EBA’s stress-test exercise reports that recovery rates for banks vary between 85% and 55%.
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various functional forms of lambda we tested, the results displayed correspond to cases in
which banks start hoarding liquidity when their capital falls below 120% of their economic
capital (however, the choice of lambda does not change the results significantly).

We decompose the effect of a shock into three terms: the direct effect of a shock before
any contagion mechanism takes place, the incremental effect of solvency contagion and the
incremental effect of liquidity contagion.

2.4.3.1 General and Asset Class-Specific Market Shocks

In this subsection, we present the results of two exercises: the system is impacted by a
common market shock and asset class-specific shocks.

The first finding is that neither of the two shocks makes any of the banks default.
This finding is the direct consequence of the two facts: first, in December 2011, French
banks were well capitalized and substantially above the required capital levels; second,
banks’ exposures to the considered asset classes are limited, and negative shocks to the
value of any of these assets are not large enough to trigger the default of any of the banks.
Extremely large financial market shocks are required to observe a default of at least one
bank. Solvency contagion is then absent by definition. Liquidity contagion does emerge,
though it is rather limited. This last result points out to the fact that banks’ liquidity
hoarding behavior does lead to defaults of some other banks even in the absence of solvency
contagion. We could explain such small losses by the state of the banking system at the
date of the analysis: as mentioned above, banks’ capital is substantially above the required
one and they also have enough liquid assets compared to their interbank funding. After
all, it seems quite meaningful that authorities interventions have improved resilience of the
system to the market shock and the spread of contagion.

The second result of such stress-test exercises is that the losses recorded are mainly if
not solely caused by the initial shock, except in the extreme left tail of the distribution (see
Table 2.5, page 55). In the extreme case for VaR(0.01%) of a general shock, on average a
default of a bank causes 0.82% of capital loss due to liquidity hoarding phenomena. This
almost 1% loss must nonetheless be compared to a shock with a magnitude of 46.31%.

We underline the fact that we obtain similar and therefore robust results for different
recovery rates and for other specifications of the liquidity hoarding rule.

We also note that our results are in line with past stress-tests of French banks with
respect to market risk (see, e.g., IMF (2012)), even though the performed stress-tests are
much smaller in scope than in our study.
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General Market Shock (Capital Loss, % of the Total Capital)

VaR(5%) VaR(1%) VaR(0.1%) VaR(0.01%) ES(5%) ES(1%)
Shock (A) 21,91 32,93 42,97 46,31 28,29 37,37

Solvency Contagion (B) 0,00 0,00 0,00 0,00 0,00 0,00
Liquidity Contagion (C) 0,00 0,80 0,82 0,82 0,80 0,81

Total (=A+B+C) 21,91 33,73 43,79 47,13 29,09 38,18

Bubble Shock on Equity (Capital Loss, % of the Total Capital)

VaR(5%) VaR(1%) VaR(0.1%) VaR(0.01%) ES(5%) ES(1%)
Shock (A) 20,88 32,93 42,97 46,31 27,88 37,37

Solvency Contagion (B) 0,00 0,00 0,00 0,00 0,00 0,00
Liquidity Contagion (C) 0,00 0,78 0,81 0,82 0,79 0,80

Total (=A+B+C) 20,88 33,71 43,78 47,13 28,68 38,16

Bubble Shock on Financial Institutions Bonds (Capital Loss, % of the Total Capital)

VaR(5%) VaR(1%) VaR(0.1%) VaR(0.01%) ES(5%) ES(1%)
Shock (A) 20,51 32,05 42,97 46,31 27,37 36,93

Solvency Contagion (B) 0,00 0,00 0,00 0,00 0,00 0,00
Liquidity Contagion (C) 0,00 0,80 0,82 0,82 0,80 0,81

Total (=A+B+C) 20,51 32,85 43,79 47,13 28,17 37,74

Bubble Shock on Sovereign Bonds (Capital Loss, % of the Total Capital)

VaR(5%) VaR(1%) VaR(0.1%) VaR(0.01%) ES(5%) ES(1%)
Shock (A) 20,65 32,93 42,97 46,31 27,63 37,37

Solvency Contagion (B) 0,00 0,00 0,00 0,00 0,00 0,00
Liquidity Contagion (C) 0,00 0,80 0,82 0,82 0,80 0,81

Total (=A+B+C) 20,65 33,73 43,79 47,13 28,43 38,18

Bubble Shock on Large Corporate Bonds (Capital Loss, % of the Total Capital)

VaR(5%) VaR(1%) VaR(0.1%) VaR(0.01%) ES(5%) ES(1%)
Shock (A) 21,34 32,73 42,97 46,31 28,06 37,30

Solvency Contagion (B) 0,00 0,00 0,00 0,00 0,00 0,00
Liquidity Contagion (C) 0,00 0,80 0,82 0,82 0,80 0,81

Total (=A+B+C) 21,34 33,53 43,79 47,13 28,86 38,11

Table 2.5: Average (over initial default) capital loss in a French banking system (as a % of the total
capital of the system) after being impacted by different market shocks (a general market shock and an asset
class-specific shocks) decomposed into the source of losses: due the general market shock itself, and due
to solvency and liquidity contagion. The solvency recovery rate is equal 40%; the liquidity recovery rate is
equal to 80%. λ is such that banks start hoarding liquidity when their capital falls below 120% of required
capital. For example, at V aR(0.01%) the system loss is 40.51% of capital, of which 39.8% is due to the
general market shock. Solvency contagion is absent by definition.

2.4.3.2 Idiosyncratic shocks combined with common market shocks

We are also interested in a scenario where a common market shock follows by an exoge-
nous default of one bank. Therefore, we perform a second set of stress-test exercises where
we force one bank at a time to default in the presence of the same market shocks. The
figures presented in the following tables are averages over the 11 individual idiosyncratic
scenarios.

We obtain the following results: either a general shock or an asset class-specific shock,
combined with an idiosyncratic default leads to no defaults due to solvency contagion, and
liquidity contagion is present but limited. The absence of the domino effect when even the
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biggest banks default can be explained by banks’ high levels of capitalization as well as by
the small interbank exposures in total and, especially, to one specific counterparty. The
size of losses measured as a percentage of the system’s capital is entirely due to the fact
that banks lose their exposures to the defaulted bank. As seen in Table 2.6, page 57, the
average losses are equal to 1.18% over all types of shocks and all quantiles. The number
shown is the average losses over the defaults of 11 banks, though losses vary among defaults
of different banks depending on the exposure of the system to this bank.

The results of liquidity hoarding are similar to those of market shocks without idiosyn-
cratic shocks.

The effects of solvency contagion and those of liquidity contagion are of the same mag-
nitude, each of them triggering losses accounting for about 1.8% of total capital under the
most adverse scenarios (V aR(0.1%) and V aR(0.01%)). At the same time, the direct losses
due to the initial shock (see Table 2.6, page 57) are 30 times larger than those occurring
via each of these channels.

The robustness checks (see Appendix 2.B for more details) underline the quality and
the stability of our results with respect to different specifications. When the solvency re-
covery rate varies from 0% to 100%, the figures keep the same approximate magnitude (see
Table 2.B.1, page 68). We report results only for general market shock with and without
idiosyncratic shocks, since results of asset-specific market shock are very similar and of the
same order.20

20Available on demand
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General Market Shock + Idiosyncratic shock (Capital Loss, % of the Total Capital)

VaR(5%) VaR(1%) VaR(0.1%) VaR(0.01%) ES(5%) ES(1%)
Shock (A) 29,02 38,98 48,15 51,19 34,82 43,07

Solvency Contagion (B) 1,18 1,18 1,18 1,18 1,18 1,18
Liquidity Contagion (C) 0,19 0,63 0,64 0,65 0,63 0,64

Total (=A+B+C) 30,40 40,79 49,98 53,02 36,63 44,88

Bubble Shock on Equity + Idiosyncratic shock (Capital Loss, % of the Total Capital)

VaR(5%) VaR(1%) VaR(0.1%) VaR(0.01%) ES(5%) ES(1%)
Shock (A) 28,11 38,98 48,15 51,19 34,44 43,07

Solvency Contagion (B) 1,18 1,18 1,18 1,18 1,18 1,18
Liquidity Contagion (C) 0,00 0,62 0,64 0,65 0,62 0,63

Total (=A+B+C) 29,29 40,78 49,97 53,02 36,24 44,88

Bubble Shock on Financial Institutions Bonds + Idiosyncratic shock (Capital Loss, % of the Total Capital)

VaR(5%) VaR(1%) VaR(0.1%) VaR(0.01%) ES(5%) ES(1%)
Shock (A) 27,76 38,27 48,15 51,19 33,98 42,67

Solvency Contagion (B) 1,18 1,18 1,18 1,18 1,18 1,18
Liquidity Contagion (C) 0,26 0,63 0,64 0,65 0,63 0,64

Total (=A+B+C) 29,20 40,08 49,98 53,02 35,79 44,49

Bubble Shock on Sovereign Bonds + Idiosyncratic shock (Capital Loss, % of the Total Capital)

VaR(5%) VaR(1%) VaR(0.1%) VaR(0.01%) ES(5%) ES(1%)
Shock (A) 27,88 38,97 48,15 51,19 34,21 43,07

Solvency Contagion (B) 1,18 1,18 1,18 1,18 1,18 1,18
Liquidity Contagion (C) 0,33 0,63 0,64 0,65 0,63 0,64

Total (=A+B+C) 29,39 40,79 49,98 53,02 36,02 44,88

Bubble Shock on Large Corporate Bonds + Idiosyncratic shock (Capital Loss, % of the Total Capital)

VaR(5%) VaR(1%) VaR(0.1%) VaR(0.01%) ES(5%) ES(1%)
Shock (A) 28,49 38,87 48,15 51,19 34,61 43,01

Solvency Contagion (B) 1,18 1,18 1,18 1,18 1,18 1,18
Liquidity Contagion (C) 0,26 0,63 0,64 0,65 0,63 0,64

Total (=A+B+C) 29,93 40,68 49,98 53,02 36,42 44,83

Table 2.6: Capital loss (over initial default) in a French banking system (as a % of the total capital of the
system) after being impacted by different market shocks (a general market shock and an asset class-specific
shocks) and an idiosyncratic shock, decomposed into the source of the losses: due the general market shock
itself, and due to solvency and liquidity contagion. The solvency recovery rate is equal 40%; the liquidity
recovery rate is equal to 80%. λ is such that banks start hoarding liquidity when their capital falls below
120% of required capital.
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2.5 Conclusion

This paper develops a model that allows us to take into account the losses of the system
due to solvency and liquidity contagion after an initial correlated shock impacting the sys-
tem. This is one of the first papers that makes it possible to disentangle between the losses
caused by different sources of risk. We also propose a toolkit to simulate market shocks in
line with liquidity hoarding phenomena. We use this model to evaluate the resilience of the
French banking system to systemic market shocks.

The literature on the pure default contagion is much vaster, though the results are
rather controversial. In a similar framework, Cont et al. (2010) studying Brazilian banking
system find evidence of sizeable domino effects after an initial shock. At the same time,
Elsinger et al. (2006a), who analyze the Austrian banking network, record rare occurrences
of such effects. Other studies conducted on network contagion without any initial stress
on the whole banking system document very limited consequences (Amundsen and Arnt
(2005), Upper and Worms (2004)). What seems to be really essential for the existence of
domino effects is not only the initial market shock, but also its magnitude.

Our results, which complement the study of pure solvency default contagion with banks’
liquidity hoarding behavior, shed light on the following points. First, we clearly identify
that for the French banking system on December 31, 2011, the contagion effects appear to
be significantly smaller than the initial shock. Second, we find that losses due to solvency
and liquidity contagion are of similar magnitude. One would therefore underestimate the
losses in the system if one did not take into account the distress propagated via funding
shortages.

Since results of the empirical application of the model can be date-specific, in future
work, it would be interesting to analyze propagation of contagion on other dates and see
how contribution of different mechanisms in total losses changes over time.



Appendix

2.A Illustration of contagion mechanisms for a simple

network

2.A.1 Initial network

Let us consider a basic network composed of six banks as represented in Figure 2.A.1,
page 59. We assume that both recovery rates, RS and RL, are set to 0 for simplicity.
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Figure 2.A.1: Initial Network
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2.A.2 Round of solvency contagion

Let us consider that at t = 0 an initial shock erodes the capital of all the banks by
the order of 2. All of the banks can absorb this shock except bank B1 which goes into
bankruptcy. The fundamental default set is limited to bank 1. The solvency algorithm
takes place and its various steps are represented in Figure 2.A.2, page 61.

The default of bank B1 results in losses for its counterparties: banks B2, B3 and B5.
For each bank in question, the losses incurred and which correspond to its total exposure
to bank B1, are absorbed by its capital. Bank B2 does not have enough capital to absorb
its exposures, so it goes into default. Banks B3 and B5 are sufficiently capitalized to stay
alive. Bank B2’s default is characterized as a "solvency default".
The default of bank 2 results in losses for banks 3 and 4. This second step of solvency
contagion is the last one since all the banks exposed to bank 2 have enough capital to
absorb the losses.

The solvency equilibrium (the last step of this round of solvency contagion) is represented
in Figure 2.A.3, page 62.
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Figure 2.A.3: Solvency Round Equilibrium Network

2.A.3 First Liquidity Contagion Round

Since the solvency contagion is over, banks B3, B4 and B5 are solvent. But when they
compare their capital (in column C) with their economic capital (in column EC), banks
B3 and B5 start hoarding liquidity whereas bank B4 does not modify its behavior since its
capital is substantially greater than its economic capital.

In this example, we consider simply that λi = (ECi−Ci)+/ECi and that this proportion
of liquidity hoarding is uniformly applied to all short-term exposures (or equivalently, that
all banks have the same leverage ratio). Therefore, banks B3 and B5 reduce their total
short-term exposures by 66% (= (30 − 10)+/30) and 50% (= (4 − 2)+/4)) respectively.
Consequently, the cash outflows are:

Cash outflow for bank B3 = 1.5 = 0.5× 3︸ ︷︷ ︸
toward bank B5

Cash outflow for bank B4 = 1.66 = 0.5× 2︸ ︷︷ ︸
toward bank B5

+ 0.66× 1︸ ︷︷ ︸
toward bank B3

Cash outflow for bank B5 = 0.
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Symmetrically, the cash inflows are:

Cash inflow for bank B3 = 0.66 = 0.66× 1︸ ︷︷ ︸
from bank B4

Cash inflow for bank B4 = 0

Cash inflow for bank B5 = 2.5 = 0.5× 3︸ ︷︷ ︸
from bank B3

+ 0.5× 2︸ ︷︷ ︸
from bank B4

For all the steps in the liquidity hoarding phenomenon, the algorithm will consider that
a bank is in default if it does not satisfy one of the two conditions (solvency and liquidity
conditions) previously referred to in the theoretical model. A bank remains alive if its capital
is above zero (solvency condition) and if its cash position allows it to honor its short-term
commitments (liquidity condition). At each step, these two conditions are simultaneously
checked for every bank. For the sake of clarity, we will consider them sequentially and first
look at whether each bank satisfies its liquidity condition and then check if each bank is
still solvent.

For this first step, as the network is initially in equilibrium in terms of solvency contagion,
only the liquidity condition is checked. Combining the cash inflow, the cash outflow and
the cash holdings of each bank, we can check if each bank fulfills its liquidity condition. For
bank B5, we have a positive value since there is no cash outflow. Although bank B3 has
a bigger cash outflow (1.5) than its cash inflow (0.66), its cash holding (2) can absorb the
difference (2 + 0.66 > 1.5). By contrast, bank B4 is short in terms of liquidity. Its cash
outflow (1.66) is higher than its cash inflow (0) and it does not have enough liquid assets
(1.5) to pay back its creditors. In other words, banks B5 and B3’s behavior which consists
in stopping rolling over the short-term debt issued by bank B4 generates a cash outflow for
bank B4 that it cannot cope with. We consider that bank B4 is in default due to illiquidity.
Note that in this particular case, the action of bank B5 or bank B3 alone would have not
led bank B4 to have a liquidity shortfall since each component of the cash outflow of bank
B4 is lower than its cash holdings. The situation after this first step of liquidity hoarding
is represented in the top network of Figure 2.A.4, page 65.

In this new step, the check on whether the liquidity condition for each bank is fulfilled
or not only concerns banks B3 and B5, and is represented in the middle network of Figure
2.A.4, page 65. We can easily see that bank B5 satisfies its liquidity condition in the sense
that bank B5 is a pure short-term lender. For bank B3, the cash inflow is now 0 since B4,
the only initial short-term debtor of bank B3, is in distress and its cash outflow (towards
bank B5) is 1.5. Since bank B3’s cash position is 2, bank B3 fulfills its liquidity condition.
The situation at the end of the liquidity contagion step (middle network of Figure 2.A.4,
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page 65) is not a solvency equilibrium since the losses due to bank B4’s default have not
been taken into account. Thus, during this second step there is an additional check with
respect to the solvency condition in the algorithm of contagion represented in the lowest
plot of Figure 2.A.4, page 65. Bank B5 suffers a loss of 20 (= 18 + 2) while bank B3 suffers
a loss of 1 (= 0 + 1). Bank B5 does not have enough capital to absorb this loss while B3

has. This fact triggers solvency contagion: bank B6 is able to absorb the losses incurred
corresponding to its exposure to bank B5.

The situation after this first round of solvency contagion and this first round of liquidity
contagion is stable from a solvency point of view (all remaining capital levels are strictly
positive) and from a liquidity point of view (all cash holdings are sufficiently high). Note
that the two remaining banks, B3 and B6, have their capital lower than their economic
capital; but since they are not short-term lenders, this cannot lead them to stop short-term
lending. We therefore consider that the final situation, represented in Figure 2.A.5, page 66,
is the equilibrium situation reached within a week.

In this example, the equilibrium is reached with only one round of solvency contagion
and one round of liquidity contagion. With more complex networks, several rounds of
liquidity contagion are easily conceivable.
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Figure 2.A.5: Final Equilibrium

2.B Robustness Checks

Running the simulation needs to define 3 mains specifications:

• The solvency recovery rate, RS, is varying from 0.1 (only 10% of exposures it repaid)
to 1 (absence of loss). Indeed, the results vary with the solvency recovery rate but
keep the same approximate size, as explained in the discussion of the paper.

• The liquidity recovery rate RL is set to 0.8: in case of default due to liquidity shortage,
20% of exposures are lost. Using another recovery rate do not change our results
since the liquidity contagion spread is not overwhelming. As said before, 20% is a
conservative setting since it is twice the bankruptcy cost estimated in James (1991).

• The hoarding function λ(.) is a more sophisticated figure. We consider the inverse of
a Gaussian c.d.f. as baseline shape. We run the simulations with 9 couples for the
mean and the variance. The magnitudes of results are stable across specifications.
However, the results are more sensitive to the mean than to the variance. In fact, the
mean parameter acts as a threshold for triggering hoarding phenomena; therefore, it
is logical than an easy triggering threshold leads to a more effective liquidity hoarding
phenomenon.
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As illustration, Table 2.B.1, page 68 reports the effect of a general market shock (with and
without idiosyncratic shocks) for various solvency recovery rates.
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General Market Shock, Capital Loss (% of Total Capital)

Recovery Liquidity Hoarding: C falls below 1,2 RC Liquidity Hoarding: C falls below 1,5 RC
Rate VaR(5%) VaR(1%) VaR(0,1%) VaR(0,01%) ES(5%) ES(1%) VaR(5%) VaR(1%) VaR(0,1%) VaR(0,01%) ES(5%) ES(1%)
0,1 0,00 0,93 0,94 0,95 0,93 0,94 0,95 0,96 0,98 1,00 0,96 0,97
0,2 0,00 0,89 0,90 0,91 0,88 0,89 0,91 0,92 0,93 0,95 0,92 0,93
0,3 0,00 0,85 0,86 0,86 0,84 0,85 0,87 0,88 0,89 0,91 0,88 0,88
0,4 0,00 0,80 0,82 0,82 0,80 0,81 0,83 0,84 0,85 0,87 0,83 0,84
0,5 0,00 0,76 0,77 0,78 0,76 0,77 0,78 0,79 0,81 0,83 0,79 0,80
0,6 0,00 0,72 0,73 0,74 0,71 0,72 0,74 0,75 0,76 0,79 0,75 0,76
0,7 0,00 0,68 0,69 0,69 0,67 0,68 0,70 0,71 0,72 0,74 0,71 0,71
0,8 0,00 0,63 0,65 0,65 0,63 0,64 0,66 0,67 0,68 0,70 0,66 0,67
0,9 0,00 0,59 0,60 0,61 0,59 0,60 0,61 0,63 0,64 0,66 0,62 0,63
1 0,00 0,55 0,56 0,57 0,55 0,55 0,57 0,58 0,60 0,62 0,58 0,59

General Market Shock + Idiosyncratic Shock, Capital Loss (% of Total Capital)

Recovery Liquidity Hoarding: C falls below 1,2 RC Liquidity Hoarding: C falls below 1,5 RC
Rate VaR(5%) VaR(1%) VaR(0,1%) VaR(0,01%) ES(5%) ES(1%) VaR(5%) VaR(1%) VaR(0,1%) VaR(0,01%) ES(5%) ES(1%)
0,1 0,38 0,72 0,73 0,74 0,72 0,73 0,75 0,76 0,77 0,78 0,75 0,76
0,2 0,36 0,69 0,70 0,71 0,69 0,70 0,72 0,73 0,73 0,75 0,72 0,73
0,3 0,27 0,66 0,67 0,68 0,66 0,67 0,69 0,69 0,70 0,72 0,69 0,70
0,4 0,19 0,63 0,64 0,65 0,63 0,64 0,66 0,66 0,67 0,69 0,66 0,67
0,5 0,12 0,60 0,61 0,62 0,60 0,61 0,62 0,63 0,64 0,66 0,63 0,64
0,6 0,12 0,57 0,58 0,59 0,56 0,57 0,59 0,60 0,61 0,63 0,60 0,61
0,7 0,00 0,54 0,55 0,56 0,53 0,54 0,56 0,57 0,58 0,60 0,57 0,57
0,8 0,00 0,51 0,52 0,53 0,51 0,51 0,53 0,54 0,55 0,56 0,54 0,54
0,9 0,00 0,48 0,49 0,50 0,48 0,48 0,50 0,51 0,52 0,53 0,50 0,51
1 0,00 0,45 0,46 0,46 0,45 0,45 0,47 0,48 0,49 0,50 0,47 0,48

Table 2.B.1: Capital loss in a French banking system (as a % of the total capital of the system) due to liquidity hoarding after being hit by a general
market shock with and without an idiosyncratic shock, for different recovery rates. λ is so that banks start hoarding liquidity when their capital falls below
120% (left column) and 150 % (right column) of required capital.



Chapter 3

Cross-border interbank contagion in the

European banking sector1

3.1 Introduction

The 2007-2009 financial crisis revealed the fragility of financial institutions worldwide.
More importantly, it disclosed the major role of interconnectedness among banks in the
propagation of financial distress. Interconnections, due to bilateral contractual obligations
but also to exposure to common risk factors and sudden collapses in market confidence,
have grown dramatically in the run-up to the crisis.2 While higher interconnectedness is a
crucial means of efficient risk transfer, it may also lead to contagious default cascades : an
initial shock may propagate throughout the entire banking system via chains of defaults
and liquidity shortages that follow highly dynamic patterns.

Direct and indirect linkages among banks arose as a key component of financial contagion
in the European Union, as revealed first by the default of Lehman Brothers in September
2008, and then by the euro area sovereign debt crisis. Especially after the European Bank-
ing Authority’s disclosure of the extent of European banks’ common exposures to stressed
sovereigns in 2011(EBA, 2011a), the potential for contagion effects through interbank trans-
actions has taken a peculiar - geographical - dimension in the euro area, with banks reducing
their exposure particularly to banks headquartered in the periphery of the euro area (see,

1This chapter is based on the paper co-written with S. Gabrieli and G. Vuillemey. It has been presented
at several conferences: Conference on Trade and Networks (KU Leuven, 2013), CIRANO (Montreal, 2013),
IFABS 2014 (Lisbon), AFSE 2014 (Lyon), MaRs (ECB, 2014), EFA 2014 (Toulouse)

2Total cross-border banking flows rose several-fold from 1978 to 2007 compared to their long-term
average, see Minoiu and Reyes (2011).
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e.g., Abascal et al. (2013) who measure fragmentation in interbank market and three other
financial markets (sovereign debt, equity and the CDS market for financial institutions).

This paper is the first to investigate the scope for cross-border contagion in Europe
using true exposure data at a bank-to-bank level. We analyze geographical patterns of
shock propagation between 73 European banking groups from end-2008 until end-2012.
Cross-border interbank exposures are generally hard to obtain. National supervisors can
have at best a partial view of the largest long-term credit claims of supervised banks via
credit registers.3 To circumvent the unavailability of accurate information on domestic and
cross-border interbank exposures, and obtain a realistic representation of how European
banks are connected through their long- and short-term claims, we exploit for the first
time a unique dataset of interbank money market transactions, with various maturities,
estimated from TARGET2 payment data (see Arciero et al. (2013)). More specifically, we
employ money market loans with maturities up to one month to reconstruct the network
of short-term interbank linkages and a realistic probability map of short-term loans among
banks; at the same time, we use information on the size and frequency of money market
loans with longer maturities to construct a realistic probability map of long-term bank-
to-bank exposures. These maps, together with the amount of individual banks’ aggregate
loans to other banks, are used to simulate a large number of long-term exposure matrices
through a novel methodology proposed by Halaj and Kok (2013).

The extent of interbank contagion is assessed relying on Fourel et al. (2013) model of
sequential solvency and liquidity cascades in a network setting. More specifically, we look at
the distribution of simulation outcomes resulting from a common market shock on (listed)
banks’ capital, coupled with an exogenous bank default; the distributions are obtained over
100 different simulated networks of long- and short-term exposures. We observe the total
number of defaulted banks after several rounds of solvency and liquidity contagion, and
the total capital loss experienced by a certain country’s banking sector when contagion is
triggered by a default of a foreign or domestic bank. Heat maps are used to assess, on the
one hand, which banking sectors are the most "systemic" in terms of the losses that the
failure of one of their banks can impose to foreign countries’ banks and, on the other, to
identify which banking sectors are the most prone to cross-border contagion from European
counterparties.

3For instance, the German credit register contains quarterly data on large bilateral exposures - deriva-
tive, on- and off-balance sheet positions - above a threshold of EUR 1.5 m. The French "grands risques"
data include individual banks’ quarterly bilateral exposures that represent an amount higher than 10% of
their capital or above EUR 300 m. Italian banks submit to the Banca d’Italia their end-of-month bilateral
exposures to all other banks.
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Simulation of multiple realistic short- and long-term networks allows us to analyze
the determinants of contagion using an econometric approach. Relying on five years of
data and 100 pairs of simulated networks we are able to identify both bank and network
characteristics that make a bank/system more fragile/resilient to contagion.

We find that both solvency and liquidity contagion are tail risks: losses averaged over
stress-scenario, initial bank defaults or simulated networks are rather limited; however,
averaging conceals rare extreme events. We document that losses at the tail of the dis-
tribution can reach one third of the system capital in 2008, and that the resilience of the
system improves significantly over time. Under severe equity market stress and following
an exogenous default of one bank, cross-border contagion can materialize in the European
banking system. The overall average losses caused by a foreign bank default, however, vary
remarkably over time and over different banking sectors. A foreign default has on average a
small impact on most banking sectors and even less over time. However, for some banking
systems, a default by a foreign bank may cause a loss as large as 15% of the capital of
the impacted banking sector. Overall, our results document that the European banking
system has substantially increased its capacity to withstand the same kind of adverse fi-
nancial conditions that it had to face after the default of Lehman Brothers. The heat maps
allow us to discern specific geographical patterns of cross-border contagion in the European
Union, which vary significantly over the years. In general, the maps for 2009, 2010 and
2012 show that the potential for cross-border contagion has constantly decreased over time.
This is related to a generalized reduction in the share of long-term interbank loans in bank
balance sheets, on the one hand, and to an increase in banks’ capitalization during those
years compared to 2008.

Finally, our results show the strong impact on the domestic and cross-border propagation
of losses of heterogeneity and concentration in the structure of interbank exposures. The
number of defaults resulting from extreme market stress coupled with one bank’s default
can be five or six times larger depending on the underlying structure of interbank linkages.
This is consistent with recent models of contagion in financial networks relying on simulated
networks of exposures (see, Georg (2013) and Gai and Kapadia (2010)), and points to the
need to account for the evolving nature of the web of interbank linkages when running
contagion analysis. This is the first paper, to our knowledge, to document this feature
simulating probabilistic interbank exposures based on actual bank-to-bank level data.

A large literature exists that relies on counterfactual simulations based on a network set-
ting to estimate the potential for interbank contagion (see Upper (2011) for a comprehensive
survey). Notwithstanding the increasingly international dimension of contagion, however,
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these simulations have so far focused essentially on national banking sectors, estimating
their frailty/resilience only at one specific point in time. Moreover, only very recently have
economists started to integrate behavioral foundations into their modelling frameworks,
hence providing different contagion channels, and to consider the impact of common shocks
on the network of interbank loan exposures, possibly resulting in concurrent losses for banks.

Our study contributes to this literature by analyzing cross-border contagion at a bank-
to-bank level using realistically simulated networks from true exposure data. Up to now,
a handful of papers have analyzed cross-border contagion using price data such as equity
or credit default swaps, therefore relying on some form of market efficiency and not being
able to identify the structural channels driving the co-movement of prices (see, Gropp et al.
(2009)). Other papers focused their attention on BIS country statistics to study cross-
border contagion; but this has the strong drawback that authors have to assume that the
whole or a part of a country’s banking system defaults and that losses propagate to other
country’s banking sectors (see, Degryse et al. (2009) and Espinosa-Vega and Sole (2010)).

We exploit the idea of probabilistic networks to study propagation of contagion: multiple
simulated networks, drawn from real data probability maps (thanks to TARGET2 data),
differ from the real existing network and, moreover, demonstrate significant heterogeneity.
This allows us to analyze not only the vulnerability of one particular network realization
retrieved from the real data, but plenty of potential realistic networks. All the simulated
networks display well-documented properties such as a low density and a highly skewed
(weighted and unweighted) degree distribution. Furthermore, we pursue the analysis one
step further and econometrically identify balance sheet and network properties which drive
the contagion outcome. More specifically, we investigate bank-level contagion and explain
the determinants of bank fragility or systemicity with both banks’ balance sheet and expo-
sure characteristics.

The remainder of this article is structured as follows. In section 3.2, we present the
theoretical model for the imputation of losses and the liquidity hoarding mechanism. In
section 3.3, we describe the banks’ sample, the interbank exposures data and the algorithm
used to generate interbank networks. We provide descriptive evidence on both the European
banking system in the period 2008-2012 and the structural properties of generated long-
and short-term networks. The results of our simulations are presented and commented
on in section 3.4. Section 3.5 introduces the econometric analysis of the determinants of
contagion outcomes, section 3.6 concludes.
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3.2 The model

Our model builds on the work by Fourel et al. (2013). In the following we expose its
main theoretical blocks as well as some extensions we implement, while we refer the reader
to Fourel et al. (2013) for more details.

Let us consider a system of N financial institutions indexed by i. Each of them is
characterized by a stylized balance sheet presented in Table 3.1. The asset side of bank i
is decomposed into several items: long- and short-term interbank exposures (ELT (i, j) and
EST (i, j) for j ∈ [1;N ]), cash and liquid assets (cash from now on) Ca(i) and other assets
OA(i). We denote the total assets by TA(i). The liability side of bank i consists of equity
C(i) (hereafter capital), long- and short-term interbank exposures (ELT (j, i) and EST (j, i)

for j ∈ [1;N ]) and all other liabilities gathered in OL(i).

Assets Liabilities
Long Term ELT

t (i, 1) ELT
t (1, i) Long Term

Interbank
...

... Interbank
Assets ELT

t (i, N) ELT
t (N, i) Liabilities

Short Term EST
t (i, 1) EST

t (1, i) Short Term

Interbank
...

... Interbank
Assets EST

t (i, N) EST
t (N, i) Liabilities

Cash Cat(i) OLt(i) Others
Others OAt(i) Cat(i) Capital
Total assets TAt(i) TLt(i) Total liabilities

Table 3.1: Bank i’s stylized balance sheet at date t

Banks are connected by two types of links: short-term and long-term commitments. The
distinction between these links is essential within the present model as it enables defining
two channels of contagion (liquidity vs. solvency contagion). Short-term exposures are
represented mainly by short-term loans, e.g. with overnight or one-week maturity, and a link
can be easily cut from a certain day/week to the subsequent one. This property of the link
allows banks to hoard liquidity, that is, to reduce or to cut their exposures to a counterparty
when needed. As explained below, liquidity contagion here propagates through the network
of short-term exposures. On the contrary, long-term exposures represent a more stable
source of funding and can not be cut before maturity. Therefore, only if a bank defaults
do its counterparties lose all their long-term exposures to it (taking a recovery rate into
account). A network of long-term exposures is the main channel for the propagation of
solvency contagion.
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The model consists of three parts: a common market shock, solvency contagion propaga-
tion and liquidity hoarding behavior. This section provides the main intuitions and describes
the building blocks, while additional technical details can be found in Appendix 3.A.1.

Common market shock

The way a market shock is simulated is essential. The latter weakens the resilience of the
system, thus revealing more plainly the potential for contagion (see Upper (2011)). In the
absence of national supervisory data allowing to shock various asset classes in bank balance-
sheets (as in Elsinger et al. (2006a), Elsinger et al. (2006b), or in Fourel et al. (2013)), we
implement a common shock directly on all listed banks’ capital using a one-factor model
for equity returns (see details in Appendix 3.A.1). The same shock is consistently applied
over the whole time period, 2008-2012, which allows us to make sure that contagion in the
system is driven purely by the change in the network structure and banks’ capitalization
and liquidity levels. As depicted in figure 3.A.1, the shocks represent on average 5% of
bank capital among scenarios but can reach up to 25% in extreme cases; such orders of
magnitude are absolutely in line with bank capital losses observed during the recent crisis
(see, e.g., BCBS (2010) and Strah et al. (2013)).

After the system is hit by a market shock, one bank at a time is exogenously pushed to
default. Losses through solvency and liquidity contagion channels are then computed. The
fact that only one banks fails at a time allows us to estimate losses due to the default of
each bank and to rank the banks as more or less systemic.

Solvency contagion

Following Fourel et al. (2013), we define solvency contagion as follows. Let bank i

default, then its counterparts lose all their exposures to this bank. If another bank or some
of the banks are highly exposed to the defaulted bank, they might default as well. A general
condition for a bank to default due to default contagion is as follows:

[C(j)− ε(j)]︸ ︷︷ ︸
Capital after initial shock

−
∑
i

RS(i)E(j, i)︸ ︷︷ ︸
non-recovered exposures

< 0 (3.1)

where (1 − RS(i)) is a recovery rate. To account for all the losses due to solvency con-
tagion, the Furfine algorithm of iterative default cascade (Furfine (2003)) is used. This
algorithm allows incorporating liquidity hoarding behavior of banks in the same framework
with solvency contagion.
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Liquidity hoarding

Banks regularly perform liquidity management, estimating their liquidity stock, outflows
and inflows for the next period. In normal times, they can foresee with some certainty how
much liquidity they will need to satisfy reserve requirements or other commitments; to this
end they can borrow from other banks in the interbank market as well as from the central
bank (e.g. through weekly main refinancing operations). In a well functioning interbank
market banks with excess liquidity can lend it to those who lack short-term funding. This
situation can however radically change during times of increased uncertainty. On one hand,
banks’ assets become much more volatile creating liquidity outflows in terms of margin calls,
higher haircuts and requirements for collateral, which are difficult to foresee. On the other
hand, confidence in the market evaporates quickly, counterparty risk rises, and banks fear
both their inability to get liquidity when needed as well as counterparty risk. All this can
lead banks to a precautionary demand for liquidity hence to hoarding behavior, by which
they reduce lending to each other in order to secure their own liquidity needs and to reduce
exposure to counterparty risk.4

Banks start hoarding liquidity when there is a signal of market malfunctioning or they
start experiencing problems themselves. For instance, a signal can be a drop in asset prices,
high volatility or unexpectedly large losses. In our simulations we assume that a shock-
related capital loss above a certain threshold represents such a signal. Therefore, banks that
were impacted by a market shock and/or by solvency contagion will start hoarding liquidity,
and the higher loss they experience, the more they hoard. We assume a function for liquidity
hoarding depends linearly on the capital loss, λ(Loss). The function, Figure 3.A.2, has 4
intervals: banks do not hoard liquidity in intervals 1 and 4, that is, when capital loss is
below some threshold A% (no signal of crisis) or more than 100% (bank is insolvent). Banks
hoard less (a%) in interval 2 when the shock is moderate and more (b%) in interval 3 when
the shock is more adverse.

Banks will decide how much to hoard based on their own perception of market un-
certainty. But they also have to decide how much and from which counterparty they will
hoard. A straightforward assumption is that the riskier the counterparty is, the more a
bank hoards liquidity. Provided banks have no private information about the riskiness of

4For the UK sterling market, Acharya and Merrouche (2013) document that riskier UK settlement
banks held more reserves relative to expected payment value in the immediate aftermath of 9 August 2007,
thus igniting the rise in interbank rates and the decline in traded volumes. Berrospide (2013) documents
evidence for the precautionary motive of liquidity hoarding for U.S. commercial banks during the recent
financial crisis.
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other banks’ portfolios, they can rely on leverage µ as a proxy for the riskiness of a coun-
terparty (Das and Sy (2012), Lautenschlager (2013)). The easiest way for a bank to hoard
liquidity is to stop rolling over short-term loans. After all the banks decide how much to
hoard and make claims, the following condition has to be satisfied for a bank to be liquid:

[Cash ] + [ToBeRecieved ]− [ToBePaid ] > 0 (3.2)

3.3 Interbank exposures and network simulation

This section presents the numerical algorithm used to generate a large number of net-
works of long- and short-term interbank exposures, as well as the data used to calibrate
and run it. Additional balance sheet items used for the simulations and the econometric
analysis are also presented. The last subsection provides descriptive evidence on the struc-
ture of simulated networks and on the domestic versus cross-border nature of the simulated
national banking sectors.

3.3.1 The algorithm

We apply the algorithm proposed by Halaj and Kok (2013) to simulate a large number
of interbank networks that are used to run the stress scenarios. In the absence of interbank
lending and borrowing data, one common method in the literature relies on their estimation
through entropy maximization (see Sheldon and Maurer (1998), Wells (2004) and Mistrulli
(2011) for a comparison of this methodology with actual exposure data). We adopt an
alternative methodology proposed by Halaj and Kok (2013) for different reasons. First,
one essential drawback of the entropy maximization method is that the obtained matrix of
bilateral exposures is such that strictly positive links are estimated between any two banks
which have a strictly positive aggregate interbank exposure, i.e. the obtained network is
not sparse and does not display the empirically documented core-periphery structure (av-
eraging bias). When national banking systems are considered, such an undesirable feature
may be neglected, as domestic banks within a country are typically densely interconnected.
On the contrary, applying the same methodology when cross-border exposures are consid-
ered would amount to neglect either a possible home-bias in interbank exposures or the
fact that financial interconnections are evenly spread nor among banks within a national
banking sector neither among different countries’ banking sectors. In other words, prefer-
ential banking relationships do exist, as well as strong geographical patterns. Second, the
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entropy maximization method yields a unique solution for the bilateral exposures matrix,
and may therefore badly account for the fact that interbank exposures are likely to change
quickly. In addition, performing stress scenarios on a unique exposures matrix typically
fails to obtain a probability distribution over the simulation outcomes. By contrast, the
methodology introduced by Halaj and Kok (2013) addresses these two issues by enabling
the construction of a large number of sparse and concentrated networks that all match the
aggregate exposure levels. Third, this methodology enables us to make use of additional
information on actual interbank links obtained from TARGET2 payment data.5

The algorithm to simulate bilateral exposure matrices relies on two inputs: (i) a proba-
bility map and (ii) aggregate interbank exposures data at a bank level (i.e. the sum of the
exposures of any bank i to all other banks in the system). Denote Πt a N ×N probability
map at date t whose each element (i, j) is πij ∈ [0; 1] with πii = 0 and

∑
j πij = 1 for all i.

πij is the share of funds lent by any bank i to any bank j and is later used as the probability
structure of interbank linkages.

The construction of a large number of exposure matrices at date t relies on the Πt matrix
and on the total interbank loans granted by any bank i to all its counterparties within the
network, denoted Lti. The construction of one particular exposure matrix, i.e. of all bilateral
elements Ltij, uses an "Accept-Reject" scheme. A pair (i, j) of banks is randomly drawn,
with all pairs having equal probability. This link in the interbank network is kept with
a probability πij and, if so, the absolute value of this exposure, denoted L̃ij, equals Li
multiplied by a random number drawn from a uniform distribution with support [0; 1]. The
amount of exposures left to be allocated is thus reduced. The procedure is repeated until
the difference

(
Li −

∑
j L̃ij

)
is below some threshold κ.

3.3.2 Data and calibration

3.3.2.1 Banks’ sample

We run our contagion analysis using a sample of 73 European banking groups, whose
list is provided in Table 3.A.3. Given our focus on the resilience of the European banking
system, we select a subset of the banks that underwent the 2011 stress tests carried out by
the European Banking Authority (EBA). In particular, our sample includes all the banking
groups headquartered in Europe that are part of the list of Global Systemically Important

5In 2012 TARGET2 settled 92% of the total large value payments traffic in euro.
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Banks (G-SIBs), while it excludes some Spanish "cajas" to avoid an over-representation
of the Spanish banking sector.6 It is worth noting that our sample also includes savings
and cooperative banks, hence non-listed European institutions: differently from the extant
empirical literature on contagion that relies on market data, this allows us to assess also
the impact of a shock hitting relatively smaller market players.

3.3.2.2 Simulating European interbank exposures: TARGET2 data and the

probability maps

Long-term interbank exposures. Information on the total interbank loans Li granted
by any bank i to all its counterparties within the network is retrieved via the balance sheet
item named "Net loans to banks" available in SNL Financials.7

The probability map Πt is obtained based on term interbank money market loans settled
in TARGET2 during each year t. The money market dataset we use is the output of the
Eurosystem’s implementation of the Furfine (1999) methodology to TARGET2 payment
data (see Arciero et al. (2013) for more details on the identification methodology). More
specifically, we use loans with maturities ranging from one month and up to six months
to compute shares of preferential lending. These percentages are then imputed in the
simulation algorithm as prior probabilities about the existence and size of an interbank
linkage.

For the last quarter of each year, for each lender, we bundle all term loans and compute
the average amount lent to each borrower; hence based on such average amounts we look
at how total credit was allocated among counterparties. Three details are worth noting in
the assumptions we make to build the probability structure of interbank exposures. First,
our computation includes all the banking groups participating in the interbank euro money
market, i.e. not only the 73 banks belonging to our sample. Subsequently, to form the ‘true’
as well as the simulated networks of exposures, the shares are normalized to consider only the

6See EBA (2011b). The latest list of G-SIBs has been published by the Financial Stability Board
in November 2012 and is available at http://www.financialstabilityboard.org/publications/r_
111104bb.pdf.

7Net loans to banks are defined as Net loans and advances made to banks after deducting any allowance
for impairment. The main difference between this item and "Loans and advances to banks" or "Deposits
from banks" available e.g. in Bankscope, is that the latter also include loans to or from central banks (see
Upper (2011)), which would be a major drawback for our analysis.

http://www.financialstabilityboard.org/publications/r_111104bb.pdf.
http://www.financialstabilityboard.org/publications/r_111104bb.pdf.
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73 sample banks.8 Second, we use only the term market segments in the calculations because
it is for unsecured lending at such longer maturities that preferential interbank lending
relationships are more likely to exist and relatively stronger geographical patterns emerge.
This is especially so in periods of heightened uncertainty about counterparties’ solvency. 9

Third, we consider the average size of a long-term loan traded between a lender-borrower
couple independently of the frequency at which the two banks interact in the market over
the quarter. An undesirable aspect of this choice is that we may turn up assigning a very
high link probability to a lender-borrower couple even if they have interacted only rarely
in the market. Nonetheless, we deem this choice to be the most appropriate in the context
of assessing interbank contagion, since it is the actual size of exposures/links that matters
for the propagation of distress (see Cont et al. (2010)), independently of whether that link
was set up every month rather than just once in the whole quarter.10

Short-term interbank exposures. In the context of our model, liquidity contagion
occurs through liquidity hoarding in the unsecured interbank money market. We take
actual interbank loans, with maturities from overnight to one month, among the 73 sample
banks from the dataset of Arciero et al. (2013). Notwithstanding the availability of five
real networks of short-term interbank exposures from end-2008 to end-2012, we decided
to simulate for each year 100 short-term interbank networks using the Halaj and Kok
algorithm. This allows us to duly capture the evolving nature of short-term funding linkages
and its impact on contagious losses. Moreover, we will use the large number of simulated
long- and short-term networks to analyze the effect of their structural properties on the
propagation of both solvency and liquidity contagion.

8This enables us to avoid any bias in the results related to the assignment of too large shares of interbank
credit to banks that are in our sample but may represent only a small fraction of the amounts lent by a
certain bank to European counterparties. Note that the 73 sample banks represent on average more than
90% of the overall euro money market turnover in the various maturity segments.

9See Cocco et al. (2009) and Brauning and Fecht (2012) for evidence of interbank lending relationships in
the Portuguese and German money market, respectively. The second paper finds that during the 2007-08
crisis German borrowers paid on average lower interest rates to their relationship-lenders than to spot-
lenders. The ECB euro money market study reports increasing market fragmentation in the euro money
market in relation to the euro area sovereign debt crisis.

10Alternative calibrations, e.g. in which prior probabilities are based on the daily average amount lent
to counterparties (thus also taking into account the frequency of bank interactions over the quarter), have
been used as a robustness check. Also, note that, as reported in Arciero et al. (2013), the algorithm
underestimates longer term loans at the beginning and at the end of the sample. This possibly affects our
construction of the probability map for 2012 as this relies on loans traded in the last quarter of the year.
We will be able to account for the underestimation as soon as new estimates of the loans are available that
include TARGET2 transactions in the first months of 2013.
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3.3.2.3 Additional balance sheet data

Additional year-end balance sheet information (Cash and cash equivalents, Total assets,
Common equity) is retrieved from SNL Financials. 11 Table 3.A.4 reports, for each year, a
set of summary statistics of banks’ balance sheet ratios that are relevant for our analysis.
On average, interbank exposures represent about 8% of total assets over the sample period.
In 2009 banks display a reduced aggregate amount of interbank exposures (in percentage of
total assets) than in 2008. The variation in the cross-section is also lower, while the ratio
of common equity to total assets is on average higher, which could possibly result from the
recapitalization imposed by banking supervisors after the EBA stress tests in 2009. In 2010
interbank loans continue decreasing, whereas bank liquidity deteriorates slightly and bank
equity to assets ratio remains constant. In 2011 and 2012 liquidity improves, on average,
while the level of common equity to total assets reduces. In fact, this is related to the
negative common equity reported by various Greek and one Spanish bank for the last two
years. Excluding from the sample banks with negative common equity, we can observe an
increase in the average equity to assets ratio from 4.20% to 4.43% in 2011 and from 4.42%
to 5% in 2012.12

3.3.2.4 Simulation dates

We repeat our counterfactual simulations at year-end for five dates, t = 2008, 2009, 2010, 2011, 2012.13

Repeating the same stress scenario at multiple points in time allows tracking the evolution
both of the financial system resilience to extreme financial distress and of the relative in-
fluence of the different contagion channels over time.

3.3.3 Descriptive evidence on simulated interbank networks

Table 3.A.5 reports summary statistics about the structure of the 100 long-term inter-
bank networks simulated using the Halaj and Kok’s algorithm and the TARGET2-based

11Data are exceptionally retrieved from Bankscope when not available in SNL. Consistency between the
two databases has been carefully cross-checked.

12In 2011 and 2012 balance sheet data are not available for two Greek banks (Agricultural Bank of
Greece, or ATE Bank, recapitalized in July 2011 after having failed EBA stress tests and subsequently sold
to Piraeus Bank in 2012, and TT Hellenic Postbank, liquidated in August 2012), nor for Bank of Cyprus
and Cyprus Popular Bank in 2012. Additionally, Eurobank Ergasias and Piraeus Bank report negative
common equity in 2011 and 2012, while Alpha Bank, National Bank of Greece, and Bankia have negative
common equity in 2012.

13Given that the TARGET2 database for unsecured interbank loans starts as of June 2008, it is not
possible to run the simulation for earlier years.
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probability map. The topological properties of the average simulated network are similar
across the years and consistent with those observed for real interbank structures.14 For
instance, each bank is connected only with a small subset of other banks in the market (five
on average across the years), so that the degree of connectivity or density of the networks
is very small. This notwithstanding, the average length of intermediation chains is very
short, i.e. banks are generally close to each other, and losses can spread from the bank in
difficulty to its direct and indirect counterparties via less than three exposures, on average,
and at most via four. While most of the banks have very few counterparties, there are
some banks who lend to many others. The ratio between the maximum and the median
number of counterparties (the degree), is high and increases over time: in 2012, on average
across 100 networks, the most interconnected bank was about five times more connected
than half of the others; for one network the ratio between maximum and median degree
was as high as seven. This points to an increasing concentration of exposures over the
years and to a core-periphery market structure. Table 3.A.6 reports summary statistics for
the structure of the 100 short-term interbank networks obtained using the Halaj and Kok
algorithm and actual short-term money market exposures. The topological properties of
the average short-term simulated network are similar to those of the long-term one across
the years.

Table 3.A.7 reports summary statistics of cross-country long-term exposures over 100
simulated interbank networks. The numbers displayed are the average ratios of domestic
and cross-border country-level exposures in percentage of the total capital of the country.
In the upper part of the table, we notice that on average during the five years banks of
one country are at least 2 times more exposed to their home counterparties, with domestic
exposures reaching 19% of a country’s capital and foreign exposures being around 4-7%.
These average figures conceal a high heterogeneity across the simulated banking sectors,
which shows up clearly looking at the maximum ratios of domestic and foreign exposures to
aggregate capital. The maximum ratios are of similar order but follow different trends over
the years. Domestic interbank exposures steadily decrease from 1.89 times the country’s
capital in 2008 to 0.76 in 2011, with a jump to 1.48 in 2012; whereas maximum foreign
exposures increase from 1.10 times the country’s capital in 2008 to 2.04 in 2011, and decline
slightly to 1.94 in 2012. However, it is important to keep in mind that such big ratios of
domestic and cross-border interbank exposures relative to a banking sector’s total capital
are very rare events. The median domestic and foreign exposures ratios range between 1 to
6% of countries’ capital.

14See for instance Soramaki et al. (2007) and Iori et al. (2008).
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All in all, this evidence supports our claim about the realism of the exposure networks
over which contagion simulations are run. The methodology we adopt is realistic in terms of
the structural properties verified, but also because it allows capturing an evolving nature of
bank interconnections. The simulated networks can be considered as probabilistic networks;
networks that could be possibly formed in other realizations, however a specific simulated
exposure can differ remarkably from one network to another, as well as from the actual
short-term funding loan observed in the unsecured euro money market via TARGET2.

3.4 Simulation results

In this section we look at simulation outcomes resulting from several rounds of solvency
and liquidity contagion triggered by 500 different realizations of the 5% worse equity market
shocks, and an exogenous bank default. As widely used in the literature we impose idiosyn-
cratic bank defaults one by one. For each year, for each shock scenario, simulation results
are computed over 100 pairs of simulated networks of long-term and short-term interbank
exposures. The parameters used to calibrate the common market shock and the model are
given in Table 3.A.2 in Appendix 1. It is important to keep in mind that the results are
three-dimensional: we compute the distributions of number of bank failures/losses in the
European banking system due to an initial default of one of the 73 banks, over 500 market
shock scenarios and 100 network pairs. Thus, in order to describe the results we aggregate
contagion outcomes at the level of market and idiosyncratic shocks (initial bank defaults).

We start our analysis by looking at the distribution of average and maximum losses
caused by the default of one bank over a set of shock scenarios. Then we compute a
Value at Risk-like indicator of losses in the system, thereby synthesizing tail risks in our
three-dimensional simulation framework. Thereafter, we study the extent of cross-border
contagion in the European banking system and use heatmaps to visualize the more systemic
or more fragile national banking sectors. Similarly, we try to exploit contagion outcomes to
rank European banks as most systemic or most fragile. We conclude by describing changes
in simulation results over the years, trying to identify patterns of increasing or decreasing
system resilience.
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3.4.1 Contagion as a tail risk

Table 3.A.8 depicts the distribution of losses in the system averaged over the shock
scenarios and over the defaults of an initial bank. The part ’...before liquidity hoarding’
accounts for losses due to both the common market shock and solvency contagion (excluding
the capital loss of the bank exogenously set into default); the part ’...after liquidity hoarding
& further rounds of contagion’ displays total losses due to all contagion channels. The
difference between the two can therefore be attributed to mere liquidity contagion. We can
see that average losses are rather limited in terms of number of defaulted banks as well as
in size of depleted capital (less than 2 and 5% of system capital, respectively), and that
the common shock and the solvency contagion channel account for most of them. In fact,
the summary statistics in table 3.A.8 show that the distributions of losses due to the shock
and to solvency contagion are relatively thin-tailed across the 100 network pairs, suggesting
that the underlying long-term interbank networks display only a mild variation. On the
contrary, short-term interbank exposures seem to be more volatile: while in half of the
network pairs average system losses (5% of overall system capital) can be explained by the
initial shocks and by solvency contagion, the heavy tail of the distribution of total losses
captures the variability of liquidity contagion results, with the share of depleted capital
after all contagion channels reaching a maximum value of 13% in 2008 and of 10% in 2012
(corresponding to more than 4 bank failures in 2008 and more than 3 in 2012).

The relatively low dispersion of these results is easily explained: by averaging over
the initial bank default, we average away the high heterogeneity of a realistic banking
system. On the contrary, European interbank networks are highly heterogenous, with a
handful of very large banks and numerous small ones whose default impact on the system
can be markedly different. This can easily be seen by analyzing the maximum number
of bank failures and the maximum share of depleted capital upon an initial bank default.
Table 3.A.9 shows that the exogenous default of one bank (always coupled with a common
market shock) can lead to the default of other 14 banks in 2008 and to a capital loss as
large as one third of total system capital. Also in this table the common shock and solvency
contagion account for most of the failures/losses. Notice that upon the default of the same
bank, the maximum amount of losses is significantly larger in 2008 than afterwards.

Figures 3.A.3, 3.A.4 and 3.A.5, 3.A.6 and 3.A.7 allow us to have a more detailed view
of how maximum losses (in terms of capital and number of bank failures) can vary from
one network to another. Figure 3.A.3 depicts the share of depleted capital in the system
over networks ordered by total losses. We can observe that losses merely due to liquidity
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contagion (the difference between the green and blue dots) as well as total losses (the
green dots) indeed vary among the networks. Total losses (due to the market shock and
both contagion channels) can represent from about 10% to 35% of total system capital in
2008, and from about 7% to 22% in other years. Interestingly, liquidity hoarding plays
a very different role from one year to another, and seems to be more important in 2008
and 2010: for some networks, losses due to liquidity contagion can represent up to half
of the total. The same findings are observed by comparing figures 3.A.4 and 3.A.5 with
maximum losses in capital and figures 3.A.6 and 3.A.7 with maximum number of bank
failures, where we present distributions in the form of box plots. In these figures, we exclude
losses due to the market shock. Both distributions in terms of capital losses or number of
failures have in general higher median and heavier tails after accounting for the impact of
liquidity contagion, particularly in 2008 and 2010. The number of defaults resulting from
the market stress coupled with one bank’s default can vary significantly depending on the
underlying structure of interbank linkages: from 7.5% of system’s capital (or 4 banks) in
one network to 30% of capital (or 14 banks) in another. Thus, consistently with recent
models of contagion in financial networks relying on simulated networks of exposures (see,
Georg (2013) and Arinaminpathy et al. (2012)), our results reveal the critical impact of
the underlying network structure on the propagation of financial losses. Importantly, it
points to the need to account for the evolving nature of the web of interbank linkages when
running contagion simulations.

So far, we have averaged contagion outcomes over the market shocks and looked at
how different the impact of contagion is with respect to the initial default bank and the
underlying network. We have seen that maximum losses can be sizeable, whereas average
losses are limited. To better investigate the likelihood of such tail risks, we analyze for
each year the distribution of the Value at Risk (V aR) or V aR(5%) of our banking system.
This is defined as the 95th left percentile of the distribution of losses (as a percentage of
system capital) over both idiosyncratic and market shock scenarios. Figure 3.A.9 plots the
distribution of V aR(5%) of losses due to contagion over 100 network pairs. We can see that
the 5% worst capital loss stands on average at 8% and 5% over the networks in 2008 and
all other years correspondingly, and that the loss distribution in 2008 has heavier tail. By
comparing figure 3.A.9 and 3.A.5, we observe that losses in the 5% worst cases are almost
half smaller than in the worst case, demonstrating the tail nature of contagion.
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3.4.2 Cross-border contagion

Table 3.A.10 allows us to glance at the extent of domestic versus cross-border contagion
in the European banking sector. It summarizes the results provided in the heat maps
(figures from 3.A.10 to 3.A.14): panel A. presents the distribution of the losses on the main
diagonal for each of the heat map figures, that is total losses imposed by an average bank in
a banking system on its domestic counterparties; panel B. shows the distribution of the off-
diagonal losses, in other words, losses imposed by an average bank in a banking system on
its foreign countparties. We can immediately observe that, on average, a national banking
sector imposes larger losses domestically than across the borders. However, maximum losses
imposed domestically are usually smaller than losses imposed across the borders, except in
years 2010 and 2012, when they are almost equal.

We plot heat maps in order to analyze the potential for cross-border contagion in the
European banking sector. The cells (A;B) of the map represent with colors the strength
of the total capital loss experienced by country A’s banking sector (as a fraction of its
aggregate initial capital) given a common market shock and the default of a bank in the
foreign banking system B. Examining heat maps in figures from 3.A.10 to 3.A.14, we can
easily identify the most ’systemic’ banking sectors, on the one hand (i.e. those resulting in
a vertical line in which warmer-colors prevail), and the systems which are the most ’fragile’,
on the other (i.e. those resulting in a horizontal line in which warmer colors dominate).
Note that a black in the color-scale of the map corresponds to a maximum country loss
ranging between 7% and 14%, respectively in 2010 and in 2008, of the country’s aggregate
initial capital, while white cells correspond to no loss at all.15

In 2008 the banking sectors of countries E, H and K appear to be more systemic in terms
of the total capital loss that a default of an average bank in these countries can impose
on foreign banking sectors. The systems B and J follow, but the aggregate losses that the
default of an average bank from these countries imposes on foreign banking sectors are
much lower. The default of a bank headquartered in D, F, G or I does not have a sizeable
impact on other European banks. With regard to the banking sectors that are the most

15Total country capital losses following the market shock and an idyosincratic foreign bank default are
computed on average over 500 realizations of the market shock; over 100 different pairs of long- and short-
term exposure networks; over the initially defaulting foreign banks. They have been normalized to account
for the different number of banks (and hence of simulations) considered for the various national banking
sectors. Heat maps have been anonymized for data confidentiality reasons, and countries for which less
than 3 banks are available in the sample have been removed. Countries are ordered randomly, with the
same order over time.
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exposed to cross-border contagion, banks from A, B and J generally seem to experience the
highest loss following a foreign default (more numerous red and/or orange cells).

The 2009 and 2010 maps show that the potential for cross-border contagion has con-
stantly decreased over time, and that the overall potential capital loss through contagion
was twice lower in 2010 than it was back to the end of 2008. More specifically, table 3.A.10
shows that the maximum loss caused by a foreign bank’s default reduced from a value of
14% of foreign countries’ total banking capital in 2008 to an overall loss of 10% in 2009 and
of 7% in 2010. This is possibly related to a generalized reduction of long-term interbank
loans and to an increase in banks’ capitalization during those years (see section 3.3.2).
In 2009 and 2010 we observe the geographical patterns identified persisting: E remains
the most systemic banking sector; A and B the most fragile with respect to cross-border
contagion stemming from a number of other European banking sectors; C and G appear
vulnerable only to a few banking systems. Banks in I are relatively isolated in 2008 but
become progressively more exposed to cross-border contagion in 2009 and even more in
2010. The level of vulnerability observed for most other countries changes across the years,
although, as already mentioned, a generalized increase in the resilience of the system can
be observed.

In 2011 and 2012 the light colors in the maps reveal a European banking system overall
less vulnerable to cross-border contagion. However, the lower extent of contagion in these
two years, and especially in 2012, compared to 2008 conceals important differences among
national banking sectors.

All in all, we find that, under extreme equity market stress and following the exogenous
default of one bank, cross-border contagion can materialize in the European banking sys-
tem. The average and maximum loss caused by a foreign bank’s default, however, varies
remarkably over time. In particular, in 2009 and 2010 the European banking system seems
to have significantly increased its capacity to withstand the same kind of adverse financial
conditions that it had to face after the default of Lehman Brothers. In 2011 and 2012, banks
reduce their interbank exposures (see table 3.A.4), and most notably so cross-country (see
table 3.A.7), possibly as a consequence of continued sovereign-bank financial tensions in Eu-
rope. This leads to lower contagion losses overall concealing, however, a high heterogeneity
across countries.
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3.4.3 Systemic and fragile banks

Figure 3.A.15 depicts the systemic importance of all banks in each year from 2008 to
2012. We define a bank as ’systemic’ when its default imposes more than the 85th percentile
of the loss distribution over a given network pair. On the vertical axis we see the number
of networks in which each bank appears to be systemic. Most of the banks are systemic in
none or very few networks, however some banks turn out to be systemic in more than 60%
and even 90% of the networks. Interestingly, this chart points to the same subset of banks
as ’usual suspects’ across the years, however there is also some variability: the subset is not
identical from one year to another, only 60% of the banks appear systemic in more than 3
years.

Similarly, we try to rank banks according to the capital loss that they experience fol-
lowing the default of all other banks. In particular, we define a bank as ’fragile’ if it suffers
losses above the 85th percentile of the loss distribution over the set of shock scenarios. Fig-
ure 3.A.16 points in all the years from 2008 to 2010 some of the banks that did experience
severe difficulties in 2011-2012.

3.4.4 Focusing on system resilience over time

As already highlighted, the system vulnerability to contagion differs from one year
to another. The evidence presented so far points to a pattern of increasing (although not
uniform) resilience to contagion from 2008 to 2012. For instance, we have seen in Table 3.A.8
and Table 3.A.9 that upon the default of the same bank, the average and maximum amount
of losses are significantly larger in 2008 than in the subsequent years. The larger maximum
shares of depleted capital in 2011 and 2012 are possibly related to the disappearance of
4 and 9 banks, respectively, from the sample in these years due to actual defaults. This
determines both a lower total system capital and a lower diversification of interbank assets,
thus resulting in a higher contagion outcome.

Figures 3.A.8 and 3.A.9 demonstrate the evolution of the system resilience to contagion
over time. The year when the system was the most fragile is 2008, both with respect
to solvency and liquidity contagion. In fact, in both graphs the 2008 loss distributions are
characterized by a higher median and a heavier tail than those in the other years. The overall
resilience of the system with respect to solvency contagion gradually improved over time,
except for a small deterioration in 2011. By comparing the distributions in both figures, we
can deduce that losses due to liquidity contagion do not follow the same pattern: the system
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seemed to be again more fragile in 2010. To statistically test this hypothesis, we perform
the two-sample Kolmogorov-Smirnov test which allows us to compare the distributions of
losses due solely to solvency contagion versus losses due to both contagion channels. This
test shows that at 5% confidence level we can reject the null hypothesis of the two data
sets being drawn from the same distribution for years 2008 and 2010, which means that
liquidity hoarding behavior was more of an issue in those years.

Resilience to solvency contagion. The reasons behind increasing system resilience to
solvency contagion are threefold. First, banks became better capitalized: average (max)
common equity to total assets ratio increased from 4.18% (11.13%) in 2008 to 5% (14.82%)
in 2012 with a decrease to 4.43% in 2011 (table 3.A.4). Second, the average fraction
of ’Net loans to banks’ to total assets gradually fell from 8.31% in 2008 to 6.81% in 2012
(table 3.A.4), and ’Net loans to banks’ is the item used to reconstruct the long-term exposure
networks on which solvency contagion takes place. Third, the network characteristics also
changed. Namely, the network became less connected over the years (the ratio of actual to
possible links reduced from 8% in 2008 to 5% in 2012); more skewed (the ratio of max to
average degree jumped from 3.35 in 2008 to 4.6 in 2012); with increasing average shortest
path length (in 2008, the median distance separating any two banks was of only 2.64 other
institutions, whereas it reached 3.14 in 2012, and 2.77 in 2011) (table 3.A.5).

The intuition for the relationships between network measures and the results of contagion
propagation goes as follows. First, less connected networks are less fragile because there are
less links through which contagion may propagate. Second, more skewed networks may be
more resilient to contagion, on average, since most of the banks have only few exposures,
so that their default has little impact on the system. However, in those rare scenarios
when a highly connected bank defaults, losses can be sizeable. This is consistent with the
observation that although the system is on overage safer in 2012 than in 2008, in some
extreme cases losses can reach 22% of the total system capital. Third, a higher average
shortest path length has a direct explanation for the ease of losses propagation: the lower
the average length of intermediation chains, the more easily losses may reach any other
bank.

Resilience to liquidity contagion. As already mentioned, the system is most vulnerable
to liquidity hoarding in 2008 and 2010. Given that in the algorithm liquidity contagion
comes after solvency domino effects, one could expect to observe the following relationship:
higher losses due to solvency contagion→ weaker system→ more banks hoard liquidity→
higher losses due to liquidity contagion. Indeed, this mechanism does in part explain the
impact of liquidity hoarding on the system, most notably in 2008; but it is not the only
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reason. An explanation why the system appears to be so vulnerable in 2010, for instance,
comes from balance sheet statistics: banks held less cash in 2010, only 8.68% of total assets
while more than 9.5% in all the other years (see table 3.A.4).

Short-term network characteristics do play a role too: banks were on average at a
shorter distance from each other exactly in 2008 and 2010, and the logic behind the ease
of propagation of interbank losses is the same as for solvency contagion. Moreover, the
ratio of max to mean degree for short-term networks was lower in 2008 and 2010, which
suggests that the relationship between the skewness of the degree distribution in short-
term networks and system resilience is opposite to the one discussed above for long-term
networks and solvency contagion. The intuition between the lower max to mean degree
ratio figures and system stability goes as follows: the less skewed the distribution of the
number of counterparties, the higher the number of banks that could hoard liquidity from
many of their borrowers, thus increasing the potential for liquidity contagion. Finally, it is
interesting to note that the short-term networks in 2009 and 2012 (the years displaying lower
contagion) look very similar: they are the least connected (on average only 6% of all possible
exposures do actually exist, against 8-9% in other years); have the longest intermediation
chains (3.11 and 2.97 links separate any two banks in 2009 and 2012, respectively, against
2.55 in other years); are the most skewed (the most connected bank is exposed to a number
of counterparties about 4 times larger than the average bank in 2009 and 2012, against only
about 3 in other years).

3.4.5 Robustness checks

We perform a number of robustness checks to test how different model parameters
impact our results. We document that changes in all the model parameters - recovery rate,
availability of cash and liquidity hoarding specifications - drive our results in the expected
direction. More specifically, lower recovery rates increase impact of both contagion channels,
less cash as well as more aggressive liquidity hoarding drive up losses due to funding issues.
The levels of the impact, though, remain perfectly reasonable, with average increase of
initial losses by 10-15%.
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3.5 Econometric analysis

In order to shed light on the relationship between simulation results, banks’ financial ra-
tios and network characteristics, we conduct an econometric analysis of the determinants of
contagion. First, we analyze the determinants of bank-level contagion. In later subsections,
we study contagion outcomes at a system level and at a country level.

3.5.1 Econometric specification

As explained below, all our dependent variables are bounded below (by zero) and above
(by the number of banks in the system, or by the capital in the system) and both boundary
values are likely to be observed in the data. The estimation of such a model cannot rely on
OLS. A convenient way of overcoming this difficulty is by normalizing the dependent vari-
ables so that they take values on [0; 1]. For instance, rather than using the average number
of times that a bank defaults following a set of shock scenarios, we focus on the average fre-
quency with which it defaults; rather than using the loss amount suffered by a bank, we use
the average proportion of its capital that gets depleted following the shock scenarios. The
estimation of models with fractional response variables relies on the methodology proposed
by Papke and Woolridge (1996). It uses the generalized linear model (GLM) developed by
Nelder and Wedderburn (1972) and McCullagh and Nelder (1989).

Let Y be the dependent variable. It is assumed to be generated from a distribution in the
exponential family, whose mean µ depends on the independent variables X through:

E [Y ] = µ = Γ−1 (Xβ) (3.3)

where β is a vector of unknown parameters and Γ the p.d.f. of the link function. Further-
more, the variance of Y is a function of the mean, so that:

Var [Y ] = Var
[
Γ−1 (Xβ)

]
(3.4)

In order to model proportions, a convenient specification is that by Papke and Woolridge
(1996) who assume that the dependent variable can be modeled by a binomial distribution,
in combination with a logit link function Γ. The vector of parameters β is estimated by
maximum likelihood.
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3.5.2 Bank-level determinants of contagion

This section explains the determinants of bank fragility or vulnerability with both balance
sheet and exposure characteristics.

3.5.2.1 Default outcomes

This section estimates the determinants of both bank fragility (i.e. average number
of defaults and average amount of losses suffered following a set of shock scenarios) and
bank systemicity (i.e. the average number of defaults and average amount of losses caused
by the initial default of a bank, over a set of shock scenarios). Thus, dependent variables
in the various specifications of the default model are related to default outcomes, whereas
independent variables are network, exposure and balance sheet characteristics.

More specifically, for each year of results we estimate the following specification:

Y (i, n, t) = g−1(β0 + β1 ∗X(i, n, t)) + ε(i, n, t), (3.5)

where Y (i, n, t) denotes the various fragility or systemicity default outcomes for simulated
(pair of) network n in year t. The vector of regressors X(i, n, t) is composed of variables
related to financial ratios, network position pre-shock, exposures to the weakest banks and
control variables described below.

3.5.2.2 Explanatory variables and expected effects

The following regressors have been used to estimate equation 3.5 :

Financial ratios. Solvency ratio: Common equity / Total assets; Liquidity ratio: Short−
term funding / Total assets. 16 Everything else equal, we expect banks that are more
capitalised and more liquid to be less vulnerable to contagion due to their long and short
term interbank exposures. The effect of higher financial ratios on bank systemicity is less
obvious. Nonetheless, the mechanics of the model suggests that removing well capitalised
and liquid banks from the system would result in a more fragile banking sector overall.
Therefore, we can expect that being more leveraged and illiquid results in higher bank
systemicity.

16The ratio of long term exposures to common equity has also been tested as proxy for bank solvability.
The ratio of short term to long term funding and the so called "interbank ratio" (interbank assets divided
by interbank liabilities) have been tested as proxies for bank liquidity.
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(Long-term) Network position pre-shock. Closeness, betweenness or eigenvector centrality in
the network of long-term interbank exposures have been alternatively tested as explanatory
variables.17 Recent literature has shown that the position occupied by a financial institution
in the network of interbank connections can explain e.g. its capacity to access interbank
liquidity after a shock (see Abbassi et al. (2013)), the price at which it can fund itself in the
money market (see Gabrieli (2012)), or its daily liquidity holdings as a participant in a large
value payment system (see Bech and Atalay (2008)). Based on this evidence, we expect (i)
banks occupying a more central position in the interbank network in terms of being directly
exposed to many counterparties (i.e. banks that are closer to all banks), (ii) banks that
are more central in that they interpose themselves on many intermediation chains in the
interbank network (i.e. banks with higher betweenness), (iii) banks occupying a central
position because of their exposures to highly central counterparties (i.e. banks with higher
eigenvector centrality) to be more systemic. The effect of higher centrality on bank fragility
is less clear cut. On the one hand, one could expect more central banks (in terms of the
three measures described) to be more exposed, hence more vulnerable, to contagion. On
the other, banks that are direct lenders to many counterparties are also more diverisified in
the asset side of their balance sheet, hence potentially more resilient to the propagation of
interbank losses.

Exposures to weakest banks. For each bank and year, we construct the share of bank i

long-term interbank lending directed to the three "riskiest" banks in the system. The latter
are identified as the three (i) most leveraged, (ii) least liquid, (iii) most interconnected,
(iv) most indebted European banks at the end of year t. Beyond the importance of a
bank’s own financial ratios, exposures to risky counterparties can have a negative effect on
banks’ resilience to adverse shocks. In general, we expect a bank’s fragility to be higher the
higher the share of its interbank loans granted to risky (more leveraged, less liquid, more
indebted) counterparties. The effect of being largely exposed to very interconnected banks,
however, is less straightforward. As in the case of banks with high eigenvector centrality,
being exposed to banks with many counterparties in the long-term exposures network might
actually lower bank fragility, because of the higher resilience of very connected (hence
more diversified) counterparties. At the same time, however, exposures to banks that are
highly interconnected in the short term (liquidity) networks could increase bank frailty,
because a very connected counterparty could be subject to more contemporaneous liquidity
withdrawals.

17Refer to Abbassi et al. (2013) for a description of network centrality indicators and their economic
interpretation.
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Control variables. To clearly identify the effect of the regressors of interest on the contagion-
dependent variables, we control for the structural features of the simulated long- and short-
term networks. These are notably: network clustering, reflecting the extent to which banks
lending to each other tend to have a third common counterparty; average shortest path
length, reflecting the length of intermediation chains; the ratio of maximum to mean degree,
indicating to what extent the distribution of the number of bank counterparties is heavy
tailed, with few (core) banks that are very highly interconnected, and most (peripheral)
banks that have links only to few counterparties.

3.5.2.3 Results

Bank fragility. Table 3.A.11 shows the results for Y (i, n, t) being successively the average
number of defaults and average amount of losses suffered by bank i in network (pair) n
in t = 2008 over a set of 500 shock scenarios. The results show that balance sheet ratios
(for both solvency and liquidity) are key determinants of banks’ vulnerability to contagion,
especially in terms of the number of times that a bank defaults. The coefficient capturing
the role of a bank position in the network before the shock is also significant. Interestingly,
it reveals that banks that are highly interconnected are less likely to default following a
shock scenario, but more likely to suffer larger losses. This result is consistent with our
expectations: on the one hand, a higher degree of interconnectedness reflects a higher
degree of diversification of interbank assets, thus reducing the frequency of bank defaults
across scenarios; on the other, being directly exposed to a high number of counterparties
can induce larger losses. The coefficients of the shares of interbank lending directed to the
riskiest banks in the system confirm our intuition that being exposed to the most leveraged
and least liquid banks increases both the likelihood of bank failure and the amount of losses
experienced. These "exposure metrics" are however less important than network centrality
and banks’ own financial ratios in economic terms. Finally, it is interesting to note that
structural network characteristics do not explain different degrees of bank vulnerability. The
only exception is the extent to which the interbank network tends toward a core-periphery
structure. More specifically, a system where few banks have several times the number of
counterparties of the average institution seems to be more resilient to the propagation of
interbank losses.

We obtain similar evidence for 2009, although the network variable that turns out to better
explain bank fragility is eigenvector and not closeness centrality. For this year, longer
intermediation chains can explain both a lower fragility and a lower systemicity of the
average bank. Results are consistent across years with minor differences.
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Bank systemicity. Table 3.A.12 shows the results for Y (i, n, t) being successively the
average number of defaults and average amount of losses caused by the failure of bank i in
network (pair) n in t = 2008 over a set of 500 shock scenarios. Similarly to the results for
bank fragility, a bank’s own financial ratios appear to be the most important determinants
of its contagious impact. The magnitude of estimated coefficients is, however, lower than in
the previous tables both for the average proportion of bank defaults and the average amount
of losses. Closeness centrality turns out to increase a bank systemicity: the closer a bank
is to a higher number of counterparties because of its numerous direct lending exposures,
the higher the proportion of banks failing and the proportion of capital lost in the banking
network following the propagation of a shock. Differently from the fragility regressions,
these tables show that being exposed to the riskiest counterparties does not influence a
bank’s systemic importance. However, being largely exposed to the most indebted banks
increases both the likelihood of causing other failures and the proportion of losses following
a shock.

3.6 Conclusions

This paper investigates the scope for cross-border contagion in Europe based on true
exposure data at a bank-to-bank level in a joint framework of solvency and liquidity conta-
gion. We analyze geographical patterns of shock propagation between 73 European banking
groups from end-2008 until end-2012.

We exploit for the first time a unique dataset of interbank money market transactions,
with various maturities, estimated from TARGET2 payment data (see Arciero et al. (2013))
to obtain a realistic representation of how European banks are connected through their
long- and short-term claims. We rely on the money market database to construct realistic
probability maps of interbank exposures. This maps, together with the amount of individual
banks’ aggregate loans to other banks, are used to simulate a large number of long- and
short-term exposure matrices through a novel methodology proposed by Halaj and Kok
(2013).

Simulation of multiple networks from real data probability maps with significant het-
erogeneity among them allows us to analyze not only the vulnerability of one particular
network realization retrieved from the real data, but of plenty of potential realistic net-
works. We find that both solvency and liquidity contagion are tail risks: losses averaged
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over stress-scenarios, initial bank defaults or simulated networks are rather limited; how-
ever, averaging conceals rare extreme events. We document that losses at the tail of the
distributions can reach one third of the system capital in 2008, and that the resilience of
the system improves significantly over time.

We find that, under extreme equity market stress and following the exogenous default
of one bank, cross-border contagion can materialize in the European banking system. The
average and maximum losses caused by a foreign bank’s default, however, varies remarkably
over time. In particular, in 2009 and 2010 the European banking system seems to have
significantly increased its capacity to withstand the same kind of adverse financial conditions
that it had to face after the default of Lehman Brothers. In 2011-2012, banks reduce
their interbank positions, and most notably so cross-country, possibly as a consequence of
continued sovereign-bank financial tensions in Europe. This leads to lower contagion losses
overall, concealing however a high heterogeneity across-countries.

Finally, we document a strong impact on the cross-border propagation of losses of
heterogeneity and concentration in the structure of interbank exposures. Moreover, the
number of defaults resulting from extreme market stress coupled with one bank’s default
can be more than three times larger depending on the underlying structure of interbank
linkages. This is consistent with recent models of contagion in financial networks relying
on simulated networks of exposures (see, Georg (2013) and Arinaminpathy et al. (2012)),
and points to the need to account for the evolving nature of the web of interbank linkages
when running contagion analysis. Furthermore, we exploit this heterogeneity in order to
investigate the determinants of bank fragility or systemicity that drive contagion outcomes
with both banks’ balance sheet and exposure characteristics.

Further research agenda will include two main points: first, we will extend our econo-
metric exercise to include analysis of the determinants of system-wide and country-level
contagion by exploiting within-year across-networks heterogeneity. Second point concerns
the money market dataset that we rely upon to build the probability maps. It matches po-
tential loan payments between direct TARGET2 participants (i.e. settler banks). However,
it would be interesting to study how the network and cross-border patterns may change if
we exclude intermediation activity of the banks by taking into account information on orig-
inators and beneficiaries of TARGET2 transactions (i.e. indirect TARGET2 participants).
This database has been recently made available.



Appendix

3.A Appendix

3.A.1 The model

3.A.1.1 Common market shock

We model a shock with both a common component and an idiosyncratic component.
First, a market shock hits all listed banks’ capital. As mentioned by Upper (2011), contagion
is more likely with such a shock. Second, a bank is exogenously assumed to fail.

The market shock is modeled using a one-factor model for equity returns. The principal
factor and loading coefficients for all listed banks18 in our sample (42 institutions) are
computed using daily equity returns over a period spanning from January 1999 to December
2008. The first factor is fitted to a Student t distribution, from which 100,000 simulations are
drawn. The 500 left-tail realizations of the first principal component are kept, corresponding
to approximatively 5% tail shocks. The impact on each bank’s capital is recovered through
the factor loadings.

We keep the same market shock for each year in order to make sure about the change
in fragility of the system to contagion during these five years.

Simultaneously, one bank is forced to default. One advantage of such a shock is that
it enables analyzing the systemic importance of each institution, even though it abstracts
from actual bank probabilities of default. Losses through solvency and liquidity channels
are then computed.

18Non-listed banks are assumed to face no market shock, as their equity value is assumed not to be
correlated with market prices.
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Figure 3.A.1: Distribution of the shocks to individual banks over 500 shock scenarios, measured
as percentage of banks’ capital

Table 3.A.1: Distribution of the idiosyncratic and market shocks to the whole system measured
as percentage of total system capital

Min Mean Median Max

Idiosyncratic shock 0,04% 1,37% 0,70% 6,64%
Market shock 1,94% 3,38% 2,66% 16,17%

3.A.1.2 Solvency contagion

We closely follow the model by Fourel et al. (2013). At time t = 1, banks are hit by a
shock ε according to the methodology previously described. If the initial losses are higher
than the capital of a bank, the latter goes into bankruptcy. We can therefore define the set
of all banks defaulting due to a market shock, named "fundamental defaults", as

FD(C) =

i ∈ N : C0(i) + ε(i)︸︷︷︸
initial shock

≤ 0


= {i ∈ N : C1(i) = 0} ,

(3.6)
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where C1(i) = (C0(i) + ε(i))+ is the capital of bank i just after the initial shock.

From this situation, we can define a solvency default cascade (in Amini et al.’s terminol-
ogy) as a sequence of capital levels (Ck

2 (i), i ∈ N)k≥0 (where k represents the algorithmic
step) occurring at time t = 2 and corresponding to the defaults due to insolvency:{

C0
2(i) = C1(i)

Ck
2 (i) = max(C0

2(i)−
∑
{j, Ck−1

2 (j)=0}(1−RS)× E0(i, j); 0), for k ≥ 1,
(3.7)

where RS is an exogenous recovery rate for solvency contagion.

The sequence is converging (in at most n steps) since (Ck
2 )k is a component-wise de-

creasing sequence of positive real numbers. Note that subscripts are used for periods of
time and superscripts for rounds of cascades. By "period", we mean the sequential spread
of losses through different channels. This should not be interpreted stricto sensu: we rather
consider a sequence of events that can concomitantly occur in a short period of time, e.g.
within one week.

Comparison of the banks initially in default (that is FD(C)) and the banks in default
at the end of t = 2 corresponds to the set of institutions that defaulted only due to solvency
default contagion. We label this set S2.

3.A.1.3 Liquidity hoarding

In the liquidly hoarding section of our contagion simulations we employ a different
functional form than in Fourel et al. (2013). We closely follow their model in the remaining
sections.

Decision on how much to hoard

To know how much liquidity a bank hoards in total, and how much it hoards from
each counterparty, we make some assumptions. First of all, the total amount of liquidity
withdrawn depends on the size of the shock to the bank’s capital: the bigger the losses due
to the market shock, the more the bank hoards liquidity. The proportion of liquidity to be
hoarded by bank i is λ(i) ∈ [0; 1]. It is assumed to depend on the capital loss Loss(i): at time
t, we denote λt(i) = aLoss(i)1[A;B] + b Loss(i)1[B;100], where 1 is an indicator function19.

19We test a range of parameters value in order to check the robustness of our results.
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We assume that bank i curtails its positions in the short-term interbank money market by
stopping rolling over debt for a total amount λt(i)EST

t (i) where EST
t (i) =

∑
j∈St−1

EST
t−1(i, j)

and St−1 is the set of non-defaulted banks at the end of period t− 1.

Figure 3.A.2: Liquidity hoarding behaviour.

How much to hoard from each counterparty

Second, the amount of liquidity the bank hoards from each counterparty depends on the
generalized market perception of its credit risk, for which the leverage ratio can be used as a
proxy. The higher the leverage, the riskier a bank is perceived, the more its counterparties
will hoard from it. Defining µt(j) as µt(j) = 1−Ct(j)/TAt(j), we can decompose the total
amount of liquidity hoarded by bank i from its counterparties as follows:

λt(i)E
ST,k−1
t (i) = λt(i)E

ST,k−1
t (i)

∑
j,Ck−1

t (j)≥0

µt(j)E
ST,k−1
t (i, j)

Σhµt(k)EST,k−1
t (i, h)︸ ︷︷ ︸

=1

. (3.8)

Liquidity condition

When a bank hoards liquidity, it improves its short-term funding position, whereas
liquidity withdrawals by its counterparties deteriorate it. The following liquidity condition
must hold:

Cat(i)︸ ︷︷ ︸
cash

+ λt(i)E
ST,k−1
t (i)︸ ︷︷ ︸

hoarding inflows

−
∑

j,Ck−1
t (j)≥0

λt(j)E
ST,k−1
t (j)

µt(i)E
ST,k−1
t (j, i)

Σlµt(l)E
ST,k−1
t (j, l)︸ ︷︷ ︸

hoarding outflows

> 0. (3.9)
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That is, bank i needs to have enough liquid assets, either interbank or non-interbank, to
pay its short-term debt.

In line with the solvency contagion algorithm, we state that a bank is in default when
its capital has been fully wiped out (solvency condition) or when it can not satisfy its
short-term commitments (liquidity condition).

Update of the algorithm to account for the losses due to solvency and liquidity contagion



C0
t (i) = Ct−1(i)

for k ≥ 1,

Solvency condition:

C ′kt (i) = C0
t (i)−

∑
{j, Ck−1

t (j)=0}(1−RL)EST
t (i, j)

Liquidity condition:

C ′′kt (i) =


0 if Cat(i) + λt(i)E

ST,k−1
t (i)−∑

h,Ck−1
t (h)≥0 λt(h)EST,k−1

t (h)
µt(i)E

ST,k−1
t (h,i)

Σlµt(l)E
ST,k−1
t (h,l)

< 0

C ′jt (i) otherwise
Updating equation:

Ck
t (i) = max(C ′kt (i);C ′′kt (i); 0)

(3.10)

At the end of period t, the algorithm provides the status of each bank (alive or in
default), its capital level and short-term exposures. Some banks may have defaulted during
period t, thus some non-defaulted banks have recorded losses on their capital level. If the
capital is then lower than their economic one, another round of liquidity hoarding treated
in period t+ 1 will take place.

3.A.1.4 Model calibration

The following exogenous values are used to calibrate the model.
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Table 3.A.2: Parameters used to calibrate the model

Values of exogenous parameters

Recovery rate (RS) 0,4
First hoarding threshold (A) 0

Amount hoarding (a) 0,1
Second hoarding threshold (B) 0,3

Amount hoarding (b) 0,5
Proportion of free cash 0,4
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3.A.2 The sample

Table 3.A.3: The sample

Country Bank Name Country Bank Name

AT Erste Group Bank GR Alpha Bank**
AT Raiffeisen Bank International GR ATE Bank*
AT Oesterreichische Volksbanken GR Eurobank Ergasias*
BE Dexia GR National Bank of Greece**
BE KBC Groep GR Piraeus Bank*
CH Credit Suisse Group GR TT Hellenic Postbank*
CH UBS HU OTP Bank Nyrt
CY Bank of Cyprus Public** IE Allied Irish Banks
CY Cyprus Popular Bank Public** IE Bank of Ireland
DE Bayerische Landesbank IT Banca Monte dei Paschi di Siena
DE Commerzbank IT Banca Popolare dell’Emilia Romagna
DE DekaBank IT Banco Popolare Società Cooperativa
DE Deutsche Bank IT Intesa SanPaolo
DE HSH Nordbank IT Unicredit
DE Hypo Real Estate Holding IT Unione di Banche Italiane
DE Landesbank Baden-Württemberg MT Bank of Valletta
DE Landesbank Berlin Holding NL ABN AMRO Group
DE Landesbank Hessen-Thueringen NL ING Bank
DE Norddeutsche Landesbank NL Rabobank Group
DE Westdeutsche Genossenschafts-Zentralbank NL SNS Bank
DK Danske Bank NO DnB ASA
DK Jyske Bank PL Powszechna Kasa Oszczednosci
DK Nykredit Realkredit PT Banco BPI
DK Sydbank PT Banco Comercial Português
ES Banco Bilbao Vizcaya Argentaria PT Caixa Geral de Depositos
ES Banco de Sabadell PT Espirito Santo Financial Group
ES Banco Popular Espanol SE Nordea Bank
ES Banco Santander SE Skandinavinska Enskilda Banken
ES Bankinter SE Svenska Handelsbanken
ES Caja de Ahorros y Monte de Piedad de Madrid** SE Swedbank
ES Caja de Ahorros y Pensiones de Barcelona SI Nova Ljubljanska Banka
FI Op-Pohjola Group UK Barclays
FR BNP Paribas UK Lloyds Banking Group
FR BPCE UK HSBC Holdings
FR Crédit Agricole UK Royal Bank of Scotland
FR Crédit Mutuel UK Standard Chartered
FR Société Générale

This table provides the sample of 73 banks used for the default simulations and the econometric analysis,
as well as their domestic country. It is a subset of the list of banks that underwent the 2011 stress tests
carried out by the European Banking Authority (EBA (2011b)). The * and ** indicate banks which are
not included in the 2011 and 2012 sample, respectively, due either to failures or to unavailable data. The
country abbreviations are as follows: AT = Austria, BE = Belgium, CH = Switzerland, CY = Cyprus,
DE = Germany, DK = Denmark, ES = Spain, FI = Finland, FR = France, GR = Greece, HU =
Hungary, IE = Ireland, IT = Italy, MT = Malta, NL = Netherlands, NO = Norway, PL = Poland, PT =
Portugal, SE = Sweden, SI = Slovenia, UK = United Kingdom.
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3.A.3 Descriptive statistics

Table 3.A.4: Descriptive statistics of sample banks’ balance sheet ratios

Year

2008 2009 2010 2011 2012

Cash and cash Equivalents / Total Assets

Average 9.96% 9.54% 8.68% 9.64% 9.68%
Minimum 1.44% 1.45% 1.03% 1.09% 0.99%
Median 8.70% 8.49% 7.71% 8.38% 8.34%

Maximum 32.78% 29.35% 30.64% 29.88% 27.53%
Standard deviation 5.94% 5.19% 5.20% 5.48% 5.10%

Common Equity / Total Assets

Average 4.18% 4.73% 4.73% 4.20%* 4.42%*
Minimum 0.62% 1.05% 0.08% -5.72% -4.54%
Median 3.90% 4.40% 4.55% 3.76% 4.33%

Maximum 11.13% 13.06% 13.32% 13.85% 14.92%
Standard deviation 2.25% 2.35% 2.42% 2.76% 2.99%

Net Loans to Banks / Total Assets

Average 8.31% 7.93% 7.19% 7.24% 6.81%
Minimum 0.88% 0.88% 0.68% 0.64% 0.54%
Median 7.09% 6.61% 5.60% 5.49% 4.70%

Maximum 31.73% 29.14% 30.17% 29.61% 26.28%
Standard deviation 6.01% 5.55% 5.50% 5.65% 5.73%

* Excluding from the sample banks with negative common equity, we can observe an increase in the
average leverage ratio from 4.20% to 4.43% in 2011 and from 4.42% to 5% in 2012. Source: SNL

Financials and own calculations.
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Table 3.A.5: Descriptive statistics of the 100 networks of long-term interbank exposures.
Networks have been simulated using the methodology developed by Halaj and Kok (2013). The probability
map has been obtained from data on actual euro money market loans with maturities from one to six
months.

Year
2008 2009 2010 2011 2012

Number of links

Minimum 298.00 316.00 295.00 291.00 205.00
Median 398.50 405.50 378.50 365.50 272.00

Maximum 622.00 624.00 609.00 580.00 438.00
Standard deviation 37.40 38.92 35.32 32.38 25.97

Density

Minimum 0.06 0.06 0.06 0.06 0.04
Median 0.08 0.08 0.07 0.07 0.05

Maximum 0.12 0.12 0.12 0.11 0.08
Standard deviation 0.01 0.01 0.01 0.01 0.00

Average shortest path

Minimum 2.29 2.30 2.29 2.43 2.64
Median 2.64 2.80 2.80 2.77 3.14

Maximum 3.07 3.60 3.42 3.19 4.09
Standard deviation 0.15 0.15 0.17 0.14 0.22

Max / Median degree

Minimum 2.20 2.17 2.40 2.55 3.00
Median 3.35 3.00 3.68 3.89 4.60

Maximum 5.88 4.67 7.00 6.29 7.80
Standard deviation 0.62 0.52 0.81 0.74 0.86
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Table 3.A.6: Descriptive statistics of the 100 networks of short-term interbank exposures.
Networks have been simulated using the methodology developed by Halaj and Kok (2013). The probability
map has been obtained from data on actual euro money market loans with maturities up to one month.

2008 2009 2010 2011 2012

Number of links

Average 468,43 289,43 437,30 439,47 319,97
Minimum 423,00 205,00 403,00 403,00 284,00
Median 467,50 272,00 435,00 439,50 321,00

Maximum 500,00 480,00 474,00 476,00 349,00
Standard deviation 15,29 64,71 14,36 17,82 11,68

Density

Average 0,09 0,06 0,08 0,08 0,06
Minimum 0,08 0,04 0,08 0,08 0,05
Median 0,09 0,05 0,08 0,08 0,06

Maximum 0,10 0,09 0,09 0,09 0,07
Standard deviation 0,00 0,01 0,00 0,00 0,00

Average shortest path

Average 2,44 3,11 2,58 2,63 2,97
Minimum 2,22 2,45 2,40 2,29 2,67
Median 2,42 3,12 2,58 2,62 2,94

Maximum 3,09 3,88 2,91 2,96 3,49
Standard deviation 0,11 0,29 0,09 0,13 0,15

Max. / Median degree

Average 2,78 4,38 2,93 3,30 3,66
Minimum 2,14 2,00 2,00 2,50 2,88
Median 2,76 4,33 2,91 3,27 3,63

Maximum 3,80 7,17 3,91 4,50 4,86
Standard deviation 0,28 1,01 0,39 0,39 0,42
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Table 3.A.7: Descriptive statistics of domestic and cross-country exposures in the 100 long-term
interbank networks.
The probability map has been obtained from data on actual euro money market loans with maturities from
one to six months. Table A. shows statistics of total exposures of banks to their domestic counterparties over
the total capital of the system. Table B. shows statistics of exposures of banks to their foreign counterparties
(by country) divided by the total capital of the system.

Year

2008 2009 2010 2011 2012
A. Domestic interbank exposures
(country level, % of country’s capital)

Mean 15% 19% 12% 12% 19%
Min 0% 0% 0% 0% 0%

Median 1% 6% 6% 5% 3%
Max 184% 189% 112% 76% 148%

Std dev 40% 41% 24% 19% 36%
B. Cross-border interbank exposures
(country level, % of country’s capital)

Mean 6% 5% 5% 7% 4%
Min 0% 0% 0% 0% 0%

Median 1% 2% 1% 2% 0%
Max 110% 116% 116% 204% 194%

Std dev 13% 11% 11% 20% 14%



Chapter 3. Cross-border interbank contagion in the European banking sector 107

3.A.4 Simulation results

Table 3.A.8: Summary statistics of simulation results averaged over 500 shock scenarios and the
defaults of an initial bank.
Distribution of default outcomes over 100 pairs of networks. Default outcomes are averaged over the shock
scenarios and over the defaults of an initial bank. Default outcomes are reported in terms of number of
bank failures triggered by the default of an initial bank and of losses as a proportion of total system capital
(i.e. of depleted capital). All the losses due to the common market shock and to solvency contagion are
accounted for in ’... before hoarding’, whereas total losses are accounted for in ’... after hoarding’. Thus
the difference between the two is attributed to liquidity contagion

2008 2009 2010 2011 2012

A. Number of defaults before hoarding

Min 1,27 1,19 1,18 1,22 1,08
5th percentile 1,33 1,23 1,20 1,24 1,12

Mean 1,49 1,34 1,28 1,33 1,19
95th percentile 1,73 1,54 1,41 1,44 1,30

Max 1,97 1,68 1,51 1,58 1,45
Std dev 0,13 0,10 0,06 0,07 0,06

B. Percentage of depleted capital before hoarding

Min 4,61% 4,41% 4,38% 4,46% 4,40%
5th percentile 4,67% 4,45% 4,39% 4,47% 4,43%

Mean 4,95% 4,61% 4,51% 4,58% 4,55%
95th percentile 5,45% 4,82% 4,69% 4,72% 4,77%

Max 6,38% 5,05% 5,01% 5,14% 4,95%
Std dev 0,26% 0,12% 0,10% 0,09% 0,11%

C. Number of defaults after hoarding

Min 1,29 1,22 1,18 1,25 1,09
5th percentile 1,35 1,25 1,23 1,26 1,12

Mean 1,74 1,44 1,61 1,47 1,25
95th percentile 3,13 2,07 2,88 2,34 1,41

Max 4,55 2,49 5,21 3,25 3,11
Std dev 0,58 0,25 0,74 0,37 0,26

D. Percentage of depleted capital after hoarding

Min 4,65% 4,45% 4,40% 4,46% 4,40%
5th percentile 4,76% 4,48% 4,41% 4,50% 4,43%

Mean 5,37% 4,71% 4,87% 4,70% 4,65%
95th percentile 7,43% 5,22% 6,74% 5,27% 4,94%

Max 13,41% 5,92% 8,65% 6,86% 10,22%
Std dev 1,29% 0,27% 0,81% 0,35% 0,61%
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Table 3.A.9: Summary statistics of simulation results: maximum losses over 500 shock scenarios
and the defaults of an initial bank.
Distribution of maximum default outcomes over 100 pairs of networks. Maximum default outcomes are
measured in terms of maximum number of bank failures triggered by the default of an initial bank and of
losses as a proportion of total system capital (i.e. of depleted capital). All the losses due to the common
market shock and to solvency contagion are accounted for in ’... before hoarding’, whereas total losses are
accounted for in ’... after hoarding’. Thus the difference between the two is attributed to liquidity contagion

2008 2009 2010 2011 2012

A. Number of defaults before hoarding

Min 4,00 3,00 3,00 3,00 2,00
5th percentile 4,00 3,09 3,00 3,00 2,30

Mean 6,89 5,44 4,41 4,97 3,92
95th percentile 10,11 9,00 7,00 7,70 6,50

Max 13,00 11,00 9,00 9,14 9,00
Std dev 2,02 1,67 1,21 1,27 1,33
B. Percentage of depleted capital before hoarding

Min 10,57% 8,29% 8,34% 8,61% 7,29%
5th percentile 11,84% 8,87% 9,09% 8,93% 8,61%

Mean 17,01% 12,28% 11,69% 12,13% 11,34%
95th percentile 26,41% 17,03% 15,77% 16,19% 15,86%

Max 33,43% 21,67% 18,13% 20,73% 22,34%
Std dev 4,63% 2,60% 2,06% 2,34% 2,52%

C. Number of defaults after hoarding

Min 4,00 3,00 3,00 3,00 2,00
5th percentile 5,00 3,81 3,01 3,06 2,31

Mean 7,62 5,90 5,31 5,31 4,11
95th percentile 11,71 9,01 8,51 8,00 7,00

Max 14,00 11,00 11,02 9,14 9,00
Std dev 2,24 1,82 1,72 1,33 1,39
D. Percentage of depleted capital after hoarding

Min 11,25% 8,35% 8,34% 8,65% 7,29%
5th percentile 12,59% 9,38% 9,30% 9,10% 8,90%

Mean 18,13% 12,81% 12,40% 12,39% 11,72%
95th percentile 29,11% 17,76% 16,98% 17,25% 16,70%

Max 33,43% 24,18% 20,50% 20,73% 22,34%
Std dev 5,04% 2,72% 2,43% 2,44% 2,67%
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Table 3.A.10: Summary statistics of simulation results: domestic and cross-country losses aver-
aged over 500 schock scenarios and the defaults of an initial bank.
Table A. presents by-country distributions of average losses (over 100 network pairs) imposed by a bank on
its domestic counterparties over the total capital of the system. Table B. presents by-country distributions
of average losses (over 100 network pairs) imposed by a bank on its foreign counterparties over the total
capital of the system.

Year

2008 2009 2010 2011 2012

A. Losses imposed on domestic banking system

Mean 1,60% 1,56% 1,49% 1,31% 1,86%
Min 0,00% 0,00% 0,00% 0,00% 0,00%

Median 1,00% 1,20% 1,34% 0,90% 0,68%
Max 7,59% 6,00% 7,03% 4,91% 12,33%

Std dev 2,08% 1,70% 1,75% 1,53% 3,06%
B. Losses imposed on a foreign banking system

Mean 1,29% 0,87% 1,03% 0,86% 0,56%
Min 0,00% 0,00% 0,00% 0,00% 0,00%

Median 0,86% 0,52% 0,70% 0,37% 0,19%
Max 14,36% 10,59% 7,20% 15,47% 11,81%

Std dev 1,80% 1,20% 1,19% 1,50% 1,05%
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Figure 3.A.3: Share of interbank losses -before and after liquidity hoarding- ordered
by the size of total losses (as % of total system capital)
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Figure 3.A.4: Distribution of losses due to solvency contagion (as % of total system
capital)

Figure 3.A.5: Distribution of losses due to both solvency and liquidity contagion (as
% of total system capital)
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Figure 3.A.6: Distribution of maximum number of failures due to solvency contagion

Figure 3.A.7: Distribution of maximum number of failures due to both solvency and
liquidity contagion
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Figure 3.A.8: Distribution of the 5% worst losses due to solvency contagion over 500
shock scenarios and 100 network pairs (as % of total system capital)

Figure 3.A.9: Distribution of the 5% worst losses due to both solvency and liqidity
contagion over 500 shock scenarios and 100 network pairs (as % of total system capital)
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Figure 3.A.10: Total cross-border contagion in 2008
The cells (A;B) of the map represent with colors the strength of the total capital loss experienced by country
A’s banking sector (as a fraction of its aggregate initial capital) given a common market shock and the
default of a bank in the foreign banking system B. Total country capital losses are computed on average over
500 realizations of the market shock and 100 different pairs of long- and short-term exposure networks. They
have been normalized to account for the different number of banks (and hence of simulations) considered
for the various national banking sectors. Heatmaps have been anonymized for data confidentiality reasons;
countries for which less than 3 sample banks are availble have been removed from the charts. Countries
are ordered randomly, but the order is the same across years.

Figure 3.A.11: Total cross-border contagion in 2009
See caption in Figure 10.
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Figure 3.A.12: Total cross-border contagion in 2010
See caption in Figure 10.

Figure 3.A.13: Total cross-border contagion in 2011
See caption in Figure 10. Note that one additional country has been removed from the 2011 heat map
because of data unavailability for sample banks from this country in 2011.
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Figure 3.A.14: Total cross-border contagion in 2012
See caption in Figure 10. Note that one additional country has been removed from the 2012 heat map
because of data unavailability for sample banks from this country in 2012.
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Figure 3.A.15: Systemic banks for each of the 5 years of analysis.
For each year, we have number of networks in which each bank is systemic. Most of the banks are either
never systemic or rarely systemic, whereas some are systemic in almost all 100 simulated networks. We
define a bank to be systemic, when losses (through both channels of contagion) imposed on the system by
its default exceed 85th percentile of loss distribution.

Figure 3.A.16: Fragile banks for each of the 5 years of analysis.
For each year, we have number of networks in which each bank is fragile. Most of the banks are either never
fragile or rarely fragile, whereas some are fragile in more than half of 100 simulated networks. We define a
bank to be fragile, when it defaults due to an initial default more frequently that 85% of other banks.
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3.A.5 Econometrics

(1) (2) (3) (4) (5) (6)
NBD NBD NBD Capital loss Capital loss Capital loss

main
Capital ratio -88.87∗∗∗ -88.88∗∗∗ -88.80∗∗∗ -18.17∗∗∗ -18.15∗∗∗ -18.16∗∗∗

(-10.35) (-10.36) (-10.33) (-20.92) (-20.93) (-20.95)

ST funding / Assets 20.06∗∗∗ 20.08∗∗∗ 20.13∗∗∗ 5.110∗∗∗ 5.107∗∗∗ 5.104∗∗∗

(9.30) (9.45) (9.62) (4.79) (4.78) (4.79)

Closeness -16.10∗∗ -16.28∗∗ -16.96∗∗ 3.593∗ 3.918∗ 3.625∗

(-2.01) (-2.02) (-2.10) (1.72) (1.85) (1.68)

EXP. low ST funding / Assets 1.710∗∗∗ 1.703∗∗∗ 1.665∗∗∗ 0.852∗∗∗ 0.845∗∗∗ 0.838∗∗∗

(4.49) (4.50) (4.38) (5.30) (5.31) (5.28)

EXP. low Capital 0.977∗∗∗ 0.973∗∗∗ 1.020∗∗∗ 0.489∗∗∗ 0.486∗∗∗ 0.495∗∗∗

(5.12) (5.08) (5.31) (6.52) (6.41) (6.55)

EXP. high N. Counterparties -0.558∗∗∗ -0.556∗∗∗ -0.543∗∗∗ -0.156∗∗∗ -0.154∗∗∗ -0.153∗∗∗

(-3.64) (-3.65) (-3.56) (-3.70) (-3.65) (-3.64)

LT Clustering -0.182 0.581 0.516 0.781
(-0.05) (0.16) (0.50) (0.75)

LT Avg. Path length 0.368 -0.0265 0.271 0.134
(0.52) (-0.04) (1.38) (0.68)

LT Max / Mean degree 0.0603 0.0467 0.128 0.120
(0.19) (0.15) (1.46) (1.36)

ST Clustering -2.107 -0.806
(-0.75) (-0.96)

ST Avg. Path length -0.105 -0.0429
(-0.33) (-0.49)

ST Max / Mean degree -0.775∗∗∗ -0.266∗∗∗

(-3.19) (-4.26)

Observations 6500 6500 6500 6500 6500 6500
BIC . . . . . .

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3.A.11: Explaining bank fragility.
The dependent variable in columns (1), (2) and (3) is the frequency of defaults of bank i, for each network
n, following the default of another bank j, j 6= i. The dependent variable in columns (4), (5) and (6) is the
share of losses suffered by bank i, for each network n, following the default of another bank j, j 6= i.
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(1) (2) (3) (4) (5) (6)
NBD NBD NBD Capital loss Capital loss Capital loss

main
Capital ratio -18.49∗∗∗ -18.48∗∗∗ -18.48∗∗∗ -6.649∗∗∗ -6.631∗∗∗ -6.635∗∗∗

(-15.37) (-15.36) (-15.43) (-20.03) (-20.10) (-20.16)

ST funding / Assets 1.574∗ 1.566∗ 1.538∗ 0.644∗∗ 0.639∗∗ 0.636∗∗

(1.92) (1.90) (1.88) (2.46) (2.45) (2.44)

Closeness 27.79∗∗∗ 28.26∗∗∗ 28.58∗∗∗ 16.41∗∗∗ 17.01∗∗∗ 16.89∗∗∗

(6.71) (6.74) (6.62) (11.37) (11.68) (11.32)

EXP. low ST funding / Assets 0.0117 0.00489 -0.0126 0.0510 0.0423 0.0383
(0.08) (0.03) (-0.08) (0.93) (0.79) (0.72)

EXP. low Capital 0.0818 0.0805 0.0974 -0.0928 -0.0970 -0.0939
(0.35) (0.34) (0.42) (-1.15) (-1.22) (-1.19)

EXP. high Beta 0.281∗∗∗ 0.281∗∗∗ 0.277∗∗∗ 0.156∗∗∗ 0.157∗∗∗ 0.157∗∗∗

(3.64) (3.65) (3.60) (5.37) (5.42) (5.41)

LT Clustering 0.571 1.657 0.750 0.942∗

(0.35) (0.97) (1.38) (1.68)

LT Avg. Path length 0.192 -0.0953 0.288∗∗∗ 0.214∗∗

(0.62) (-0.31) (2.65) (1.96)

LT Max / Mean degree 0.146 0.127 0.199∗∗∗ 0.194∗∗∗

(1.54) (1.35) (5.91) (5.75)

ST Clustering -4.165∗∗∗ -0.644
(-2.59) (-1.19)

ST Avg. Path length -0.309 -0.0177
(-1.51) (-0.30)

ST Max / Mean degree -0.634∗∗∗ -0.143∗∗∗

(-5.34) (-3.73)

Observations 6500 6500 6500 6500 6500 6500
BIC . . . . . .

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3.A.12: Explaining bank systemicity.
The dependent variable in columns (1), (2) and (3) is the frequency of failures imposed by the default
of bank i, for each network n. The dependent variable in columns (4), (5) and (6) is the share of losses
imposed by the default of bank i, for each network n.



Chapter 4

Payment Delays and Contagion1

4.1 Introduction

The smooth functioning of financial infrastructures is crucial for financial stability in a
wider sense. Payment systems constitute a core element and play a central role in trans-
mission of liquidity shocks and contagion under market distress that may lead to systemic
events. Payment systems also serve as a tool to early identify and then monitor systemic
liquidity stress through the behavioral patterns of its participants.2

Changes in regular patterns of transactions’ volumes and values have proven highly
informative in the recent crisis period. For instance, during the Lehman Brothers failure,
payment markets were among the first to react and show signs of stress, which lasted
for several weeks. Banks chose then to delay their payments or reassess their degree of
involvement in the market due to concerns of counterparty default risk (Benos et al., 2012).

In this paper, we focus on payment delays –the time passing between the introduction
of a payment to the system and its settlement– as they have highly relevant implications
for systemic liquidity risks and also allow for early identification of potential changes in be-
havior of market participants. Delays tend to be reduced as queueing and liquidity-saving
mechanisms are put in place to improve overall efficiency in the system design. However,
as the potential remaining delays may quickly reflect strategic responses to general or par-
ticular shocks of different nature, their determinants and motivations deserve attention.

1This chapter is base on the paper co-written with B. Craig and M. Saldias. It has been presented at
the Workshop on simulations in payment systems (Helsinki, 2014)

2See Manning et al. (2009) for a comprehensive summary of theory and practice of large-value payment
systems (LVPS), including delays. Rochet and Tirole (1996) provide additional insights in net settlement
systems and payment systems design.

120
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Our first contribution is a characterization of delays in interbank payments via TAR-
GET2 payment system that is consistent with findings in relevant theoretical and empirical
work, including time clustering Armantier et al. (2008); Bartolini et al. (2010); Proepper
et al. (2008); Massarenti et al. (2013), liquidity management trade-offs (Angelini, 1998;
Bech and Garratt, 2003; Bech, 2008), operational risks Merrouche and Schanz (2010), inter
alia. We then contribute with a first approximation to the determinants whereby a delay
in incoming transactions may cause a delay in other transactions downstream under differ-
ent liquidity and market conditions using probit models with endogenous regressors. Our
econometric approach allows us to isolate a contagion phenomenon in normal times and the
presence of common factors driving the delays under distressed market conditions.

Our estimation results show that banks do not systematically take strategic bilateral
decisions towards other participants in a payment-by-payment basis as each payment is
usually too small to induce a strategic game. Conversely, banks take choices on the liquidity
to start operating in the system at the beginning of the day and a mechanical process runs on
its own throughout the day after the initial decisions. Our estimates are robust and benefit
from behavioral patterns of participant banks that we identify in the network structure of
TARGET2 as instruments. In particular, we consider temporary losses of liquidity as a
result of a large spike in payments needs without an accompanying increase in liquidity,
transmission of delay information throughout the network nodes (Blume et al., 2010) and
interplay between free riding and reputation risks in bilateral punishment equilibria (Diehl,
2013).

Based on this finding, we then assess the relevance of initial liquidity setup on the strate-
gies of banks throughout the day. Initial liquidity of banks constitutes of the beginning-of-
the-day-balance and credit line at the central bank supported by the collateral. Throughout
the day, banks make and receive hundreds of payments, and though they may be fairly clear
about what payments will come and go out, and the total match between initial liquidity
set and in- and out-payments, they face uncertainty about the stream of payments. We find
that there are two types of banks in terms of their initial liquidity and their propensity to
delay on its payments: banks that set enough initial liquidity to run daily payments (low-α
banks) and those which systematically put less than needed initial liquidity (high-α). In
particular, high-α banks always rely on payments that come into the system to clear their
payments and they account for the majority of the delays observed. In contrast, low-α banks
are banks with large initial liquidity and rarely incur in payment delays. Interestingly, they
account for the majority of the distribution. Moreover, banks’ characterization by a low
or high α status is persistent over time and across the two subsamples that characterize
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different market conditions. Finally, the division of the sample in two groups allows us to
identify four regions of flows, where delays happen more often among high-α banks and
when flows go from a high-α to a low-α bank. This result can provide an early warning
in terms of market freezes, as delays among low-α banks are rare even under low market
liquidity environments.

The remainder of the paper is organized as follows. Section 4.2 provides a concise
review of the literature on delays in payment systems, both from a theoretical and an
empirical point of view. The literature suggests that banks are involved in a game with
each other, where the strategies are chosen to prevent free riding on liquidity at each
payment, and the strategic instruments include bilateral limits on the implicit credit for
delay of a particular counterparty and the delay in placing a payment into the system for
a counterparty. We show that bilateral limits are rarely chosen strategically, but the delay
in placing a payment into the system for a counterparty is difficult to assess empirically.
We describe the empirical application in order to obtain and analyze the delays origination
and transmission in Section 4.3. Results are provided in Section 4.3.3 where individual
payment strategic interactions are shown to be a problematic view of the payments system.
This leads us to explore a different approach to delays in intra-day liquidity management
which focuses on the initial decisions to set a liquidity reservoir at the beginning of the
day. We explore a new way to normalize liquidity decisions to account for the very different
payment patterns that face each bank in 4.4.1. We show that our normalization is bimodal
and persistent within a bank in 4.4.2. We then examine the payment and network patterns
that contribute to having a bank to choose low liquidity relative to its payment patterns
and find that total value of payments going out or coming in are not important but that
network position is in 4.4.3 and look at the network implications of heterogeneity in α

in 4.4.4. Conclusions and discussion of future research are summarized in Section 4.5.

4.2 Literature review

A number of contributions address payment delays from a theoretical perspective and
with a game-theoretic approach. They generally link the delays to liquidity as a change of
behavior of market participants to shocks or to the payment system structure. For instance,
Arjani (2006) conducts a simulation analysis applied to the Canadian LVTS in order to
tackle the cost trade-off between settlement delays and intraday liquidity needs in order to
improve the efficiency of the system. The author is cautious about the sensitivity of the
analysis’ results to the assumptions about the behavior of the system participants, which
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highlights the need for the model to include dynamics and strategic behavior. Along these
lines, Schulz (2011) tackles the liquidity-delay trade-off in a simulation exercise calibrated
with real world parameters. The author also highlights the sensitivity of the results to
behavioral assumptions, pointing out to the need to analyze and characterize them in the
data, such as via TARGET2 transactions, in order to obtain a realistic simulations results.

From a game-theory perspective, Bech and Garratt (2003) and Bech (2008) characterize
the interaction between intraday liquidity management and payment delays as a coordina-
tion game and provide rationale to the payment and delays timing. Buckle and Campbell
(2003) show in a theoretical model that delays in a real-time gross settlement (RTGS)
systems are likely to occur if banks care about bilateral payment imbalances.

In the empirical literature, Massarenti et al. (2013) provide a first and very thorough
characterization of the intraday patterns of payments in TARGET2 between 2008 and 2011.
The authors identify a number of highly relevant features, including stable and regular
payment timing, time clustering for different sub-systems within TARGET2, as well as
close relationships between interbank transactions made through the payment system and
trading activity in financial markets. The authors also tackle delay payments along these
lines and find that delays respond to timing clustering, which indicates on one hand strategic
liquidity management behavior but also creates foreseeable contexts where payment delays
might be more prone to create systemic liquidity distress.

Bartolini et al. (2010) match brokered trades and Fedwire payment orders and provide
a thorough analysis of payment delays. The authors also find that payment delays can be
to some extent predictable due to their time clustering and therefore trigger high-frequency
liquidity management decisions to counteract resulting liquidity shortages. They also iden-
tify different strategies of market participants, such as the preference of delays of large
transactions relative to small trades or, to a lesser extent, delaying settlement when own
liquid balances are low. Benos et al. (2012) addresses payment delays in the British RTGS
or CHAPS in the aftermath of Lehman Brothers bankruptcy as an exposure to counter-
party default risk in a context of abundant market liquidity.3 Finally, Heijmans and Heuver
(2011) analyze the Dutch part of TARGET2 and find that delays tend to signal changes of
behavior of vis-a-vis its counterparties.

3The authors also provide an alternative definition of delays to the one studied in this paper
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4.3 Testing payment-by-payment strategic games

4.3.1 Data and preliminary analysis

Our source dataset comprises all interbank payments at transaction-level settled via
TARGET2, the real-time gross settlement (RTGS) system owned and operated by the
Eurosystem since November 2007.4 We chose two days to apply our delay categorization
and econometric model. In particular, we studied the delay patterns on 16 July 2010 as our
calm day, and on 10 March 2009 as our stress day. The choice of these two days is based on
overall transaction volume in the interbank and bank equity markets and the volatility in
the latter relative to the historical trend, i.e. our calm day shows average behavior whereas
both volume and transaction volatility are much higher on our stress day.

Based on this rich dataset, we first distinguish between delayed and non-delayed pay-
ments. In particular, a payment in our dataset is flagged as delayed if its execution time,
i.e. the difference between the point of time that a payment is introduced to the system
and the time that it is actually settled, exceeds 5 minutes during the last hour.5 Most of
the payments are introduced to the system immediately when payments messages are sent
by participants; however, participants have some flexibility to decide on the introduction
and clearing time by setting earliest debit time. It provides a possibility to send a payment
message (e.g., at 7am) in order to indicate at what time the payment will be introduced to
the system (e.g., at 10am). Moreover, payment messages can be sent to the system before
the starting of the settlement operations. Therefore, the introduction time is defined as the
maximum between the time the payment is sent to the system and earliest debit time if
the business date the payment is settled corresponds to the business date the payment is
introduced to the system; or 7am otherwise.

Delayed payments on our calm day represent 17.06% of the total, while on a stress
day, this percentage is slightly smaller (15.87%), although the number is significantly larger
(over 50%). Figures 4.A.1 and 4.A.2 show the distributions of transaction values of delayed
and non-delayed payments. Delayed payments are on average larger than non-delayed ones;

4TARGET2 processes payments by three categories of participants: 1) Central banks payments; 2)
Ancillary systems; and 3) Commercial institutions. In our analysis, we are interested only in transactions
between commercial institutions which make the majority of all the transactions in the system and are also
responsible for the most delays. There are 20 classes of transactions, but interbank and customer payments
make together 70% of the total number. They are also the ones that are the most delayed. For the current
version, we keep all the types of payments between commercial institutions.

5This definition excludes delays caused by technical processing time difficulties and we are not interested
in the duration of the delay but on its relevance as a determinant of further delays.
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however there is graphically no significant difference between the two distributions, meaning
that banks do not have any strategy of delaying or not a payment based on the transaction
value.

Finally, figures 4.A.3 and 4.A.4 show the kernel distributions of the sum of incoming
delayed payments (in log) separately for those payments that in turn produced new delayed
payments. For both calm and crisis days, we observe that total values of incoming delayed
payments are much higher for the payments that caused delays themselves (red line), in
other words, larger delayed incoming payments are in principle associated to a higher prob-
ability of a subsequent payment to be delayed. This relationship is especially pronounced
on the calm day, which implies that delays are closely related with delay contagion. On the
crisis day, there may be also other reasons behind delays as the figures suggest that banks
delay more on a crisis day even without having suffered an incoming payment with a delay.

4.3.2 Econometric model of delay drivers

The important behavior we are estimating with the delay data is the extent to which a
delay in one transaction causes a delay in another transaction downstream. In other words,
when bankA receives a payment or series of payments that are delayed, to what extent does
this cause it to delay its payments to other banks? The importance of this question is that
if the delayed payments cause the bank to delay its own payments, then the network, under
certain measurable circumstances, can become absolutely frozen, or to mix metaphors, to
tip, causing the entire connected network to be in delay.

Measuring the effect of a delayed payment on the probability of a delay propagation is es-
sential to understanding whether the network properties of the system intensify the delays,
and under what circumstances could the payments system tip and have delays throughout
the system. Our measurement, then, could be written as a probit model with endogenous
regressors:

y∗ = Xβ + Zγ + ε

y =

{
1 if y∗ > 0

0 otherwise

Here y∗ is an unobserved latent variable, X is an observed vector of characteristics
(including only the intercept in this application), and Z is some measure of delays coming
into the node. ε has a known distribution, such as a N(0, 1) distribution. The parameters
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β and γ are to be estimated, and the coefficient of Z, γ, especially can be used to describe
the behavior of the system, i.e. positive statistical significance would indicate that incoming
delayed payments are likely to cause a delay in payments of a given node.

Measuring the causality of delays on further delays in our data is complicated by several
issues. First, one or a set of common factors could cause delays to be more probable within
the entire system. In this case, delays do not propagate themselves, but can look like they
do. In our notation, a common shock affects both ε and Z, in that this shock hits the
entire system and thus affects the individual shock ε and the probability that the delays
occur beforehand, Z, in the sense that after the first responder to the common shock,
all subsequent responses must follow that first response, leading to a sense that they are
responding to the early responses to the common shock rather than to the common shock
itself. The delay variable is endogenous, and so the variables ε and Z are correlated and a
false causality is measured.

Second, a bank that observes a consistent pattern of delays in a single partner can elect to
withhold its liquidity from this bilateral partner until this partner clears its own payments.
These two nodes can be in a punishment game equilibrium. Because we are interested in
how the delays propagate to the rest of the system, we are interested in the effects of Z on
y which abstract from this. In this scenario, the variables ε and Z are correlated because
in cases where node A delivers Z of delayed clearing to node B, A decides as a punishment
to delay clearing to node B, and so on, and ε goes up. We handle this latent endogeneity
through the use of instrumental variables, using those delayed payments in Z that do not
have a counterpart of a delayed payment from the paying node as instruments, which we
denote instrument set Z1.

The third set of errors is somewhat more subtle. These are the errors mentioned in
Blume et al. (2010), where a pair of nodes is more likely to delay together. Either because
of proximity, or because of similar business models, or exposure of risk from the same
funding sources, this pair of nodes share a common unobserved local factor that drives
both of them to delay. We solve this problem in an analogous way to their solution, we use
the nodes that are not immediately connected to node A as instruments for the delays to
node A. In particular, we look those nodes that are connected to A in delays only through
an intermediary in a second layer back as instruments for the delays to A and that do not
go through the self reflecting nodes, described above. This set of instruments are labeled
Z2. Figures 4.A.5 to 4.A.8 provide an intuitive representation on the estimation strategy
and the choice of the instruments.
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4.3.3 Results: Delays’ propagation

Results of the models described above are reported in Table 4.A.1 for a market calm
day and in Table 4.A.2 for the stress day. In both cases, the benchmark model is presented
in columns [1] and corresponds to the case where no instruments are used and we measure
the effect of total (log) value of all incoming payments delayed more than 5 minutes during
the last hour on the propagation of delays downstream. Columns [2] show the results of the
model where incoming delayed payments are instrumented by Z1, i.e. delayed payments
that do not have a counterpart of a delayed payment from the paying node. Finally, columns
[3] show the results of the model where the instrument Z2, where payments are at least one
link removed from the node that produces the delay in order to remove the local reflecting,
as described in Section 4.3.2.

First, we analyze the calm day. Table 4.A.1 shows a positive and statistically significant
dependence between the delay of a payment and the value of delayed incoming payments
to this bank, in other words, large delayed payments to a given bank are associated with a
higher probability of subsequent payment delays to other banks. Results of model [2] show
a similar picture, after dealing with the potential endogeneity in measuring the causality
of the delays using an instrument for mutual delays. The dependence is still positive and
significant, therefore the delays between the two nodes are not explained by a common
factor, and delay contagion takes place. Finally, in order to assess whether a delay is
explained by delay contagion, that is if a delayed payment of bank i is explained by the
delayed payment of bank j to bank i, which itself had a delayed payment by bank k. The
results in column [3] also show a positive positive and significant effect of large incoming
delays. Based on this evidence, we conclude that on the normal day, a payment is delayed
with higher probability if other banks delayed a payment to a bank, and they themselves
had delayed incoming payments, that is some sort of contagion of delays mainly due to the
mechanics of the system.

The estimation results on the crisis day are shown Table 4.A.2 and provide different
conclusions from what would be expected from theoretical work, where an increase in conta-
gion should be a result of information propagation, punishment mechanisms, end so forth.
In the benchmark model [1], a payment is delayed with higher probability the higher is
the size of delayed incoming payments: the coefficient is positive and significant. However,
when we tackle the potential endogeneity problem with our data and use the instruments
(columns [2] and [3]), the coefficients become negative and significant. This result means
that delays on the crisis day are largely explained by mutual delaying and second-round
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effects, which probably means that all the banks are affected by a common factor which
makes them delay payments rather than a contagion mechanism. This result means that a
closer analysis of the nature of the common unobserved factors is required along the lines
of Hsiao et al. (2012).

This set of results mean that banks do not systematically take strategic bilateral deci-
sions towards other participants in a payment-by-payment basis as each payment is usually
too small to induce a strategic game. They rather indicate that banks make their choices on
the liquidity to start operating in the system at the beginning of the day and a mechanical
process runs on its own throughout the day after the initial decisions, which embeds some
persistent prior decisions on liquidity needs and outflows. Finally, as our data and previous
empirical work (Diehl, 2013) reveal that bilateral limits are hardly used if at all on a daily
basis, which reinforces the empirical evidence against the notion of strategic games from
the theoretical literature.

4.4 Initial liquidity and delays

4.4.1 Normalization

In the further discussion below, we test a different hypothesis, namely that delays in the
payments system occur due to banks’ certain liquidity management behavior. We examine
two different months for liquidity management of the banks. The first month, September
2008, was characterized by a scarcity of liquidity brought on by the uncertainty generated
by the crisis. Overnight markets were in the process of breaking down and short term
liquidity rates were uncertain. We contrast this with the behavior of the banks during a
recent month, May 2014 where markets were awash with short term liquidity, available at
extremely low rates.

Each bank, when it sets its liquidity, does so in the knowledge of its own particular daily
payments patterns. These highly idiosyncratic time series patterns are crucial in influencing
the probability that a delay will occur. For example, a bank that knows that its payments
are very likely to alternate between payments that arrive and payments that go out with
approximately the same amounts can set a liquidity considerably lower than a bank with
payments that go out over the beginning of the day and then come in at the end and it
still will have a smaller probability of settling at least one of its payments with a delay.
Modeling this process parametrically so that the essential part of the process that sets the
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delays is very difficult. We opt for the more robust non-parametric procedure that block-
bootstraps the bank’s payments, both incoming and outgoing, during the business part of
the day, between 8 am and 4 pm, to come up with a distribution on payments patterns for
the bank.

The size of the block is set to be the maximum of 10 payments and the value calculated
from Politis et al. (2009). The minimum payment number allowed for a day is 30 payments.
Otherwise α is not calculated. Although this represents an optimal size for variance rather
than the minimum, we experimented in our data with different values and found little
variation around this value. The bootstrap is then combined with the bank’s initial liquidity
to calculate a probability that the bank will delay, given the pattern of payments it confronts.
This probability, denoted α in this paper, is analogous to the classical Type I error, α,
where a high value implies a large error and thus large delay propensity. The bootstrap
was sampled 10,000 times, and this value was also examined in a sample of payment-days.
We found that increasing the number of bootstrap replications did not change α more than
1%, which was certainly accurate enough for our purposes.

4.4.2 Empirical patterns: High- and low-α Bank

Our main finding from the normalization procedure is that some banks persistently
miscalculate the amount of initial liquidity to provide to the system, therefore being high-α
banks, whereas the majority feed the system with liquidity, being low-α banks. Figures
4.A.9 and 4.A.10 show the distributions of average daily α values (over the respective
months) for each bank for two periods, September 2008 and May 2014. We see a clear
split: a group of banks with α greater and lower than 0.5, especially so for times of scarce
liquidity (September 2008). Moreover, figures of transition probabilities, 4.A.11 and 4.A.12
demonstrate that banks have very regular behavior by staying in the same category from
one day to another. This finding points out to a persistent liquidity management policy
over time, therefore confirming our hypothesis that banks do not incur in strategic games
but rather make their morning decisions about the intraday liquidity allocation.

Before analyzing the behavioral patterns of high- and low- α banks, it is worth recalling
that the banks in our whole sample are rather big and active, because in order to compute
α values, we keep only banks that make on average more 100 daily transactions during the
month. Figures 4.A.13, 4.A.14, 4.A.15 and 4.A.16 confirm that since for both periods the
two types of banks have similar distributions of number and total value of in- and out-
transactions, with the only difference that distributions of high-α banks have a bit fatter
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right tails. Notwithstanding that, throughout the day, the two groups seem to exhibit
different patterns (see Figures 4.A.17 and 4.A.18): high-α banks tend to receive bigger
volumes in the morning and send it in the afternoon, while low-α banks do the opposite.

High-α banks also delay more (Figures 4.A.19 and 4.A.20), and the difference in delayed
values is particularly remarkable in September 2008 when liquidity was scarce. During
that period, high-α banks transact twice as many payments as low-α banks, whereas they
delay ten times bigger volume of payments. It is worth particularly noting that in times of
scarce liquidity, high-α banks delay especially to other high-α banks. This finding suggests
contagious nature of those delays where potential dynamics may look as follows: a bank
with short liquidity relies on the incoming liquidity to clear its payments; meanwhile it
delays its payments to other banks downstream. If its counterparts are also high-α banks,
they will delay their payments as well since they also count on the incoming liquidity.

4.4.3 What determines a High-α Bank?

We collected a large number of possible determinants of α. Because of data confidential-
ity issues, we were not able to match the banks with balance sheet determinants. However,
the payments data themselves gave us a large number of possible explanatory variables with
which to explain the bank’s liquidity behavior. We divide the day of the bank into four
periods. Two periods, “night” (the hours from 4 pm to 7 am in the morning) and “7-9” (early
morning hours) represent the evening settlement hours and the early morning settlement
hours where the bank realizes its liquidity for the day, where the evening hours are realized
payments in for the next day. Two periods, “morning” (9 am to 12 noon) and “afternoon”
(12 noon until 4 pm, just before the large net settlements from other payments systems)
represent those times of payments where the daily work day payments are handled, after
much of the liquidity reservoir for the payments are set. We tried other ways to denote the
daily periods, with little or no changes in our results. These four periods of the day gave
times where the different behaviors of the payments give rise to different networks. A bank
that is more central in the morning will not be as central in the evening.

The payments network is given by four variables, each measuring a different aspect of
the network. While we used other variables to assess the behavior of the payments network,
these four seemed to characterize our regressions as well as the other sets of variables. We
use the Bonacich6 centrality measure to focus on the information available to the bank from

6Bank with the highest Bonacich centrality is the most connected bank in a network; this centrality
measure takes into account all connections while the contributions of distant nodes are penalized.
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its payments coming in. Bonacich centrality includes a parameter, β, that must be set which
determines how the bank has payments coming from other central nodes. The parameter
can be set between the largest eigenvalue of the adjacency matrix which defines the network
and the negative of this number. If β is larger, then a higher central node is more likely
to be connected (in the sense of payments coming in) with other central nodes. If the
parameter is lower, then a more central bank is likely to be connected to more peripheral
banks. We report coefficients on the Bonacich centrality for extremely high values of β,
following the advice of Bonacich (1987) The Bonacich centrality represents the information
coming to the bank. Banks that are more central are able to assess the fact that more or
fewer payments of value are coming to it from other central banks, thus providing it with
information that is not available to more peripheral banks.

A second parameter, “in degree”, simply measures the number of links coming into the
bank. It is related to Bonacich in that it represents the total number of paying banks that
a bank has access to, and so it tells something about the health of the network available
as information to the bank. It also represents the complexity of the network of payments
coming into the bank. Banks with low in-degree depend on their payments coming in from
only a few banks that can be easily monitored, but they also have access to information
only from a few nodes, and therefore can see only a part of the network, rather than the
health of the whole.

The third parameter, ”weighted in clustering”, represents the riskiness of the position of
the payments coming into the bank, following Watts and Strogatz (1998). More formally,
it measures the probability that two banks who make payments into a node will make a
payment to each other. This measures the riskiness in that while a bank may be able to
accurately assess the likelihood that a direct counterparty can make its payment on time,
the fact that two counterparties are linked creates a correlation between the two, making
one delay more likely to generate a delay on the part of the other, delaying payments from
both parties. In this sense, a higher clustering coefficient implies a higher probability of a
major delay in incoming payments.

Finally, we choose an obvious measure of the position of the node in the network, the
absolute size of the payments coming into the bank, which we calculate as the logarithm
of the total incoming payments coming into the bank during a time period. We run two
types of probit equations with α as the dependent variable. In one case, we choose α to be
a continuous variable, and in the other case, we choose a cutoff value for high and low α

to be 0.5, so that high α is set to 1 and low to 0 in the probit estimates. The cutoff value
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was varied and did not really matter, but reflects the bi-modality of the α values. These
are denoted 0-1 in Table 4.A.3 where we report our results.

For convenience of interpretation, we divide our results into two times of the day. First,
those times which might influence how much liquidity is set. This would be the character of
the payment inflows of the evening before and the early morning of the day that the bank
observes before its liquidity is topped off at the beginning of the day. Second, the character
of payments during the day that might affect the noise of the payments, which would lead,
in turn, to a more likely delay. The first we call the “morning liquidity” determinants of
α. The second, we call the “day complexity” determinants, because they are aspects of the
complexity of the patterns of payments that can lead to delays in payments.

Turning to results in Table 4.A.3, we see several patterns. First, the determinants of
high α is much more strongly associated with the low liquidity September 2008 month
than with the high liquidity May 2014. Coefficients on the each of the variables in the 0-1
regression are all significant for the morning variables which determine the initial liquidity
set. High α banks are privy to more information that develops during the evening of the
day before through their central network position, although this is mitigated a little bit
during the early morning hours (although banks that are central to both evening before
and early morning networks are quite likely to be high α banks.) The same could also be
said about information obtained from a variety of connections, as evidenced from the in-
degree coefficients of the evening, although this, also is mitigated slightly in the morning.
Banks that shoulder more risk, as evidenced by the high in-weighted clustering are also
more likely to be high α, which is not surprising in that being a high α bank is a risky
behavior.

Finally, total payments in have little to do with any α behavior. This is very interesting
for several reasons. First, the standard chestnut that banks that process a lot of payments
have a riskier liquidity profile because they rely on large numbers just is not borne out in
the data. Second, a bank’s network position is much more likely to affect its risk attitude
to delays. Big payments providers are as likely to be high liquidity providers as not, once
network position is taken into account.

When we examine the high liquidity month, network position has generally the same
effect, but much weaker. The coefficients are smaller and of less significance throughout
the network variables, or the coefficients have no statistical significance. This is what we
might expect from a time period where the costs of mistakes in liquidity can be easily
solved by recourse to liquidity cheaply available from a variety of sources. However, the
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once huge difference between the periods lies in the different importance of size. In highly
liquid times, the high α banks are likely to be only those who process more payments in the
early morning. This may have to do with the fact that high α banks adjust their liquidity
at the latest moment when liquidity is cheap.

A look at the lower portion of Table 4.A.3 shows less strong influence of information
than in the morning, but a continuing association of high α banks with risk. The morning
cluster coefficient associated with riskier network position is also associated with high α.

There is also some evidence that more complex morning market positions are associated
with high α, although this effect disappears if the complexity continues into the afternoon
markets. In the cheap liquidity markets, there are few patterns that can be seen in the
estimates. Almost all are insignificant. This suggests that in a regime of cheap liquidity,
the only strong influence on whether a bank is a high α bank is the total value of the
payments received during the early morning hours.

4.4.4 Network Implications of High- and Low α Banks

Finally, the two well-defined groups allows us to define a four regions of flows and
analyzed their systemic properties. Indeed, flows across these four regions show that delays
are more likely to occur between high-α banks and for flow from a high-α bank to a low-
α bank. This result could provide an early warning of contagion as delays from high-α
to low-α banks and subsequently among low-α banks are signs of market freezes. While
this section provides only a hint of the possibilities of a network analysis, it is a focus of
our continuing research. The simulation studies of Bech and Soramaki (2005) and others
indicate that gridlock can be a common occurrence, particularly in systems which face
expensive liquidity shortages. However, these simulation studies take time and focus only
on a single array of payments structures. A certain level of heterogeneity is assumed in the
behavior of the banks which influence the results. Our focus on the high α banks suggest
that the payments system could be even more delicate and subject to gridlock in times of
expensive liquidity than previously thought.

Payments gridlock occurs because of delays that are not netted out as pointed out in
Bech and Soramaki (2005) and others, including Angelini (2000). Liquidity is needed for
the netting out of payments between more than two parties in the Target 2 system because
the settlement algorithm will only net out bilateral obligations that do not have enough
liquidity to settle. While the system as a whole might have enough liquidity to settle,
local areas of the payments network can become sinks where liquidity is unable locally to
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settle out the obligations. Gridlock is more likely to occur within these low liquidity groups
where liquidity does not enter from the outside more liquid areas of the network. Simulation
studies in Denmark and Sweden suggest that the probability of gridlock is linearly related to
the amount of liquidity available to the network as pointed out in Pettersson (2005). This is
more likely to occur in sub networks where there is a lack of liquidity if the subnetwork has
little liquidity to begin with, and it does not trade with those groups that have liquidity.
The question is whether there is a sub-network in the sense that the lack of liquidity churns
within a local area of the network with little entry of liquidity from the outside more liquid
banks.

Our evidence from the low liquidity month of September suggests that this may indeed
be the case. Figure 4.A.21 has several very intriguing features. The figure shows the
payments that occur between low and high α banks and between banks that are both high
or both low α. If the local areas are well connected to each other, then we should see lots
of transactions between them. Figure 4.A.21 suggest that not only are the largest numbers
of transactions within banks that share α characteristics, but also the lowest number of
transactions are from the liquid low α banks to the lower liquidity banks. Further, it is the
high α banks that are sparking the delays and our evidence is that the subgroup of high αs
tend to pass most of their delays to themselves, making gridlock more likely, although they
also pass delays to the other group. In other words, delays propagate most within the high
α group leading to concern that gridlock will spark here. Interestingly, the low α group
does not pass delays to itself. We can take from this several observations. If gridlock occurs
in a network where the total liquidity is “adequate”, it will occur within a local low liquidity
area of the network that is isolated from the rest of the network. This suggests a stress
indicator which measures the degree of connectedness of the local low liquidity high α banks
with the low α banks. If this connection is robust, then liquidity flows easily into the high
α banks lubricating their transactions. If, as in September 2008, the number of payments
from the low α to high α banks are reduced, then the probability of stress increases. A
stress indicator could be designed that focused on the liquidity flows from the low α to the
high α groups. Without access to the low α liquidity, the probability of gridlock increases
within the local high α area of the payments.

In times of cheap liquidity, this is less likely to occur. Figure 4.A.22 has the corresponding
numbers for May of 2014. In this scenario, the flow of payments from low to high α is more
plentiful than even the flows within the low liquidity banks themselves. Although the system
experiences delays, the delays are not focused on the local areas and are less likely to cause
gridlock. They are more likely to be one-off occurrences that do not affect the rest of the
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system and are quickly resolved. Further, a single bank failure is less likely to drag the rest
of the system down as the payments to the downstream counterparties from other more
liquid banks prevent a gridlock. The degree of connectedness of the low to high α provides a
direct indicator of the matter of great concern in a time of crisis: that banks with sufficient
liquidity withdraw their liquidity from banks that they deem to have insufficient liquidity.
This is clearly a topic of great interest and one of focus in our continuing research.

4.5 Concluding Remarks

This paper made a characterization of delays in interbank payments via TARGET2
payment system and conducted a first approximation to the determinants whereby a delay
in incoming transactions may cause a delay in other transactions downstream under normal
liquidity and market conditions and also in distressed times. Taking into account potential
endogeneity problems with the data, we estimated probit models with endogenous regressors
and found that in normal times the probability of a bank to delay its payments is positively
affected by the series and amount of incoming payments that are delayed. This result points
out to a contagion phenomenon taking place with important systemic liquidity implications
in the network.

This result is robust to the use of alternative instruments that take into account behav-
ioral patterns of nodes/banks. In particular, we look at local liquidity sinks, i.e. a local area
of the network that has a temporary loss of liquidity as a result of a large spike in payments
needs without an accompanying increase in liquidity. We also consider transmission of delay
information throughout the network nodes and free riding bilateral punishment equilibria.

We also find that this contagion phenomenon does not materialize under distressed
market conditions and delay contagion is likely to be caused by the presence of common
factors, mutual delaying and second-round effects. This result is also robust to the different
behavioral patterns of the network nodes described above. This conclusion leads future
research to conduct a closer analysis of the nature of the common unobserved factors.

A characterization of the banks according to their initial liquidity allocation provides
another interesting set of results. First, we identify two types of banks in terms of their
initial liquidity and their propensity to delay on its payments: low-α banks start each day
with large initial liquidity and rarely incur in payment delays whereas high-α banks are
exactly the opposite and account for the majority of delays in both high and low liquidity
environments. This bank split is consistent over time and also allows allows identifying four
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regions of flows, where delays happen more often among high-α banks and when flows go
from a high-α to a low-α bank. The latter constitutes in turn an early warning for market
freezes.



Appendix

4.A Appendix

Table 4.A.1: Probit model with continuous endogenous regressors: Calm day estimates

Dependent variable Model
Delay propagation [1] [2] [3]

Intercept -2.343 -1.469 -1.851
(-229.90) (-149.22) (-177.11)

Incoming delays 0.0969 0.0511 0.0619
(-166.14) (-95.36) (-98.10)

Observations 206177 206177 206177

Notes: Incoming delays are transformed in log. All coefficients are statistically significant at 5%, t statistics
are presented in parentheses. See Section 4.3.2 for details of the model specification.

Table 4.A.2: Probit model with continuous endogenous regressors: Stress day estimates

Dependent variable Model
Delay propagation [1] [2] [3]

Intercept -1.576 -0.394 1.428
(-213.52) (-56.31) (164.49)

Incoming delays 0.0383 -0.0205 -0.1270
(86.53) (-54.35) (-330.68)

Observations 317754 317754 317754

Notes: Incoming delays are transformed in log. All coefficients are statistically significant at 5%, t statistics
are presented in parentheses. See Section 4.3.2 for details of the model specification.
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September 2008 ——–Low—— —-Liquidity— ———– May 2014 High Liquidity

Morn Liquidity Morning Liquidity Day Complexity Day Complexity Morning Liquidity Morning Liquidity Day Complexity Day Complexity

0-1 0-1 0-1 0-1

night_Bon_Centrality 430.5 130.5*** -1.359 -16.51*
(1.48) (3.14) (-0.40) (-1.73)

7-9_Bon_Centrality 0.611 -1.016** 1.270 -0.0992
(0.51) (-2.40) (1.31) (-1.35)

night_in_clust -1.265 0.891** -1.450** -0.0661
(-1.50) (2.09) (-2.00) (-0.11)

7-9_in_clust 3.004** 3.682*** -1.057* 1.162**
(2.49) (4.47) (-1.68) (2.01)

night_in_degree -0.0150 0.0289*** -0.0144 0.00935
(-0.85) (2.74) (-0.80) (0.82)

7-9_in_degree 0.00135 -0.00831*** -0.00813** -0.00181
(0.24) (-2.81) (-2.25) (-0.74)

night_in_tot_paym_log -0.00124 -0.0206 -0.158* 0.000914
(-0.02) (-0.65) (-1.66) (0.03)

7-9_in_tot_paym_log -0.0678 0.0895 0.492*** 0.199**
(-0.33) (1.02) (3.81) (2.11)

aft_Bon_Centrality 0.241 0.0765 0.245 0.113
(0.89) (0.52) (1.05) (1.50)

morn_Bon_Centrality -0.222 0.110 0.293 -0.0395
(-0.58) (0.61) (0.85) (-0.53)

aft_in_clust -4.822 0.278 -0.577 -1.372
(-1.30) (0.12) (-0.22) (-0.58)

morn_in_clust 6.923* 5.312** 0.592 2.953
(1.81) (2.23) (0.22) (1.24)

aft_in_degree -0.00368 -0.0486** -0.0222 -0.0376*
(-0.12) (-2.41) (-1.08) (-1.87)

morn_in_degree 0.00443 0.0529** 0.0160 0.0399*
(0.12) (2.46) (0.75) (1.87)

aft_in_tot_pay 0.449 0.190 -0.461 0.394
(0.58) (0.53) (-1.17) (1.20)

morn_in_tot_pay -0.588 -0.112 0.680* -0.199
(-0.76) (-0.31) (1.86) (-0.60)

Constant 2.379 -4.362** 3.896 -5.849*** -3.717 -5.967*** -1.999 -6.392***
(0.67) (-2.17) (1.11) (-2.90) (-1.52) (-2.97) (-0.67) (-3.02)

Observations 210 210 210 210 210 210 210 210

Table 4.A.3: Regressions of banks’ α value on network characteristics of the banks. T statistics are in parentheses. *, **, *** denote significance at 10%,
5% and 1% respectively.
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Figure 4.A.1: Calm day: Distributions of values of delayed and non-delayed payments

Figure 4.A.2: Stress day: Distributions of values of delayed and non-delayed payments
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Figure 4.A.3: Calm day: Distributions of values of delayed payments that cause and do not
cause subsequent delays

Figure 4.A.4: Stress day: Distributions of values of delayed payments that cause and do not
cause subsequent delays
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A

Figure 4.A.5: We are interested in measuring the probability of a delay from node A, given that
node A is making a payment. All delays are marked with arrows.

A

ZZ

Figure 4.A.6: The amount of delays coming in, marked by the sum of the arrows from the red
nodes to node A are the delays that may be propagated by A’s behavior. If all is exogenous, then
the instruments would be the same set of arrows.
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A

Z1

Figure 4.A.7: The set of instruments Z1 are represented by the sum of the arrows going in from
the red nodes that do not have a direct reflecting arrow coming back from node A.

A

Z2

Figure 4.A.8: Analogous to Blume et al. (2010), we use instruments Z2, which are at least one
link removed from A. In order to remove the local reflecting, the instruments do not include those
vectors that go through a self reflecting node, so the dotted vector is excluded.
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Figure 4.A.9: Distribution of alpha values for banks: alpha is an average daily value over
September 2008

Figure 4.A.10: Distribution of alpha values for banks: alpha is an average daily value over May
2014
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Figure 4.A.11: Transition probabilities across alpha status
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Figure 4.A.12: Transition probabilities across alpha status
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Figure 4.A.13: Log number of IN and OUT transactions by two types of banks in September
2008

Figure 4.A.14: Log number of IN and OUT transactions by two types of banks in May 2014
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Figure 4.A.15: Log value of IN and OUT transactions by two types of banks in September 2008

Figure 4.A.16: Log value of IN and OUT transactions by two types of banks in May 2014
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Figure 4.A.17: Value of IN and OUT payments by two types of banks throughout the day in
September 2008

Figure 4.A.18: Value of IN and OUT payments by two types of banks throughout the day in
May 2014
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Figure 4.A.19: Total value of transacted (0) and delayed (1) payments in September 2008 by
transaction category: 11 - from low to low alpha banks; 12 - from low to high; 21 - from high to
low; 22 - from high to high

Figure 4.A.20: Total value of transacted (0) and delayed (1) payments in May 2014 by transaction
category: 11 - from low to low alpha banks; 12 - from low to high; 21 - from high to low; 22 - from
high to high
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Figure 4.A.21: Total transaction value of payments by category throughout the day in May 2014
(hourly averages): 11 - from low to low alpha banks; 12 - from low to high; 21 - from high to high;
22 - from high to high



Chapter 4. Payment Delays and Contagion 150

Figure 4.A.22: Total transaction value of payments by category throughout the day in September
2008 (hourly averages): 11 - from low to low alpha banks; 12 - from low to high; 21 - from high to
high; 22 - from high to high



Conclusion

La crise financière de 2007-2009 a révélé la fragilité du système financier mondial, en
mettant en avant le rôle du maillage financier dans l’amplification et la propagation des
chocs. Elle a surtout rappelé la capacité, quelque peu négligée, d’un rationnement de la
liquidité bancaire à déstabiliser l’ensemble du système financier. Dans cette thèse, nous nous
intéressons à la structure en réseau du système financier mondial, à la problématique d’un
asséchement de ces marchés financiers et aux effets de contagion qui s’en suivent comme
source d’instabilité du système.

Après une revue de la littérature appuyant la nécessité de la prise en compte de la
dimension réseau du système financier, les chapitres 2 et 3 analysent l’ampleur des effets
de contagion dans, respectivement, les réseaux bancaires français et européens, et ce, selon
deux canaux de transmission, en l’occurrence les défauts de solvabilité et la thésaurisation
de la liquidité.

Le chapitre 2 contribue plus particulièrement à la littérature sur les stress-tests en
proposant notamment un modèle qui étend le cadre standard de propagation des chocs,
généralement limité à la seule considération de la solvabilité, en incorporant la propension
constatée des agents à conserver leur liquidité, provoquant des contraintes de refinance-
ments chez leurs contreparties. Le modèle génère également des chocs de marchés issus de
données détaillées relatives à la situation du marché financier français au 31 décembre 2011.
Il documente ainsi, et pour la première fois dans la littérature, les principales caractéris-
tiques du réseau financier français: une forte densité du réseau représenté par 11 holdings
bancaires dont les 5 plus importantes concentrent plus de 80% du total des actifs bancaires,
représentant un réseau quasi-complet. Le résultat central de ce chapitre est de démontrer
que le canal de la liquidité est à lui seul capable de provoquer des faillites bancaires sans
qu’il n’y ait pour autant de contagion de solvabilité. Un résultat qui reproduit parfaitement
le scénario de la dernière crise financière. Ce chapitre soutient donc la nécessité d’inclure
le canal de la liquidité en plus du canal habituel de la solvabilité. Par ailleurs, le système,
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tel qu’il a été simulé, paraît particulièrement résilient face aux chocs de marché. Ce ré-
sultat est néanmoins à relativiser dans la mesure où, à la date du 31 décembre 2011, le
système financier français avait déjà été bien recapitalisé mais aussi du fait que le système
bancaire français est largement ouvert à l’international et plus particulièrement à l’Europe,
impliquant un degré d’exposition domestique relativement faible.

Une extension possible de ce chapitre concernerait l’élargissement du réseau bancaire
étudié à l’ensemble du système financier européen. En effet, compte-tenu du degré actuel
élevé de l’intégration financière en Europe, les exercices de stress-tests ne peuvent plus être
menés en se limitant au seul niveau national. Il est, en outre, crucial de tenir compte des
expositions transfrontalières des institutions financières et d’étudier le phénomène de la
propagation des chocs en y incluant la dimension temporelle pour analyser sa dynamique.

Le troisième chapitre s’inscrit ainsi dans la continuité du chapitre précédent en étendant
l’analyse à l’ensemble du réseau bancaire européen sur la période 2008-2012. Certaines
études se sont déjà intéressées à la question des expositions transfrontalières mais se sont
vite confrontées à la problématique de la disponibilité des données. En effet, comme indiqué
dans le section 1.5 sur les stress-tests, l’ensemble des articles sur la contagion financière
internationale utilisent les statistiques interbancaires de la BRI qui ne comportent que
les engagements agrégés d’un système financier national vis-à-vis d’un autre, faisant ainsi
abstraction des hétérogénéités au sein d’un même système. Une telle approche réduit de fait
la pertinence de l’analyse des effets de contagion comme elle contraint, pour la simulation
des chocs, la prise en compte de l’hypothèse peu probable d’un défaut de l’ensemble du
système financier.

Notre approche se base sur les données issues de la base TARGET2 du système européen
de paiement et nous utilisons l’algorithme développé par Halaj and Kok (2013) pour la
détermination des expositions interbancaires au niveau individuel. Nous établissons ainsi
une carte de probabilité, qui se présente sous la forme d’une matrice de degré d’intensité
des expositions interbancaires, que nous exploitons pour simuler divers réseaux réalistes à
la Halaj and Kok (2013). Contrairement aux réseaux modélisés dans la littérature, notre
modèle reproduit bien les caractéristiques conventionnelles des réseaux réels, à savoir des
lois de puissance de distributions des degrés des noeuds, une basse densité du réseau et un
faible degré de séparation entre deux sommets.

Nous réalisons plusieurs exercices de stress-tests sur 73 groupes bancaires européens
rassemblés dans 100 réseaux simulés différents sur la base de leurs situations financières
à la fin de chaque année, de 2008 à 2012. Cette approche nous permet de dresser une
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distribution des différents réseaux potentiels plutôt que de se fier à une représentation du
réseau à une date particulière.

Les résultats de nos simulations soulignent le caractère crucial de la structure du réseau
dont dépend fortement le niveau des pertes. Ces dernières dépendent, de plus, du poids
des banques choquées initialement. Ainsi, certaines banques se sont avérées être plus sys-
témiques que d’autres. Par ailleurs, le degré de résilience des réseaux est apprécié aussi
bien par le niveau des pertes que par leur distribution. En se basant sur ces deux critères,
nous montrons que la résilience du système financier européen s’améliore significativement
avec, certes, des niveaux élevés de capitaux et de trésorerie mais également avec un de-
gré d’exposition des banques réduit, les expositions transfrontalières étant par ailleurs plus
critiques que les expositions nationales.

Une extension de cette analyse serait d’exploiter la multitude des réseaux simulés pour
mener une étude économétrique afin d’identifier les déterminants à l’origine de la vulnéra-
bilité des réseaux face aux effets de la contagion. Une autre approche intéressante, bien
qu’elle s’écarte de celle des stress-tests, est d’évaluer les effets de contagion dans un cadre
dynamique pour une meilleure appréhension de la stabilité des systèmes. Cela permettra
en l’occurrence de savoir comment évolue le comportement des agents à la suite d’un défaut
d’une banque du réseau.

Le dernier chapitre s’intéresse à ce titre à l’analyse de la propension des banques à aug-
menter les délais de paiement en comparant, notamment, leurs comportements en période
d’accalmie financière à une période sous tension. Nous mobilisons pour cela des données
issues, là-encore, de TARGET2 portant sur le mois de septembre 2008 et de mai 2014.
Nous montrons que, contrairement à ce que suggèrent les articles basés sur la théorie des
jeux, la décision de retarder un paiement n’est pas afférente à chaque transaction. Les
retards de paiement résultent en effet du processus de gestion de la liquidité adoptée par
les banques. Nous distinguons ainsi deux principaux types de comportements et donc aussi
de banques : un premier groupe qui, à chaque début de journée, engage un niveau initial
de liquidité suffisant pour répondre à ces engagements journaliers, et un deuxième groupe
de banques qui gère sa liquidité en quasi flux-tendus. Ce dernier étant à l’origine de la ma-
jorité des retards de paiements enregistrés aussi bien en période d’accalmie qu’en période
de crise. Bien qu’étant inapproprié, ce comportement consistant à retarder les paiements
n’est pas nécessairement dangereux quand le marché est suffisamment liquide. En revanche,
il est susceptible de provoquer un grippage de l’ensemble du système de paiement en cas
de manque de liquidité. Un développement futur de ce chapitre serait de construire un
indicateur qui permettrait d’approximer le moment ou les retards de paiement acquièrent
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une dimension systémique. En outre, ce travail ouvre également le champ à plusieurs exten-
sions possibles telles que l’identification de déterminants des comportements des banques
en se basant éventuellement sur les données de bilan, les rendements des actions ou encore
d’autres caractéristiques de leur activité afin de mieux identifier les banques profitant de
ce mode de gestion de la liquidité et d’analyser leur aptitude à créer des distorsions au
niveau de la compétitivité sur le marché interbancaire. La nature systémique du risque
induit par ce type de comportement pose la question de l’attitude du régulateur à adopter
afin d’éviter un tel scénario: faudrait-il pénaliser les retards des paiements au risque de pé-
naliser les transactions dans leur ensemble? Ou vaudrait-il mieux imposer un certain niveau
plancher de la liquidité initiale? Dans ce dernier cas, nous envisageons comme prochaine
extension de notre travail la détermination du niveau optimal de cette liquidité initiale,
tenant notamment compte du nombre et des volumes des transactions.
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