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Summary

Robotic hands have been created with the aim to grasp objects and to perform precision tasks.
Many of these hands were made of rigid materials, so those have rigid joints and structures. As
a consequence, the prehension is non-compliant.

Some of these robotic hands are used in the industrial environment as final effectors, and
some other as hand prosthesis. Currently, hand prostheses offer patients a partial solution to
objects manipulation.

Soft robotics is a new research field of robotic that deals with flexible joints, structures,
and mechanisms. Soft-body robotics systems are expected to allow flexible interaction between
robots and grasped objects. This particular characteristic becomes necessary in hand prostheses
to improve the manipulation of unknown objects.

The target of this work is to develop a new soft robotic hand prosthesis [1][2] called ProMain
Hand, which is characterized by: (i) flexible interaction with grasped object (ii) and friendly-
intuitive interaction between human and robot hand.

Flexible interaction results from the synergies between rigid bodies and soft bodies, and
actuation mechanism. The ProMain hand has three fingers, each one is equipped with three
phalanges: proximal, medial and distal [3]. The proximal and medial are built with rigid bodies,
and the distal is fabricated using a deformable material. The soft distal phalange has a new smart
force sensor [4], which was created with the aim to detect contact and force in the fingertip,
facilitating the control of the hand.

Furthermore, the finger has two degrees of freedom (DoF) driven directly by the actuator
and a flexible link that allows additional rotations in all directions when it gets in contact with
objects during grasping. It enhances mobility and adaptability during prehension and manipu-
lation to unknown objects.

The actuation mechanism is made of rigid, flexible and smart materials [5]. It is under-
actuated and driven by tendons, i.e. only one actuator activates the whole finger, and the motor
is coupled to the finger mechanism through flexible wires [6]. Tendons are distributed in two
drive groups, one for the proximal phalange and the other for the distal phalange.

On the other hand, a friendly intuitive human-hand interaction is developed to facilitate the
hand utilization [7][8][9]. The human-hand interaction is driven by a controller that uses the
superficial electromyographic signals measured in the forearm employing a wearable device.

The wearable device called MyoArmbandTMis placed around the forearm near the elbow



joint. Based on the signals transmitted by the wearable device, the beginning of the movement
is automatically detected, analyzing entropy behavior of the EMG signals through artificial
intelligence. Then, three selected grasping gesture are recognized with the following methodol-
ogy: (i) learning patients entropy patterns from electromyographic signals captured during the
execution of selected grasping gesture [10][11], (ii) and performing a support vector machine
classifier, using raw entropy data extracted in real time from electromyographic signals. All
these processes are carried out in real time. The above methodology was tested in a motion
caption laboratory and validated using MyoarmbandTM, out of laboratory conditions.

Once, the desired motion by the patient is recognized, the soft robotic hand performs the
movement driven by a controller that uses object contact detection and a hybrid force-position
feedback. The controller is designed based on: (i) the parametric identification of the actuator,
(ii) the kinematic and dynamic model of the finger, (iii) and the dynamic behavior of the applied
force during experiments. Furthermore, the controller architecture is based on hybrid control
theory, which superposes the force closed loop to the position closed loop. Both closed loops are
proportional-integrate-derivative controllers tuned to reduce setting time. The control system
was validated experimentally performing precision grasping of real objects.
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Introduction

The human dexterous manipulation has long been a question of keen interest in a wide range of
fields such as medicine, biomechanics, and robotics. In the area of robotics, the study of dexter-
ous manipulation has led to the development of devices aiming at the automation of industrial
processes. Principally, robotic manipulators and grippers have been introduced in the last two
decades seeking to: (i) replace human intervention in dangerous environments or speed it up;
(ii) improve accuracy in productive processes.

However, recent progress in the field of dexterous robotic manipulation has led to a renewed
interest in the development of robotic devices for rehabilitation or improvement of human skills.
Studies over the past two decades have provided valuable information on the considerations
for development of robotic hands. Two main research axes can be clearly defined around the
development of robotic hands: (i) the control and the operation; (ii) the mechanic and the
actuation.

The first axis concerns the development of control and automation strategies to improve
robots’performance, and the design of facilities to operate robotic devices. The second axis
concerns the analysis, improvement, and design of mechanisms and actuation technologies, and
the study of materials. In all cases, the target is the enhancement of dexterous manipulation
skills of robotic hands.

The current commercial robotic hand prostheses: Bebionic Hand 3 [13], i-limb Ultra [14]
and Michelangelo [15] are rigid and not compliant, and follow an approach that attempts to
completely mimic the human hand, neglecting its functionality which is the primary target
in the rehabilitation of amputated patients. Consequently, the development of new adaptable
devices using a bio-inspired approach taking into account not only the mechanics of the hand
but also the functionality is crucial for the progress of robotic hand prostheses. Thus, the soft
robotic constitutes a fascinating approach developing robotic hand prostheses [16, 17].

The main advantage offered by the soft robotics in the dextrous manipulation is the adapta-
tion capacity, which allows the robotic hand to be used in several uncertain grasping situations.
However, it implies to undertake several challenges [18]. One of the greatest challenges con-
cerns the control of the soft robotic hand considering the unpredicted behavior that arises from
the utilization of smart and flexible materials. Additionally, there is a critical need to develop
suitable solutions for human-machine interface, to allow amputated persons to interact with the
soft robotic hand prosthesis.
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0. Introduction

Consequently, the central topic of this thesis dissertation is the development of a smart
control strategy for a soft robotic hand prosthesis, which includes a human-machine interface to
operate our soft robotic hand. Our approach takes into account: (i) the definition of the relation
between upper limb motion and superficial ElectroMyoGraphic signals (sEMG); (ii) Support
Vector Machine (SVM) to classify grasping gesture patterns from sEMG; (iii) the development
of a grasping recognition methodology using the wearable device MyoArmbandTM; (iv) a hybrid
force-position control strategy for our soft robotic hand.

This Ph.D. thesis dissertation discusses a human-machine interface for the control of a soft
robotic hand. Thus, we highlight the following contributions: (i) the proposed approach takes
into account sEMG signals produced during movement; (ii) the performance of five features
during flexion and extension motion is analyzed considering movement positions and speed
variations; (iii) the proposition of a criterion to select the best features; (iv) the proposition of
SVM as a motion classifier based on sEMG signals produced during movements; (v) an effec-
tive classification scheme to recognize upper limb gestures; (vi) a new and accurate movement
detection model that allows real-time detection and identification of two hand movements. The
entropy and flow entropy measurements permit an automatic movement inception detection and
prehension patterns recognition, using the SVM. (vii) development of an interface suitable to
work out of laboratory conditions, which is able to identify two hand gestures, using a wearable
device; (viii) development and characterization of a new tactile smart sensor which allows to
measure the applied force over its soft cover, its performance is evaluated in different opera-
tional conditions; (ix) a hybrid control model is proposed aiming to drive, finger position and
fingertip force. This thesis dissertation is addressed in five chapters as follows:

1. Relationship between upper limb movements and myoelectric signals

2. Movement classification based on myoelectric signals

3. Embedding grasping recognition

4. ProMain- I robotic hand control

5. ProMain- II Soft Hand

In the first Chapter, we present the methodologies developed in the literature for upper limb
movements classification, which are based on sEMG signals. The information is broken down
by type of movement (flexion extension, radial ulnar, pronation supination) including mainly
hand gestures, studied joints (elbow, wrist, and fingers), muscles and subjects. We identify the
most used muscles for each kind of motion, considering amputated and healthy patients.

Moreover, we cluster the methodologies of classification considered in researches studies
carried out up to now, grouping the information in four categories: (i.) single feature and single
classifier; (ii.) single feature and multiples classifiers; (iii.) multiple features and single clas-
sifier; (iv.) multiple features and multiples classifiers. In each category we detail the obtained
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accuracy of classification and the kind of patients considered. Then, we focus on the features
examined in literature, in which we select five features to be analyzed. We also propose an up-
per limb kinematic model for the upper limb. The model calculates the angles formed by joints,
and the rotation speeds.

Based on the proposed kinematic models, and the selected features, we analyze the influence
of the kinematic characteristics over the features from sEMG signals, in order to understand how
the features are affected by the way in which the movement is performed. Then, we propose
a criterion to select the best couple of features. The criterion takes into account the euclidean
distance to measure the separation between the cluster of features; higher the distance, higher
the probability of good separation. We show that the features selection has an important role in
the classification scheme.

In the second Chapter, we present a powerful tool for pattern classification, socalled SVM.
The classifier is addressed towards upper limb motion classification, and we present a summary
of the previous research studies key point upper limb motion classification using SVM. Fur-
thermore, we introduce a pattern classification strategy, based on SVM, in which we consider
an hyperplane classifier with an optimal separation margin. We describe the non-linear SVM
using soft margin and kernel functions, and we detail the solution of the optimization problem.

We introduce this classification model for upper limb motion based on sEMG signals. The
classification model is based on non-linear SVM, using kernel functions. In order to assess this
classification scheme, we test the model by performing an experiment using a motion capture
laboratory, that includes tracking motion and capturing sEMG signals.

In the third Chapter, we present the grasping recognition model using a wearable human
interface. We select the MyoArmbandTMwearable device. We summarize the research stud-
ies based on MyoArmbandTMin order to present the state of the art. As consequence, a new
movement detection model is introduced, merging the proposed concepts and models about the
relationship between sEMG and upper limb kinematics presented in Chapter 1 and the experi-
mental results obtained under laboratory conditions, presented in Chapter 2. Our model allows
real-time detection and identification of two hand movements, allowing a user to interact in a
natural way with the ProMain1 robotic hand prostheses.

A suitable and smart interpretation of sEMG signals allows the identification of subject’s de-
sired actions. Three main stages are required to extract information embedded in sEMG signals
as follows: (i) modeling of sEMG signals; (ii) identifying movement inception; (iii) recognition
of prehension patterns.

In the fourth Chapter, we present the ProMain-I hand control. In the first part, the hand
characteristics are detailed including a new soft fingertip force sensor and its experimental char-
acterization considering two different flexible materials.

In the second part, we propose the robotic finger parametric model which includes: (i) a
parametric model of the actuator; (ii) experimental actuator identification and its control sys-

1ProMain-I and ProMain-II hands.
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tem; (iii) a robotic finger identification, including position and fingertip force. Based on these
models, we describe the optimized finger controller, taking into account motion and force spec-
ifications, in order to establish the hybrid force position controller. Moreover, the simulation of
the overall system is presented. Subsequently, the final section illustrates the ProMain-I hand
software interface, and the grasping gesture achieved by the prototype of the ProMain-I hand.

In the fifth Chapter, we present the new ProMain-II Soft Hand, and we introduce its charac-
teristics, specifically the new soft robotic finger and the new soft link. Moreover, we carry out
an experiment to track joints position evaluating the soft link bending behavior and its adapting
capacity when finger gets in contact with an obstacle.
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Chapter 1

Relationship between upper limb
movements and myoelectric signals

1.1 Review

The ElectroMyoGraphy (EMG) signal is a measure of the electrical activity produced by mus-
cles during the movement. These signals are formed via the superposition of individual muscle
action potentials, generated by irregular discharges of active motor units in a muscle fiber [19].
As a consequence, it is possible to obtain this biological signal by measuring the superficial
voltage over Surface ElectroMyoGraphy (sEMG) or over the intramuscular ElectroMyoGraphy
(iEMG), using electrodes. Therefore, it is possible to estimate motion through the analysis of
these signals [20]. However, due to the nature of the EMG the estimation is not a simple task
[21]. sEMG signals typically have amplitudes range from 0 to 10mV (peak-to-peak) or 0 to 1.5
mV (root mean square) [22]. The bandwidth ranged from 0 to 500 Hz with a mean spectrum
frequency of 70 - 130 Hz [23].

Body movements are produced thanks to the interaction of joints. Regarding the upper limb
motion, different joints are involved in the movements of shoulder, elbow, wrist, fingers and
hand gestures. Specifically, the fingers joints are composed of: Metacarpophalangeal (MP),
Proximal InterPhalangeal (PIP) and Distal InterPhalangeal (DIP). Each joint has different de-
grees of freedom as a consequence, different types of motion. Then, the elbow joint has flexion
and extension, as shown in Figure 1.1, the wrist has flexion and extension as illustrated in Fig-
ure 1.2, and also it has pronation, supination, abduction, adduction. Finally the finger joint has
flexion and extension (see Figure 1.3).
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1. Relationship between upper limb movements and myoelectric signals

(a) Flexion. (b) Extension.

Figure 1.1: Elbow Motion.

(a) Flexion. (b) Extension.

Figure 1.2: Wrist Motion.

(a) Flexion. (b) Extension.

Figure 1.3: Finger Motion.

Some relevant studies have been carried out to automatically recognize upper limb move-
ment based on sEMG signals, through the measurements of the electrical activity produces in
the muscles involve in each movement. In this work, we will present a summary of previous
works, as shown in Table 1.2. The citation concerns authors with recognition accuracy higher
than 70 %, using superficial electrodes placed on the muscles, the information are broken down
by the movements classified, and considering healthy and amputated subjects categorized into:

(i) Flexion/extension,

(ii) Radial/ulnar and

(iii) Pronation/supination.
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1.1. Review

Furthermore, Table 1.1 presents the abbreviations that will be used throughout the thesis
dissertation.

Table 1.1: Upper limb muscle acronyms.

Abbreviation Description
BWF Biarticulate Wrist Flexor
TWF Triarticulate Wrist Flexor
BWE Biarticulate Wrist Extensor
BB Biceps Brachii
TB Triceps Brachii
PR Pronator
BR BrachioRadialis

ECR Extensor Carpi Radialis
FCR Flexor Carpi Radialis
ECU Extensor Carpi Ulnaris
FCU Flexor Carpi Ulnaris
FDS Flexor Digitorum Superficialis
ED Extensor Digitorum
PL Palmaris Longus

FCR Flexor Carpi Radialis
AC electrodes Around the Circumference of the upper forearm
EPB Extensor Pollicis Brevis
FPL Flexor Pollicis Longus
EIP Extensor Indicis Proprius

EDQP Extensor Digiti Quinti Proprius
FDP Flexor Digitorium Profundus
FPL Flexor Pollicis Longus

H Healthy Subject
A Amputated Subject

Flexion and extension are present in different joints of the upper limb such as the elbow,
wrist, and hand fingers. The research on elbow flexion and extension classification [19, 21, 24]
typically have considered seven muscles, some of them are located in the arm such as: (i) BWF,
(ii) TWF (iii) and BWE. And others are situated in the forearm like: (i) BB, (ii) TB, (iii) PR,
(iv) and BR.

Previous studies [24] have reported that the analysis of sEMG from four muscles: BB, TB,
PR and BR considering healthy subjects. Similarly, [21] studied BB and TB, but with amputated
subjects. By comparing the research [24] and [21], both works measured the same two muscles
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BB and TB, furthermore, evaluating their methodology with healthy and amputated subjects;
both works reached high accuracy. Thus, the remaining muscles of amputated patients play an
important role in the movements classification, as shown in[21].

Table 1.2: Upper limb movements classification.

Movement Joint Muscles Subject Reference

Flexion and extension

Elbow
BWF, TWF, BWE 11H [19]
BB, TB, PR, BR 6H [24]

BB, TB 12A [21]

Wrist

ECR, FCU, ED, PL 10H [25]
FCR, FCU, FDS, BR 7H [26]
FCR, FCU, ED, BR 1H [27]

FCU, ED 30H [28]
ECR, FCR, ECU, ED 18H [29]
FCR, FCU, ED, BR 1A [12]

Fingers

FCR, FCU, FDS, BR 6H [26]
FCR, FCU, FDS, BR 7H [30]
FCR, FCU, ED, BR 1H [27]

AC 6H [31]
AC 3A [32]

FCR, FCU, ED, BR 1A [12]
AC 10H&6A [33]

Radial and ulnar Wrist

ECR, FCU, ED, PL 10H [25]
FCR, FCU, ED, BR 1H [27]

ECR, FCR, ECU, ED 18H [29]
BWF, TWF, BWE 11H [19]

FCU, ED 30H [28]
FCR, FCU, ED, BR 1A [12]

Pronation and supination Wrist

ECR, FCU, ED, PL 10H [25]
ECR, FCR, ECU, ED 18H [29]
FCR, FCU, ED, BR 1H [27]

BB, TB, PR, BR 6H [24]
FCR, FCU, ED, BR 1A [12]

BB, TB 12A [21]

Regarding the wrist flexion and extension, research works had considered the follow eight
different muscles in forearm: (i) ECR, (ii) FCR, (iii) FCU, (iv) ECU, (v) FDS, (vi) ED, (vii) PL,
and (viii) BR.

The muscles most studies in literature have been focused in FCU [12, 25–28], ED [12, 25,
27–29], FCR [12, 26, 27, 29] and BR [26, 27], due to its external location and size. [29] pointed
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1.1. Review

out two muscles: ECR and it’s antagonist muscle FCR. Some authors have also examined
muscles acting in opposition, for instance, FCU and ED [12, 25, 27, 28]; FCR and BR [12,
26, 27], even with amputated subjects [12].

Finally, concerning fingers flexion and extension, the considered muscles are: (i) FCR,
(ii) FCU, (iii) FDS, (iv) BR, (v) ED, (vi) and PL. Furthermore, FCR and FCU are the most used
muscles[12, 25–30], even while other authors are placing the electrodes around the circumfer-
ence of the forearm [31–33]1. BR can also be used [26, 27, 30]

On the other hand, radial and ulnar movements are present in the wrist joint. The muscles
most used in their movements are: ED [12, 25, 27–29] and FCU [12, 25, 27, 28], similarly for
the wrist pronation and supination movements, being ED [12, 25, 27, 29] and FCU [25, 27, 29],
furthermore, taking into account FCR [12, 27, 29] and BR [12, 24, 27].

In summary, FCU have been the most used muscle to identify: (i) flexion/extension of the
wrist and hand fingers, (ii) radial/ulnar and pronation/supination of the wrist. Then, FCR for
flexion/extension and pronation/supination of the wrist, and finally ED plays a meaningful role
for radial/ulnar and pronation/supination motion of the wrist. Besides, most of the researchers
have considered antagonist muscles such as FCU and FCR and their agonist muscles such as,
ED and BR.

Additionally, we considered that hand gesture classification is an important aspect to take
into account. Thus, we summarize in Table 1.3 the research studies that are focused on this
field.

Some of those studies are considered exclusively healthy subject, analyzing the following
gestures: H keeping the hand straight [19], H tip, H hook, H lateral, H point and H spherical
[34], or only amputated subjects, considering precision pinch gesture [32].

The open hand movement are studied by authors, in which the most used muscle is ED
[12, 25, 27, 29], followed by FCU [12, 25, 27] and FCR [12, 27, 29]. In the case of close hand
movement, the muscles most used are: FCR [12, 27, 29], FCU and ED [12, 27]. With reference
to the gesture hand during resting condition, the muscles most used are: FCU and ED [25, 28],
having the same for key grip gesture adding FCR and BR [12, 27]. Finally, for cylindrical and
tripod grasping, the muscles most used are FDL and FDS [32, 34].

Briefly, FCU and ED are the muscle most used to identify: (i) open, (ii) close, (iii) rest con-
dition, (iv) and key grip. In fact, they are the same two most muscles used for the radial/ulnar,
pronation/supination movement of the wrist.

1We suppose that correspond to FCU, ECU, ED, PL, FCR and ECR muscles, even if there are not clear
established in these researchers.
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Hand gesture Muscles Subject Reference

Opening

ECR, FCU, ED, PL 10H [25]
ECR, FCR, ECU, ED 18H [29]
FCR, FCU, ED, BR 1A [12]
FCR, FCU, ED, BR 1H [27]

Closing

ECR, FCR, ECU, ED 18H [29]
FCR, FCU, ED, BR 1A [12]
FCR, FCU, ED, BR 1H [27]

ED 1H1A [35]

Resting

AC 3A [32]
ECR, FCU, ED, PL 10H [25]

BB, TB, PR, BR 6H [24]
FCU, ED 30H [28]
FPL, FDS 6H [34]

Keeping the hand straight BWF, TWF, BWE 11H [24]
Precision pinching AC 3A [32]

Tip griping FPL, FDS 6H [34]
Stretching one’s hand AC 3A [32]

Key griping
FCR, FCU, ED, BR 1A [12]
FCR, FCU, ED, BR 1H [27]

Cylindrical griping
FPL, FDS 6H [34]

AC 3A [32]
Hook griping FPL, FDS 6H [34]

Lateral griping FPL, FDS 6H [34]
Point griping FPL, FDS 6H [34]

Spherical griping FPL, FDS 6H [34]

Tripod griping
FPL, FDS 6H [34]

AC 3A [32]

Table 1.3: Hand gesture classification.

Methodologies Reference

Filter
Feature extraction

Classification

[12, 26, 29, 30, 32]
[24, 27, 36]

Feature extraction & Feature projection [25]

Filter &
Feature extraction [19, 21, 28, 34, 37]

Data segmentation Feature extraction & Feature reduction [33]

Table 1.4: Movement classification methodologies.

Once the movements and the involved muscles are analyzed, we examine the methodology
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that researchers studies have proposed in order to identify upper limb motion based on sEMG
signals. Thus, Table 1.4 presents an overview of the applied techniques in the analyzed studies.

The most used methodologies in order to classify movement, follow the next steps: (i) filter-
ing signals (ii) extracting features from signals and (iii) classifying the movement [12, 24, 26,
27, 29, 30, 32, 36]. Some authors added one step after the feature extraction that consists in car-
rying out a projection [25] or reduction features [33]. Feature extraction consists in the obtain
relevant information about the movement which is taken from sEMG signals, that is developed
in section 1.3.1.

There are several methods for features extraction and also for classification. Therefore, with
the aim to compare the different types of features and classifiers, we proposed a cluster of the
state of the art as follows:

(i.) Single feature and single classifier summarized in Table 1.6,

(ii.) Single feature and multiples classifiers summarized in Table 1.7,

(iii.) Multiple features and single classifier summarized in Table 1.8,

(iv.) Multiple features and multiples classifiers summarized in Table 1.9.

Furthermore, Table 1.5 presents the abbreviations used throughout the present section.

There are several works that had been chosen to use only one feature with one classifier,
as is shown in Table 1.6. [25] mentions that their methodology reached 97.4% recognition
accuracy, using a WAVET to extract a feature, reducing the feature space through LDA and
finally classifying with a MLPT.

[19] presents a performance comparison between different features, which are classified
using a SVM. The features considered were: MAV, RMS, WL, ZC, VAR, SSC, WAMP, AR2,
AR6, PSD, FMN, FMD. The highest accuracy recognition was found considering WL reaching
96% following by MAV and RMS with 95%.

Likewise [31], identified WL as best feature taking into account a MLPT, reaching 92.41%
recognition accuracy. In the same way, [30] used ANN, testing the two features ICA and FD,
finding that the best feature was ICA with 96%. ICA feature is also tested by [26] considering a
SVM. Thus, the accuracy recognition increases to 99.34%. Moreover, [32] considers the same
classifier SVM and PCA feature, validating their model with three amputated subjects. As a
result, 95% are correctly classified.
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Table 1.5: Abbreviations feature extraction and classifier.

Abbreviation Description
WAVET Wavelet Packet Transform

MAV Mean Absolute Value
RMS Root Mean Square
WL Waveform Length
ZC Zero Crossings

VAR Variance
SSC Slope Sign Changes

WAMP William Amplitude
AR Autoregressive Coefficients

AR2 Autoregressive Coefficients of second order
AR6 Autoregressive Coefficients of sixth order
PSD Power Spectrum
FMN Frequencies of Mean
FMD Frequencies of Median
ICA Independent Component Analysis
FD Fractal Dimension

DMAV Difference Absolute Mean Value
DVARV Difference Variance Value
DASDV Difference Absolute Standard Deviation Value
MYOP Myopulse Percentage Rate
PCA Principal Component Analysis
LDA Linear Discriminant Analysis
QDA Quadratic Discriminant Analysis
KNN k-nearest Neighbor

MLPT Multilayer Perceptron
DT Decision Tree
NB Naive Bayes
MD Mahalanobis Distance

SVM Support Vector Machine
ANN Neural Network

SampEn Simple Entropy
NDAMV Normalized Difference Variance Value
MLPT1 Multilayer Perceptron first Modification
MLPT2 Multilayer Perceptron second Modification

RFS Random Forests
MAV2 Modified Mean Absolute Value Second Definition
MAVS Mean Absolute Value Slope

CC Cepstral Coefficients
MLP Multilayer Perceptron
kNN k-th Nearest Neighbor
IAV Integral Absolute Value

OFNDA Orthogonal Fuzzy Neighborhood
DA Discriminant Analysis
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Table 1.6: Single feature extraction and single classifier.

Reference Feature Extraction Classifier Recognition Accuracy Subject
[25] WAVET MLPT 97.4 10H

[19] SVM

MAV=95

11H

RMS=95
WL=96

MAV, ZC=94
RMS, WL, ZC, VAR=94

VAR, SSC, WAMP, SSC=90
AR2, AR6, PSD, WAMP=94

FMN, FMD AR2=85
AR6=90
PSD=61
FMN=61
FMD=62

[31] MLPT

MAV=88.65

6H
MAV, VAR, VAR=86.95
WL, WAMP WAMP=87.48

WL=92.41

[30]
ICA, FD

ANN
FD= 58

6H
ICA= 96

[26] ICA SVM 99.34, 59.34 7H
[32] PCA SVM ≈95 3A

The second cluster we propose is related to the researches which have performed compar-
ison between classifiers, as presented in Table 1.7. Taking into account MAV feature [19, 21]
reported that the best classifier is SVM. The recognition accuracy is from 95% to 99%, even
with a high number of amputated subjects 12A and healthy subjects 11H.

Moreover, [12] only considers amputee patients and choosing SampEn as feature and LDA,
RF and QDA as classifiers. the best accuracy recognition is 97% with QDA, followed by 93%
with LDA, and finally 87% with RFS.

On the other hand, considering only healthy patients, [28] has tested NDAMV as feature
and KNN, QDA and LDA as classifiers, achieving accuracy recognition from 81.1% with LDA
to 84.9% with KNN. [29] compared several features including MAV, DMAV, VAR, DVARV,
RMS, DASDV, MYOP and WAMP, comparing each features with LDA, QDA, KNN, DT, NB,
MD classifiers. The best combination was DAMV and QDA reaching recognition accuracy of
90.12%.

Briefly, the highest accuracy recognition is found taking into account MAV and SVM reach-
ing from 95% to 99% , followed by SampEn and LDA with 93% even taking into account
amputee patients.
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1. Relationship between upper limb movements and myoelectric signals

Table 1.7: Single feature extraction and multiple classifier.

Reference Feature Classifier Accuracy Subject

[19] MAV

SVM=95

11H
LDA=91.8
MLP1=85

MLP2=91.5

[28] NDMAV
KNN=84.9 QDA=82.4

30H
LDA=81.1

[21]
MAV

LDA=97.75

12A

Diaglinear DA=97.25
Quadratic DA=97.75

Diagquadratic DA=98.00
Mahalanobis DA=96.00

SVM=99.00

[12] SampEn
LDA≈ 93

1ARFS≈ 88

QDA≈ 87

[29]
MAV, DMAV, VAR, DMAV + QDA = 90.12

18HDVARV, RMS, DASDV, DASDV + QDA = 89.42
MYOP, WAMP DMAV + KNN = 89.60

The third cluster that we proposed is related to the research that have considered to use
multiple features and one classifier, as shown in Table 1.8. [19] mentioned that the highest
accuracy of 96.5% is reached using the group of features composed with RMS and AR6, using
LDA classifier, following by the combination of MAV, WL, ZC and SSC, considering LDA
classifier and achieving 95.5%. In contrast, [27] established that considering the same group
of feature MAV, WL, ZC and SSC and also the same classifier LDA, the accuracy recognition
decreases until 72.46% but considering SVM the accuracy recognition increases until 89.66%.

Similarly, [37] chose the same features but adding MAVS, reaching an accuracy recognition
lower than the others authors of 70%. [34] describes that the best feature group is MAV, VAR,
AR4, ZC, FMN and FMD, using SVM (96.9%) and LDA (97.3%). [12] compares features com-
binations between SampEn and others features, for instance: (i) SampEn with CC, (ii) SampEn,
CC with MAV2, (iii) SampEn, CC, RMS with WL. As a result, LDA has the best performance
between all of the feature groups, reaching recognition accuracy from 97% to 99%.

On balance, there is a high correlation between the feature group and the classifier selected
with the recognition accuracy reached by the methodology selected, although establish the best
combination is not an easy task, due the particular condition of each experiment.

14



1.1. Review

Table 1.8: Multiple feature extraction and simple classifier.

Reference Feature Classifier Accuracy Subject

[19]

G1: MAV WL ZC SSC G1: SVM=82, LDA=95.5,

11H

MPL1=90.5, MPL2=95
G2: RMS AR2 G2: SVM=90
G3:RMS AR6 G3: SVM=85, LDA=96.5

MLP1=89, MLP2=93
G4: MAV WL G4: SVM=70

[27]
MAV ZC SSC WL DT= 86.72, KNN= 83.97,

1HMLPT=88.85, LDA=72.46,
SVM=89.66

[37]
MAV MAVS

ANN=70% 1HZC & SSC & WL

[34]
G1: MAV VAR AR4

G1: SVM= 96.9, LDA=97.3 6H
ZC FMN FMD

[12]

G1:SampEn CC G1:LDA≈ 97, RFS≈ 92,

1A

QDA≈ 92

G2: SampEn CC MAV2 G2: LDA≈ 98, RFS≈ 92

QDA≈ 83

G3: SampEn&CC G3: LDA≈ 99, RFS≈ 89,
RMS WL QDA≈ 78

Finally, the last cluster that we proposed is related to research that have considered use a
group of features which is reduced and a group of classifiers, as is shown in Table 1.9. Thus,
the author that we highlight is [33] whose develop a high accurate offline processing of 90%
using AR feature then OFNDA features reduction and finally LDA classifier.

Table 1.9: Single feature extraction, feature reduction and multiple classifier.

Reference Feature Feature Reduction Classifier Accuracy Subject

[33]

PCA

10H&6A
AR6, RMS, WL, PCA AR OFNDA

ZC, IAV, SSC OFNDA LDA=98% (H)
OFNDA 90% (A)
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1. Relationship between upper limb movements and myoelectric signals

1.2 Features of myoelectric signals

Relevant information about the body movements is obtained from myoelectric signals; this
information is embedded into the signal [19, 38]. Thus, characteristics of signals are useful
to identify the produced movements, as a function of the measured electrical activity. These
characteristics are called features.

Table 1.10: Feature definition.

Feature Abbreviation Reference
Mean Absolute Value MAV [19, 31]

[21, 25]
Willison Amplitud WAMP [19, 31]

[29]
Variance VAR [19, 31]

[29]
Autoregresive Coefficients AR2 or AR6 [19, 36]

[33]
Root Mean Square RMS [19, 29]
Waveform Length WL [19, 31]

Zero Crossing ZC [19, 39]
Slope Sign Changes SSC [19, 39]

Independent Component Analysis ICA [26, 30, 31]
Fractal Dimension FD [30, 31]

Power Spectrum Dimension PSD [19]
Frequency MeaN FMN [19]

Frequency Median Dimension FMD [19]
Principal Component Analisys PCA [32]

Normalized Difference variance value NDAMV [28]
Sample Entropy SampEn [12]

Wavelet packet transform WAVET [25]
Difference Mean Absolute Value DMAV [29]

Difference Variance Value DVARV [29]
Difference Absolute Standard DASDV [29]

Deviation Value
Myopulse Percentage Range MYOP [29]

The most used features have a low computational cost [23], which is a relevant consideration
in real time applications, such as myoelectric control of a prosthesis or a manipulator robot.
Moreover, the most used features are: MAV, WAMP, VAR, AR2 or AR6, following by RMS,
WL, ZC, SSC, ICA and FD. Table 1.10 summaries some features that had been considered by
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1.2. Features of myoelectric signals

authors, taking into account individual feature in their classification schemes.

Similarly, some authors have considered the combination of several features, including from
two until seven. The most used combination is MAV, WL, ZC and SSC [19, 27, 37]. The group
of features most used are WL and ZC, as shown in Table 1.11.

Comparing the performance classification scheme using one feature or several features, [19]
mentioned that the best recognition accuracy is reached using the individual feature.

Table 1.11: Feature Group time and frequency domain.

Feature Groups
References

M
AV

M
AV

S

M
AV

2

W
L

Z
C

SS
C

R
M

S

A
R

2

A
R

4

A
R

6

VA
R

FM
N

FM
D

Sa
m

pE
n

C
C

X X X X [19]
X X X X [27]
X X X X X [37]

X X
[19]

X X

X X X X X X X [34]
X X

[12]X X X

X X X X

In contrast, [12] compared the recognition accuracy considering the following set: (i) Sam-
pEn, (ii) SampEn and CC, (iii) SampEn, CC and MAV2, (iv) and, SampEn, CC, RMS and WL.
As a result, they found that taking into account LDA classifier, when the number of feature
increases the recognition accuracy also increases from 93% to 99%. In contrast, choosing QDA
the recognition accuracy decreases from 87% until 78%, as illustrated in Figure 1.4.

Based on the previous studies, the recognition accuracy not only depends on the feature or
the group of features selected, but also on the classifier which has a high influence on the final
accuracy.
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1. Relationship between upper limb movements and myoelectric signals
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SampEn SampEn CC SampEn CC MAV2 SampEn CC RMS

WL

Feature performance comparison

LDA RFS QDA

Figure 1.4: Recognition accuracy comparison based on [12] results.

In summary, it is difficult to compare the performance recognition reached in previous stud-
ies due to: the different used schemes in the literature as shown in Table 1.4 and the differences
in the experiments [12]. Furthermore, several authors have studied the performance of different
methodologies measuring the accuracy through the movement classification, as shown in Tables
1.6, 1.7, 1.8, and 1.9.

On the other hand, few authors have analyzed the performances of the features during move-
ments and their different characteristics, e.g. speed and acceleration.

[40] analyzed separately the effect of the joint angle and the force level variation when es-
timating EMG mean frequency. They reported that the joint angle variation is more influent
than all other joints. Similarly, [41] reported that the average EMG signal power increases with
the hand grip force. Finally, the relationship between features and upper limb motion char-
acteristics are not clearly established. These answers improve the recognition of the motion
intention in amputated patients, so out of laboratory conditions. Based on the previous argues,
we propose to analyze the performance of some selected features while movements are per-
formed with different position and speed, with the aim to establish relations between feature
and motion characteristics.

Consequently, in the following subsection 1.3, we will propose the kinematic model of the
upper limb, with the aim to determine position and speed of elbow and wrist joints. Then,
considering the behavior features and the kinematic model of the upper limb we will find the
best feature set, taking into account, features with the highest changes.

1.3 Mathematical model of upper limb movement

In the following section, it is described the bio-mechanical model and the methodology pro-
posed. To analyze the behavior of some selected features of sEMG and the upper limb motion.
First at all, we chose five features of the sEMG signals then we describe the upper limb mo-
tion, followed by an experiment, and finally the formulation of kinematic and the ElectroMyo-
Graphic.
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1.3. Mathematical model of upper limb movement

1.3.1 Features

The muscular contraction in the musculoskeletal system are coming from the impulsive elec-
trical stimuli, which is transmitted from the α-motoneurons to muscular fibers. Thus, a Motor
Units Action Potential (MUAP) is the particular impulsive response in each fiber, see more de-
tails in the section 3.3. As consequence, the voltage picked up by the electrodes represents the
sum of the activity of all MUAPs.

The number of MUAPs per muscle in humans are between 100 to 1000, for instance, a
small hand muscle has 100 MUAPs and the large limb muscles has 1000 MUAPs [42]. As
consequence, a higher number of MUAPs active have more elements in the summation of the
voltage detected by electrodes. It has a meaningfully influence in the resultant signal, changing
its magnitude and frequency components.

The behavior of features extracted from sEMG signal is analyzed, for the purpose of finding
the features that describe in the best manner the relationship between the activity of sEMG and
the upper limb movements. The chosen features are: MAV , MV , Entropy H , HM and MF .

The mathematical model of MAV is described in equation (1.1) [43], where xk represents
the k-th signal sample, N is the number of samples in segment. Furthermore, MV is presented
in equation (1.2) and Entropy H is described in equation (3.5); the complete model is presented
in section 3.3.2.1.

MAV (xxx) =
1

N

N∑
k=1

| xk | (1.1)

MV (xxx) =
1

N

N∑
k=1

xk (1.2)

H(xxx) =

Ni∑
l=1

pl log2 pl (1.3)

Moreover, Harmonic Mean (HM ) is given by the equation 1.4 and finally Mean Frequency
(MF ) is represents by 1.5, where Cf denotes the number of harmonics in the spectrum, Ij
represents the magnitude of the j-th harmonic, and fj is the frequency of the j-th harmonic.

HM(xxx) =
1

1
N

∑N
k=1

1
xk

(1.4)

MF (xxx) =

∑Cf
j=1 Ijfj∑Cf
j=1 Ij

(1.5)

1.3.2 Kinematics of upper limb

The upper limb chain is mainly composed of the following joints: (i) shoulder, (ii) elbow,
(iii) and wrist. Each joint have different mobility, for example shoulder joint has flexion, exten-
sion, adduction, abduction, internal, external rotation. Then, elbow joint have only flexion and
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1. Relationship between upper limb movements and myoelectric signals

extension. Finally wrist joint have flexion, extension, radial, ulnar, pronation, and supination.
Thus, from these characteristics, a methodology was formulated, for tracking upper limb mo-
tion, considering the following steps: (i) labeling markers, that are positioned in body, (ii) clus-
tering the markers, (iii) fixing a coordinate system fixed to each marker, (iv) and setting vectors
which link the markers between them, with the same order of the markers clusters. Moreover,
the complete clusters and markers are fully presented in section 1.4.1 and in Figure 1.9.

Once the kinematic is known, it is necessary to find the angle performed by each joint.
Particularly, in this study we point out to find elbow angle ϕ.

For instance, marker 19 is linked to marker 20 by a vector and marker 21 is linked to marker
22 by another vector, etc., as is shown in Figure 1.5

1818

19
20 19 20

21 2221
22

Figure 1.5: Kinematic upper limb.

For this purpose, we use two vectors: (i) from the elbow to the wrist, and (ii) from the elbow
to the shoulder, which are represented by red lines in Figure 1.5. First vector was established
finding the middle point p1 between the coronoid process ulna and radius (markers 19 and 20).
Similarly, second vector was determined by locating the middle point p2 in the wrist, between
the markers placed on the styloid process of ulna and radius (i.e. markers 21 to 22).

The arm vector denoted by vvva ∈ R3 is the vector that links the point p3 (marker placed on
the epicondyle of humerus) to the point p1. The forearm vector denoted by vvvfa ∈ R3 links
points p1 and p2 (see Figure 1.5), in which these vector is represented as red lines. With these
two vectors, the elbow angle ϕ is calculated as:

ϕ = arccos (〈vvva,vvvfa〉/‖vvva‖‖vvvfa‖) (1.6)
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1.4. Experiments of flexion and extension movements

1.4 Experiments of flexion and extension movements

The experiment seeks to measure the sEMG produced during upper limb movements. Thus, we
propose an experiment for: (i) analyzing the behavior of the features from sEMG signals pro-
duced during upper limb motion, (ii) analyzing the kinematics characteristics of the movement
such as position and angle speed.

For the purpose of minimizing the complexity of the experiment, we choose the elbow joint:
performing flexion and extension and the muscle selected are bicep and triceps. The workflow
of the experiment is presented in Figure 1.6. Biceps are one of the most important muscles
involved in the elbow flexion, and triceps muscle is its antagonist muscle.

Superficial EMG

Upper Limb MotionMuscles

Joint Angles

Elbow Joint

Flexion/extension

Experiment

Features

Produce

Figure 1.6: Experiment work-flow.

1.4.1 Materials

The sEMG signals have been recorded using the ZEROWIRE wireless capture system, with a
sampling frequency of 1 kHz. The electrodes are placed over the upper limb muscle. Figure 1.7
illustrates muscle position, the images are courtesy of Visible Body (www.visiblebody.com).
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1. Relationship between upper limb movements and myoelectric signals

Moreover, muscles and their functions are detailed in Table 1.12.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.7: Electrodes position over upper limb muscles.
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1.4. Experiments of flexion and extension movements

Id Muscle Muscle Function
Figure 1.7a Trapezum stabilization shoulder

Figure 1.7b Deltoid
flexion/extension

abduction/adduction shoulder
humerus rotation

Figure 1.7c Triceps (TR) extensor muscle of the elbow joint
Figure 1.7d Biceps (BB) flexion/supination of the forearm
Figure 1.7e Palmaris longus (PL) flexion of the hand
Figure 1.7f Flexor carpi radialis (FCR) flexion and abduction of the hand
Figure 1.7g Extensor carpi radialis (ECR) extension of the wrist joint

Figure 1.7h
Extensor digitorum communis (ED) extension of the phalanges,

the wrist, and the elbow
Figure 1.7i Extensor muscles of the thumb extension of phalanges

Table 1.12: Measured upper limb muscles.

Figure 1.8: Distribution of markers in the upper limb kinematic chain.

Table 1.13: Markers distribution.

Id Clusters Id Marker Marker Position
A 1 to 3 Occipital bone
B 4 to 13 Cervical and lumbar vertebra
C 13 and 15 Top part of sacrum
D 16 and 18 Acromion of scapula
E 18 Medial epicondyle of humerus
F 19 and 20 Coronoid process of ulna and radius
G 21 to 22 Styloid process of ulna and radius
H 23 to 26 Metacarpophalangeal joint of fingers
I 27 to 29 Proximal interphalangeal joint of the fingers
J 30 Interphalangeal joints of finger 1
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1. Relationship between upper limb movements and myoelectric signals

The tracking of the upper limb motion was performed using 7 3D VICON cameras and
Nexus software, with a sampling frequency of 200 Hz. 30 retro-reflective markers were used
and positioned all over the upper limb kinematic chain including the spinal column, as shown
in Figure 1.8 and in Table 1.13.

Figure 1.9 shows one session of the experiment, in which the subject was equipped with
retro-reflective markers and wireless superficial electrodes.

Retro-reflective 

markers 

Wireless superficial

electrode

Figure 1.9: Distribution of markers in the upper limb kinematic chain.

In the proposed experiment we considered three Healthy Subjects (HS), with an average age
of 24 years. Each subject performs flexion and extension of elbow joint. The first HS performed
one trial, the second HS four trials and third HS six trials. Flexion and extension of the elbow
joint was performed by subjects with different angles and speeds.

1.4.2 Data processing

To analyze data obtained from the experiments performed, we propose a methodology that
consists in: (i) determine the angle of each joint, in this specific experiment only flexion and
extension of the elbow joint was calculated, (ii) synchronize tracking position samples with
sEMG signals, (iii) and crop the sEMG signals when the flexion and extension were produced.
This last step is performed with the aim of analyzing the sEMG signals only during flexion and
extension, neglecting the stabilization of the movement.

To implement the previous methodology, we developed a software which :

(i) displays tracking motion of the upper limb data,

(ii) visualizes the corresponding sEMG signals,
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1.4. Experiments of flexion and extension movements

(iii) synchronizes in real time the sEMG signals and the tracking motion of the upper limb
chain data,

(iv) calculates the angle joints based on the quaternion model, in this case, we are interested
in the elbow flexion and extension,

(v) and crops the sEMG signals.

All the methodology was developed in the graphical user interface development environment
(GUIDE) of MATLABr, the Figure 1.10 shows the software interface developed.

Figure 1.10: Software interface.

The signal synchronization is required because both signal are recorded at different sam-
pling frequency. Kinematic tracking is sampling to 200 Hz and sEMG signals is sampling to
1kHz.

On the other hand, based on the kinematics of the upper limb, the rotation of joint is deter-
mined. Ones the rotation of joint is found, the beginning and the ending of motion is estimated.
Moreover, the procedure is explained in section 1.3.2.

Ones the beginning and the ending of the movement was determined, the sEMG signal was
accurately cropped, obtaining the signals when a movement exist.
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1. Relationship between upper limb movements and myoelectric signals

1.4.3 Results

Table 1.14 shows the performed angle and speed during elbow flexion and extension, consider-
ing all trials performed by subjects. Because of the selected motion (joint elbow), we considered
two muscles: Biceps Branchii (BB) and Triceps Branchii (TB).

The BB and TB sEMG was synchronized with upper limb motion tracking, Then, we have
cropped the sEMG of BB and TB during flexion and extension, furthermore we applied the
feature extraction models to all trials; getting a set of scalar values that corresponds to the flexion
and the extension. Considering that the values have different scales, we applied a normalization.

Table 1.14: Angle and speed of movements.

Subjects Id. Trial
Angle[◦] Speed[rad/s]

Flexion Extension Flex Ext
1 1 057.92 -071.29 1.80 -2.04

2

1 097.37 -102.28 1.24 -1.30
2 108.69 -117.79 1.93 -1.76
3 117.27 -117.87 8.15 -6.22
4 117.27 -117.87 1.49 -1.32

3

1 048.54 -038.74 2.72 -1.77
2 043.18 -039.88 1.71 -1.22
3 036.80 -041.40 2.56 -2.18
4 046.60 -044.44 2.62 -1.52
5 046.76 -046.56 2.54 -1.84
6 045.63 -043.73 2.41 -1.49

Table 1.15: The normalised values of the features.

Flexion Extension
Biceps Triceps Biceps Triceps

HMAV M HM MF HMAV M HM MF HMAV M HM MF HMAV M HM MF

−0.47−0.57 0.01−0.31−0.69−0.07−0.94 1.36−2.50−0.66 2.25 2.81−1.60 3.02 2.14 2.55 2.90−0.57 0.45 1.65

−0.26−0.49−0.46−0.31−0.42−0.57−0.82 0.03 0.52−0.88−1.05−0.66 0.52−0.30−1.00−0.86−0.62−0.40 0.45−1.10

−0.03−0.34−0.37−0.31−0.19−0.52−0.80 0.03 0.53−0.86−0.92−0.61 0.47−0.30−0.79−0.74−0.56−0.73 0.45−1.09

−0.63−0.03−1.55−0.32 0.28 0.47 0.07 1.28−0.87−0.31 0.19−0.01−1.06−0.30 0.04 0.16−0.04−0.34−2.02 0.07

0.00−0.42−0.41 2.43−0.55−0.01−0.59 0.30 0.53−0.09−0.76−0.59 0.74−0.30−1.28−1.20−0.81 0.04 0.45−1.71

2.03 2.20 0.41−0.31 2.67 1.38 1.32−0.33 0.53 1.49 0.91 0.34−0.81−0.30 1.16 0.45−0.03 2.61 0.45 0.34

−1.02−0.89 0.33−0.31−0.57−0.74−0.11−0.48 0.53 0.66−0.51−0.42 0.80−0.30−0.12−0.19−0.14 0.15 0.45 1.12

−0.63−0.03−1.55−0.32 0.28 0.47 0.07 1.28−0.87−0.31 0.19−0.01−1.06−0.30 0.04 0.16−0.04−0.34−2.02 0.07

−0.35−0.56 1.40−0.31−0.64−1.80−0.71−0.73 0.54−1.25−0.68−0.57 0.44−0.30−0.71−0.19−0.27 0.27 0.45 0.50

1.84 1.69 1.03 1.32 0.62 1.77 2.27−1.62 0.53 1.89 0.77 0.23−0.07−0.30 0.52 0.42−0.02 0.56 0.44 0.47

−0.48−0.58 1.17−1.24−0.77−0.38 0.22−1.12 0.53 0.31−0.39−0.52 1.64−0.30 0.01−0.54−0.35−1.25 0.45−0.32

The row one contains the values for trial one, the row two represents trial two, and so on
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1.4. Experiments of flexion and extension movements

Table 1.15 shows the normalized values of the features; it is divided into two mainly sec-
tions: flexion and extension. Then, each section has the data corresponding of biceps and triceps
muscles. The row one contains the values for trial one, the row two represents trial two, and so
on.

Figure 1.11 presents the behavior of the normalized values of the features extraction during
elbow extension as a function of the angle performed. First line presents five features: H ,
MAV , M , HM , M . Furthermore, taking into account the similar waveform pattern features
extracted, we selected only three features: H , MAV and MF , see second line in Figure 1.11.

Similarly, we presents the performance of the normalized features extracted during flexion,
as shows in Figure 1.12.
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Figure 1.11: Features behavior biceps and triceps muscle during elbow extension considering
angle performed.
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Figure 1.12: Features behavior biceps and triceps muscle during elbow flexion considering
angle performed.

Moreover, comparing the normalized values Figures 1.11 and 1.12, in both cases we found
that M and HM have significant variations, few local minimal and maximal values. These long
fluctuations could be useful to model small angle. But in the opposite, the identification of the
complete range will be more difficult.

Furthermore,H ,MAV andMF show a similar pattern, a more regular behavior and several
local minimal and maximal values (see Figure 1.12 or 1.11 right). These particularities make
possible to model and consequently describes long range movement.

Consequently, we also analyzed the behavior features pointing out the speed performed
during elbow flexion, as show in Figure 1.13 and elbow extension as presented in Figure 1.14.
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Figure 1.13: Features behavior biceps and triceps muscle during elbow extension considering
speed performed.
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Figure 1.14: Features behavior biceps and triceps muscle during elbow flexion considering
speed performed.
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1. Relationship between upper limb movements and myoelectric signals

All features have significant variation at lower speeds. Moreover, the maximum values was
found in the range of ≈ 1m/s and ≈ 2m/s. In contrast, the features variation at higher speeds
are not significant. Moreover, H , MAV and MF present similar and more regular behavior
compared with H and M . Thus, we propose a criterion to choose the best features to identify
the flexion and extension movements.

1.5 Formulation of kinematic / ElectroMyoGraphic relation

Distinguishing upper limb movements based on sEMG signals, implies to consider the follow-
ing factors: (i) higher variations of feature values during movements, particularly elbow joint
(ii) similar behavior of the feature during movements. Focused on these factors, the features
selected are H , MAV , and MF , it was chosen from experiments results presented in the last
subsection 1.4.3.

For the purpose of distinguishing two movements, particularly elbow joint, we propose to
find the couple of normalized features that presents the higher Euclidean distance between them.

Based on the features selected, we created two sets of them, one for flexion, and one for the
extension. These sets are used to characterize the difference between the features which is eval-
uated using a Euclidean distance. The generated sets of features are affected by the variations
in kinematics parameters, such as speed and angle range of the performed movements.

To chose the best set of features, we propose a criterion that maximizes distance between
the nearest values of each couple of features. For this purpose, we propose the criterion presents
in equation (1.7).

(b, u) = arg max
b,u

(
min

(
|zext

b −zfle
b |+ |zext

u −zfle
u |
))

(1.7)

for b 6= u where zext
b and zfle

b are the b-th features for extension and flexion, zext
u and zext

u

are the u-th features for extension and flexion. Based on the proposed criterion, the selected
features are found to be the entropy and the mean frequency features. As a result of the proposed
criterion in equation1.7, the couple (H , MF ) shows the best fitness among all the features
previously introduced.

1.6 Conclusion

We have analyzed the performance of five selected features while movements are performed
with different positions and speeds, with the aim to establish relations between features and
motion. The compared features are: MAV , MV , H , HM and MF . Additionally, we have
presented a kinematic model of the upper limb in order to establish the performed joint angles
and rotation speeds.
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1.6. Conclusion

Analyzing the joint angle variation, we find that M and HM have significant variations,
few local minimal and maximal values. These long fluctuations are be useful to model small
angles. Although, the identification of the complete range will be more difficult.

Furthermore, H , MAV andMF have a similar pattern, a more regular behavior and several
local minimal and maximal values. These particularities make possible to model and conse-
quently describes long range movements. Moreover, all features have significant variations at
lower speeds. The maximum values are found in the range [1,2]m/s. In contrast, the features
variation at a higher speeds are not significant.

Finally, we propose a criterion to chose the best set of features. Based on the proposed
criterion, the selected features are entropy and mean frequency features, which show the best
fitness among the introduced features.
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Chapter 2

Movement classification based on
myoelectric signals

2.1 Review

Support Vector Machine (SVM) have been proved to be a powerful tool to solve classification
problems. It has been tested in different applications such as: (i) automated estimation of human
emotion from electroencephalography [44], achieving accuracy of nearly 80%, (ii) obstacle
recognition system from visible and infrared images [45] getting accuracy from 87.6% to 96.9%,
(iii) speaker identification [46] finding high scores of 90%.

Furthermore, previous studies have reported several advantages when SVM is used as clas-
sifier regression and optimizer, for instance: (i) the high generalization capability, even if pat-
terns change in time [46, 47], (ii) the ability of classifying linearly non-separable patterns [47],
(iii) the low computational cost, (iv) and the real time pattern recognition probabilities.

These characteristics are essential for solving classification problems, particularly biomedi-
cal and especially for sEMG analysis that can be safely collected in nowadays life. Thus, SVM
is a successful method for hand gesture identification and finger motion patterns recognition
from sEMG.

Several studies have documented the SVM classification accuracy. A summary is introduced
in Table 2.1, which presents studies that have been performed measuring the electrical activity
in the upper limb muscles. The muscles most used by authors are: (i) FCU and (ii) FCR. recog-
nizing between 6 and 7 grasping gestures, with 93% to 97% accuracies [47–49]. Moreover, [50]
have considered to used different muscles, such as: EPB, FPL, EIP, FDS and EDQP, predicting
effectively 18 finger motions, with 82 to 93% accuracy.

Individual finger motion have been also studied by [51], predicting the index flexion and
pinching of index against thumb, achieving 80% accuracy. Finally, the identification of the
wrist motion including opening and closing hand is studied by [52], reaching 97% accuracy.
Additionally, closing and opening hand are the most studied hand gesture by authors [47–50,
52].
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2. Movement classification based on myoelectric signals

Table 2.1: SVM toward grasping recognition gestures.

Number of
Description Accuracy Muscle Reference

Movements

6
Flexion, Extension, Grasping,

93%

FCU, ECR,
[47]Opening, Pronation, FDP, ED

Supination, Neutral

7

Neutral, Flexion,
97%

FCU, ECR,
[48]Extension, Grasping, FDP, ED

Opening, Pronation,
Supination

6
Resting, Grasping,

95%

PL, FCU,
[49]Index Finger Pinching, FDS,FCR

Middle Finger Pinching,
Ring Finger Pinching,
Little Finger Pinching

18
Resting, Opening,

82%− 93%

EPB, FPL, EIP
[50]Flexion and Extension FDS (proximal, distal),

all Fingers EDQP

2
Index Flexion

80%

-
[51]Pinching of the

Index Thumb

6

Wrist Flexion,

97%

-

[52]

Wrist Extension,
Hand Closing,
Hand Opening,

Radial Deviation,
Ulnar Deviation

2.2 Pattern classification

Pattern Classification (PC) is a field of Artificial Intelligence (IA). IA is defined as systems that
think like humans and can think rationally [53]. PC investigates the development of algorithms
to distinguish specimen inside a group. Typically the differentiation is based on an information
set composed of distinctive specimen’s features. A full suite of features describing specimen is
usually known as a pattern. In the state of the art, three kinds of pattern classification are clearly
identified: (i) labeling data also called supervised learning, (ii) separating of data into classes
are also called unsupervised learning (iii) identifying relevant information also called feature
selection [54, 55].

In order to define the movement recognition algorithm, we take into account the following
considerations: (i) the sEMG signals are information carriers that correspond to movement
intention, (ii) the features extracted from the sEMG signals are directly linked to the movement,
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2.2. Pattern classification

and (iii) the number of movements to be identified are finite. Consequently, the identification of
movements is assessed through a classification problem in which features extracted from sEMG
signals constitute the set of patterns, and the movements themselves constitute the labels.

2.2.1 Perceptron

The perceptron is an algorithm for supervised learning of binary classifiers [56]. It means that
the algorithm can decide if the new input presented belongs to one class or another. The data
or input values are called xixixi = {x1i, x2i, ..., xni}, each input has a connection that is designated
weight value wiwiwi = {w1i, w2i, ..., wni} respectively. The weight values represent the connection
importance. The product of each input by its corresponding weight are added. Then a decision
function is performed bi, which result yi indicates if the input presented belongs to one class (1)
or another (0). Figure2.1 illustrates the perceptron.

∑
x1i

w1i

x2i w2i

yi

bi

xni

wni

...

Figure 2.1: Diagram perceptron.

yi =

1 if w1ix1i + w2ix2i + · · ·+ wnixni ≥ bi

0 if w1ix1i + w2ix2i + · · ·+ wnixni < bi

In matrix notation, the corresponding expression is:

yi =

1 if wTwTwT ·xxx ≥ bi

0 if wTwTwT ·xxx < bi

In order to understand the procedure performed by a perceptron, we present an example of
a binary classifier. AND gate behavior is in Table 2.2, and illustrated in Figure 2.2.

Considering, xixixi = {x11, x21} inputs, wiwiwi = {w11 = 1, w21 = 1} weights and bi = 1.5 value,
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2. Movement classification based on myoelectric signals

as consequence the output function is:

yi =

1 if x1i + x2i ≥ 1.5

0 if x1i + x2i < 1.5

x1i

0 0.5 1

x
2
i

0

0.5

1

Figure 2.2: AND gate class.

xii x2i yi

0 0 0
0 1 0
1 0 0
1 1 1

Table 2.2: AND gate truth table.

Two class are illustrated in Figure 2.3, rose circles represents first class (0) and purple cross plots
the second class (1). Moreover, the procedure is described in the Table 2.3.

x1i

0 0.5 1

x
2
i

0

0.5

1

0

Figure 2.3: Perceptron representation.

w1i = 1 w2i = 1 b1i = 1.5

x1i x2i w1ix1i + w2ix2i yi

0 0 0 0
0 1 1 0
1 0 1 0
1 1 2 1

Table 2.3: Perceptron as a classifier.
Classification is highly influenced by the weight values, the line separation relation is related

to the weight values, as illustrated in Figure 2.4 and Table 2.4.

x1i

0 0.5 1

x
2
i

0

0.5

1 0

Figure 2.4: Perceptron representation:
weight influence.

w1i = 0.8 w2i = 0.8 b1i = 1.5

x1i x2i w1ix1i + w2ix2i yi

0 0 0 0
0 1 0.8 0
1 0 0.8 0
1 1 1.6 1

Table 2.4: Perceptron as a classifier:
weight influence.

Furthermore, the bi has also a high influence on the classification, because it allows to shift
the decision function moving the line up and down. The shift contributes to fit the prediction
with the data in a better way. Figure 2.5 and Table 2.5 illustrate the influence on the parameters.
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2.2. Pattern classification

x1i

0 0.5 1

x
2
i

0

0.5

1

0

Figure 2.5: Perceptron representation: bi

influence.

w1i = 1 w2i = 1 b1i = 1.1

x1i x2i w1ix1i + w2ix2i yi

0 0 0 0
0 1 1 0
1 0 1 0
1 1 2 1

Table 2.5: Perceptron as a classifier: bi in-
fluence.

On the other hand, if the input values change then the perceptron classifier could distinguish
the different classes, as illustrates in Figure 2.6 and Table 2.6.

x1i

0.2 0.4 0.6 0.8

x
2
i

0.2

0.4

0.6

0.8
0

Figure 2.6: Perceptron representation: in-
puts influence.

w1i = 1 w2i = 1 b1i = 1.5

x1i x2i w1ix1i + w2ix2i yi

0.2 0.2 0.4 0
0.2 0.8 1 0
0.8 0.2 1 0
0.8 0.8 1.6 1

Table 2.6: Perceptron as a classifier: inputs
influence.

The perceptron decision rule previously introduced could be rewritten, adding a term w0ix0i

to the input values, in which w0i = bi and x0i = 1. As consequence xixixi = {1, x1i, x2i, ..., xni}.

yi =

1 if w0ix0i + w1ix1i + w2ix2i + · · ·+ wnixni ≥ 0

0 if w0ix0i + w1ix1i + w2ix2i + · · ·+ wnixni < 0

In matrix notation, the corresponding expression is:

yi =

1 if wTwTwT ·xxx ≥ 0

0 if wTwTwT ·xxx < 0

2.2.2 Support Vector Machines

The classification process consists in find an hyperplane that separates classes, as presented in
Figure 2.7a where a distribution of patterns (xxxi = {x1i, x2i}T for i = 1, . . . , 16) is divided
in two groups (i.e blue circles and orange crosses), it is noticeable that multiple separation
solutions (i.e hyperplanes) are possible.
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2. Movement classification based on myoelectric signals

Figures 2.7b, 2.7c and 2.7d show three possible separator hyperplanes, represented by black
lines. Likewise, the yellow bands that surround hyperplanes depict the margins, which corre-
spond to the minimal distance between the hyperplane and the closest patterns.

Intuitively, large margins drive to better accuracies. Small margins drive to more miss clas-
sification. Higher margins drives to less dichotomy classification, and more generalization ca-
pacity.

Accordingly, Support Vector Machines (SVMs) are a kind of classifiers that attempt to find
a separator hyperplane that has the largest possible margin [57, 58]. In the following, SMV are
introduced in three main stages: (i) definition of hyperplane, (ii) formulation of optimal margin,
and (iii) solution to the optimization problem.

0 0.2 0.4 0.6 0.8 1
0

0.2
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x1i

x
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i

(a) Example of patterns distribution.
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(b) Thin margin classification.
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(c) Intermediate margin classification.
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(d) Large margin classification.

Figure 2.7: Example of patterns distribution and three possible separator hyperplanes.

2.2.2.1 Definition of hyperplane

A hyperplane H in the Rn space (also noted X space) is an (n − 1) dimensional subspace of
Rn. Thus, we can consider it as the solution of the linear equation wwwTxxx = 0, being xxx a vector
inside the plane in Rn. Similarly, from a geometric point of view, the hyperplane can be defined
as the group of vectors in Rn that are perpendicular to the vector www. Thus, the hyperplane is
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2.2. Pattern classification

defined plainly by the vectorwww as follows:

H (www) = {xxx ∈ Rn | wwwTxxx = 0} (2.1)

As introduced in the previous section, in the labeling stage of classification, a bias value
b is required for the identification of patterns. Typically, to calculate the b value, the vector
www = {w1, . . . , wn}T is modified by adding a scalar value w0 at the beginning that multiplies
the first position of the pattern vector x0i = 1. Even that, in the present case the vector www is
operating an entirely different role in the calculation of margins and is no longer convenient to
have this notation. Thus, the hyperplane equation is rewritten including bias value b as follows:

H (www, b) = {xxx ∈ Rn | wwwTxxx+ b = 0} (2.2)

2.2.2.2 Formulation of optimal margin

The margin is the distance ddd between the hyperplane H (www, b) and the closest pattern defined by
the point xxxc. Thus, the distance ddd is maximized to calculate hyperplane parameters H (www, b) that
classify the patterns correctly and achieve classes separation with the biggest possible margin.
For that purpose, the following considerations are required:

1. If patterns xxxi are linearly separable, then | wwwTxxxi + b |> 0 for all points.

2. If the point xxxc is considered as the tip of a vector whose origin is the same of vector www
(see figure 2.8), then the hyperplane H (www, b) is normalized with respect to the margin by
introducing | wwwTxxxc + b |= 1.

xxxc

www

H (www, b)

Figure 2.8: Vector xxxc.

www
xxx

ddd
H (www, b)

xxxc

Figure 2.9: Distance ddd = projwww xcxcxc.
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2. Movement classification based on myoelectric signals

Subsequently, the distance ddd can be formulated as the absolute value of the projection of
the vector xxxc onto the vector www as ddd =| projwww xcxcxc |. Thus, calculating dot product between unit
vector ŵww = www/ ‖ www ‖ and the vector (xxxc−xxx) (see figure 2.9), the distance ddd can be computed as
ddd =| ŵwwT (xxxc −xxx) |. Then, substituting the unit vector ŵww we obtain d =| wwwTxxxc −wwwTxxx | / ‖ www ‖.
Moreover, if we consider that | wwwTxxxc − wwwTxxx | can be rewritten as | wwwTxxxc + b − (wwwTxxx + b) |
without changing the result, we can formulate the distance as follows:

ddd =
1

‖ www ‖
| wwwTxxxc + b− (wwwTxxx+ b) | (2.3)

Taking into account the normalization | wwwTxxxc + b |= 1, and equation (2.2), which states that
wwwTxxx+ b = 0 for the hyperplane, the distance ddd becomes:

ddd =
1

‖ www ‖
(2.4)

On the other hand, the maximization of the margin can be formulated as an optimization
problem aiming to maximize the distances, subject to the normalization condition | wwwTxxxc + b |= 1.
Thus, for a complete set of N patterns, the optimization problem must be written as:

max
1

‖ www ‖
subject to min

i=1,...,N
| wwwTxxxi + b |= 1

(2.5)

This is not a simple optimization problem because the constraints depend on an absolute
value and the minimization of xixixi inputs thus the problen is reformulated. Bearing in mind that
during the training phase of classification each pattern xxxi match an etiquette yi ∈ {−1, 1}, then
the expression | wwwTxxxi + b | is equivalent to yi(wwwTxxxi + b). Likewise, if | wwwTxxxi + b |= 1, then
the statement yi(wwwTxxxi + b) ≥ 1 is also true. Furthermore, maximizing the expression 1/ ‖ www ‖
is equivalent to minimizewwwTwww/2. As a result, the optimization problem can be reformulated as
follows:

min
1

2
wwwTwww

subject to yi(www
Txxxi + b) ≥ 1 for i = 1, . . . , N

(2.6)

Despite the fact that both approaches are not exactly equivalent, the obtained solution solv-
ing the optimization problem proposed in equation (2.6) satisfies the problem proposed in equa-
tion (2.5). Thus, the solution of equation (2.6) corresponds to the hyperplane H (www, b) that
separates patterns with the best possible margin.

2.2.2.3 Solution to the optimization problem

The optimization proposed in equation (2.6) is known as primal problem, and has a domain
given bywww ∈ Rn and b ∈ R. This problem can be solved using Quadratic Programing Problem
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2.2. Pattern classification

(QPP) algorithm with linear restrictions, and will have a solution within general theory of con-
vex minimization [59]. For that purpose, we use the Lagrangian formulation which states that
a minimization of a function f(x), subject to equality constraints hj(x) = 0, ∀ 1 ≤ j ≤ J and
inequality constrains gi(x) ≤ 0, ∀ 1 ≤ i ≤ I , can be rewritten as the following dual problem:

min
x

max
λ,µ

L (x, λ, µ)

subject to λ ≥ 0
(2.7)

where L (x, λ, µ) is the following Lagrangian function:

L (x, λ, µ) = f(x) +
∑
i

λigi(x) +
∑
j

µjhj(x) (2.8)

Moreover, the Karush–Kuhn–Tucker (KKT) conditions state that the gradient of the La-
grangian function ∇x L (x, λ, µ) is equal to zero and the product between the inequality con-
strains and the Lagrange multipliers is also zero. These conditions can be written as:

∇x L (x, λ, µ) = 0 (2.9)

λgi(x) =0 for all i (2.10)

Consequently, to formulate the Lagrangian dual problem for the SVM optimization prob-
lem, it is necessary to transform the inequality constraint proposed in equation (2.6) into the
form gi(x) ≤ 0. Thus, the restriction equation can be written as −(yi(www

Txxxi + b)− 1) ≤ 0 and
the Lagrangian for the SVM primal problem is as follows:

L (www, b,λλλ) =
1

2
wwwTwww −

N∑
i=1

λi
(
yi
(
wwwTxxxi + b

)
− 1
)

(2.11)

Taking into account that the Lagrangian is function of www and b, the condition established in
equation (2.9) is calculated as the gradient of the Lagrangian with respect to www, and the partial
derivative regarding b. Thus, the following conditions are introduced:

∇www L = www −
N∑
i=1

λiyixxxi = 0 (2.12)

∂ L
∂b

= −
N∑
i=1

λiyi = 0 (2.13)

Furthermore, solving equation (2.12), a solution for the vector www as function of the La-
grangian multipliers λλλ are formulated as follows:

www =
N∑
i=1

λiyixxxi (2.14)

Thereafter, substituting equations (2.13) and (2.14) in equation (2.11), we obtain a La-
grangian formulation that is independent ofwww and b as follows:

41



2. Movement classification based on myoelectric signals

L (λλλ) =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

yiyjλiλjxxx
T
i xxxj (2.15)

As a consequence, the dual problem of SVM can be formulated as presented below:

min
λλλ

1

2

N∑
i=1

N∑
j=1

yiyjλiλjxxx
T
i xxxj −

N∑
i=1

λi

subject to λi ≥ 0 for i = 1, . . . , N

N∑
i=1

λiyi = 0

(2.16)

The optimization problem presented in equation (2.16) can be reformulated in matrices
notation isolating the Lagrange coefficients λ of the equation (2.15) as follows:

− L (λλλ) =
1

2
λλλTQλλλ+ (−111T )λλλ (2.17)

where −111 is a vector whose elements are −1, and Q is the quadratic element, which is formu-
lated as follows:

Q =

 y1y1xxx
T
1xxx1 . . . y1yNxxx

T
1xxxN

... . . . ...
yNy1xxx

T
Nxxx1 . . . yNyNxxx

T
NxxxN

 (2.18)

As a result, the dual SVM optimization problem is formulated as following:

min
λλλ

1

2
λλλTQλλλ+ (−111T )λλλ

subject to yyyTλλλ = 0

000 ≤ λλλ ≤∞∞∞

(2.19)

Then, the problem can be solved using a classical QPP solver, which receives as inputs:
(i) the quadratic coefficients Q, (ii) the linear coefficients −111, (iii) the linear constraints yyyTλλλ =

0, and (iv) the upper and lower bounds 000 ≤ λλλ ≤∞∞∞. The result of the QPP algorithm is a vector
containing λλλ values. Once the solution for the Lagrange multipliers is done, equation (2.14) is
used to calculate the vector www. The last KKT condition, introduced in equation (2.10), states
that the product of the Lagrange multipliers and the inequality restriction function is equal
to zero. Taking into account that in the SVM problem the inequality constraint is given by
(yi(www

Txxxi + b)− 1), the last KKT condition is formulated as follows:

λi(yi(www
Txxxi + b)− 1) = 0 (2.20)

As presented before, the normalization | wwwTxxxc + b |= 1 is equivalent to yc(wwwTxxxc + b) = 1,
for points xxxc lying the margin. Thus, for the points xxxc, equation (2.20) becomes λi(1− 1) = 0,
showing that any positive value of λc fulfill the last KKT condition. On the other hand, for
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2.2. Pattern classification

points xxxo that do not lay the margin, the normalization states that yo(wwwTxxxo + b) > 1. Hence,
λo values must be zero to meet the condition formulated in equation (2.20). As a result, the
vector λλλ issue of the QPP solution will be mainly composed of zeros, and the non zero values
are Lagrange multipliers of the so-called support vectors xxxc.

For instance, table 2.7 shows the Lagrange multipliers calculated for the linear separable
problem proposed in figure 2.7a. The λλλ values are zero, and only three of them have non zero
value. Thus, in this example the support vectors are the patterns xxx1, xxx2, and xxx10.

Table 2.7: Example patterns and Lagrange multipliers.

i
Pattern xxxi Class yi

Lagrange
x1i x2i multipliers λi

1 0.2130.2130.213 0.4180.4180.418 1 7.7547.7547.754

2 0.5680.5680.568 0.7650.7650.765 1 16.99616.99616.996

3 0.346 0.724 1 0.000

4 0.231 0.634 1 0.000

5 0.169 0.529 1 0.000

6 0.111 0.692 1 0.000

7 0.093 0.812 1 0.000

8 0.231 0.855 1 0.000

9 0.427 0.228 -1 0.000

10 0.6550.6550.655 0.4530.4530.453 -1 24.75024.75024.750

11 0.694 0.319 -1 0.000

12 0.678 0.205 -1 0.000

13 0.604 0.051 -1 0.000

14 0.860 0.214 -1 0.000

15 0.899 0.328 -1 0.000

16 0.938 0.115 -1 0.000

The equation (2.14) is used in order to calculate parameters www of the hyperplane H (www, b).
Moreover, to calculate the b value, we use the normalization yc(wwwTxxxi + b) = 1, substituting xxxi
by one of the found support vectors; the value of b is the same using any of the support vectors.
Furthermore, figure 2.10 shows a graphical representation of the classification results, the figure
includes: (i) a black line, with a zero over it, representing the separation hyperplane, (ii) two
black lines, with the etiquettes−1 and 1 over them, representing the positive and negative limits
of the margin, and (iii) the three support vectors highlighted (annotated SV) by blue circles
(where 2 concern the blue class and 1 concerns the red class).
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Figure 2.10: Classification results of the SVM classifier.

2.2.3 Non-linear SVM classifiers

Non-linear SVM classifiers deal with the problematic of non-separable patterns, which can be
mainly classified into two categories: slightly and heavily non-separable. For instance, fig-
ure 2.11 illustrates the slightly non-separable case, where the patterns are divided into two
classes, which are clearly located at the top-left and lower-right sides of the feature space; due
to those misplaced patterns a linear classification is not possible. However, handling the error
produced by misplaced patterns as deviated points, the so-called soft margin SVM can perform
a non-linear separation.

Furthermore, figure 2.12 presents an example of heavily non-separable, where orange cross
patterns are surrounded by blue points patterns. In such situations, a representation of patterns in
hyperspace is used; this representation is performed through kernel functions. In the following,
the soft margin SVM and the kernel functions are introduced.

2.2.3.1 Soft margin SVM

When patterns are distorted, i.e. are coming from noised data, some points could diverge with
respect to the class, resulting in an apparently non-separable distribution. The first logical
attempt, during the learning process, could be the utilization of a non-linear classifier (see fig-
ure 2.13), even that, considering that the deviation is produced by noise, the classifier learns
useless information, which is known as over-fitting.

In order to improve generalization and reduce over-fitting during the training of the SVM,
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Figure 2.11: Slightly non separable data.
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Figure 2.12: Heavily non separable data.
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Figure 2.13: Non-linear separation.
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Figure 2.14: Linear separation accepting mar-
gin violations.

each pattern is evaluated, and when it introduces an error in the classification, it is penalized. As
a result, the impact of distorted patterns in the margin is reduced. Figure 2.14 shows a separator
hyperplane, calculated to classify patterns despite the two misplaced points.

The implementation of the soft margin SVM requires a measure of the margin violation, i.e.
a numerical value ξi, called slack that indicates how deep a point is inside the margin, or even
how deep is on the wrong side of the hyperplane, as shown in figure 2.15. Besides, this slack ξi
influence the normalization that must be formulated as:

yi(www
Txxxi + b) ≥ 1− ξi, for ξi ≥ 0 (2.21)

45



2. Movement classification based on myoelectric signals

x
2
i

x1i

-1

-1

-1

0

0

0

0

1

1

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

xxxi
ξi

Figure 2.15: Measure of slack ξi with respect to the margin.

The weighted total violation of the margin can be quantified as the summation of slack
C
∑
ξi, for i = 1, . . . , N being N the total number of patterns and C is a constant that gives the

relative importance of the slack with respect the margin. Thus, the primal problem of the SVM
proposed in equation (2.6), must be modified to include the slack penalization as follows:

min
1

2
wwwTwww + C

N∑
i=1

ξi

subject to yi(www
Txxxi + b) ≥ 1− ξi

ξi ≥ 0 for i = 1, . . . , N

(2.22)

wherewww ∈ RN , b ∈ R, and ξ ∈ RN .
The new Lagrangian formulation for the soft margin, includes the weighted total violation

of the margin and two different Lagrange multipliers: λλλ for the first inequality constraint and ςςς
for the second one. Hence, the Lagrangian is formulated as follows:

L (www, b, ξξξ,λλλ, ςςς) =
1

2
wwwTwww + C

N∑
i=1

ξi −
N∑
i=1

λi
(
yi
(
wwwTxxxi + b

)
− 1 + ξi

)
−

N∑
i=1

ςiξi (2.23)

Similarly, the Lagrangian must be: (i) maximized with respect to: www, b, and ξξξ and (ii) min-
imized regarding each λ ≥ 0 and ς ≥ 0. Applying the KKT conditions, we find the following
expressions:

∇www L = www −
N∑
i=1

λiyixxxi = 0 (2.24)

∂ L
∂b

= −
N∑
i=1

λiyi = 0 (2.25)
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2.2. Pattern classification

∇ξξξ L = 111C − λλλ− ςςς = 0 (2.26)

Thereafter, substituting equations (2.24) to (2.26) in equation (2.23), we obtain a Lagrangian
formulation that is independent of www, b and ξξξ shown in equation (2.27) below, which is exactly
the same as for the classic SVM introduced in equation (2.15).

L (λλλ) =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

yiyjλiλjxxx
T
i xxxj (2.27)

Moreover, according to equation (2.26), and taking into account that ςςς ≥ 0, λλλ is lower than
111C. Then, the dual problem can be formulated in matrix notation just adding 111C as the upper
bound of λλλ. As a result, the complet dual problem for soft margin SVM is as follows:

min
λλλ

1

2
λλλTQλλλ+ (−111T )λλλ

subject to yyyTλλλ = 0

000 ≤ λλλ ≤ 111C

(2.28)

Then, the problem can be solved using a classical QPP solver, which receives as inputs:
(i) the quadratic coefficients Q, (ii) the linear coefficients −111, (iii) the linear constraints yyyTλλλ =

0, and (iv) the upper and lower bounds 000 ≤ λλλ ≤ 111C. Concerning the value of the parameter C,
high values lead to linear rigid SVM problem because the limits of the Lagrange multipliers go
back to 000 ≤ λλλ ≤ ∞∞∞, and small values produce very soft margins. Parameters www and b of the
hyperplane H (www, b), are calculated in the same way as for the linear SVM problem.

Finally, we have three types of support vectorsxxxc: (i) margin support vectors when 0 < λc <

C and ξc = 0, (ii) non-margin support vectors when λc = C and ξc > 0, and (iii) misclassified
non-margin support vectors also λc = C and ξc > 0. Figure 2.16 exemplary shows the results of
a separator hyperplane calculated using a soft margin and examples of the three kind of support
vectors.
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Figure 2.16: Type of support vectors issued of soft margin SVM classification.

2.2.3.2 Non-linear SVM classifier based on kernel functions

Heavily non-separable classification are problems on which none of the possible dichotomy
can linearly separate the classes. The approach in that cases tries to map patterns into a higher
dimensional space. The central concept is to let the SVM perform a linear classification but
in a hyperspace where patterns are separable. Hitherto, patterns were considered as vectors
belonging the X space. Now, it is necessary to map those vectors into a high-dimensional space
Z . As consequence, a function Φ is introduced such that Φ : X 7→ Z . For example, figure 2.17
shows a constellation of points belonging a 2-dimensional space that are non-linearly separably,
then using the mapping function, vectors are transformed into an higher space where they are
linearly separable through a hyperplane H (www, b) = {zzz ∈ Z | wwwTzzz + b = 0}.
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Φ : X 7→ Z

Figure 2.17: Mapping vectors into a higher-dimensional space.
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2.2. Pattern classification

Considering the dual problem of the soft margin SVM, as presented in Figure 2.28, the only
essential modification, that arises from mapping X 7→ X , is the necessity of substituting the
inner product of xxxTi xxxj by zzzTi zzzj . Thus the Lagrangian is formulated as follow:

L (λλλ) =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

yiyjλiλjzzz
T
i zzzj (2.29)

Likewise, to formulate the Lagrangian in matrices notation, the quadratic element Q is mod-
ified using the same consideration with respect to the inner product. As a result, the following
quadratic element Q is introduced:

Q =

 y1y1zzz
T
1 zzz1 . . . y1yNzzz

T
1 zzzN

... . . . ...
yNy1zzz

T
Nzzz1 . . . yNyNzzz

T
NzzzN

 (2.30)

As a result, the dual problem of the non-linear SVM, is formulate as follows:

min
λλλ

1

2
λλλTQλλλ+ (−111T )λλλ

subject to yyyTλλλ = 0

000 ≤ λλλ ≤ 111C

(2.31)

The dual problem is the same as for the soft margin SVM. Consequently, the constant C,
which gives the relative importance of the slack with respect the margin, can be manipulated.
Thus, if C approaches infinity, then the non-linear SVM has a rigid margin; and for finite
values of C, the non-linear SVM can be considered to have a soft margin. On the other hand,
it is evident that it is not necessary to transform the complete set of patterns into the high
dimensional space. Instead, it is enough to have a function κ to calculate inner product of zzzTi zzzj .
Usually in the state of the art those functions κ are known as kernels.

Kernels are functions that allow calculating the inner product of two vectors (formed by
points or patterns) represented in a high dimensional space without going to that space. There-
fore, the inputs of the Kernel function κ are patterns in the space X , and the output of the
function is the inner product of the equivalent patterns in the space Z . Thus, the function is
formulated as κ(xxxi, zzzj) = xxxTi zzzj and the quadratic element Q of the Lagrangian becomes:

Q =

 y1y1κ(xxx1,xxx1) . . . y1yNκ(xxx1,xxxN)
... . . . ...

yNy1κ(xxxN ,xxx1) . . . yNyNκ(xxxN ,xxxN)

 (2.32)

To be valid, a kernel function should accomplish two conditions: (i) considering that its
result is an inner product, it must be symmetric κ(xxxi, zzzj) = κ(xxxj, zzzi) and (ii) according to the
Mercer’s condition a kernel matrix % = (κ(xxxi, zzzj))ij must be positive semidefinite (i.e. it should
be greater or equal to zero for any point xxx1, . . . ,xxxN). The following are two classic examples
of kernel functions:
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2. Movement classification based on myoelectric signals

1. Degree–d polynomial kernel:

κ(xxxi, zzzj) = (xxxTi zzzj + 1)d (2.33)

2. Radial basis function (RBF):

κ(xxxi, zzzj) = e−
||xxxi−xxxj ||

2

2σ2 (2.34)

where σ denotes a positive parameter for controlling the radius

On the other hand, applying the KKT condition ∇www L = 0, the expression to compute www,
based on the NSV presents support vectors, as follows:

www =

NSV∑
c=1

λcyczzzc (2.35)

Once the Lagrange multipliers and www are calculated, we define a decision function to eval-
uate a pattern xxxi. Nevertheless, taking into account that www was calculate using a Q matrix
depending on zzzi, the decision function is formulated as regarding zzzi instead xxxi as follows:

Γ(xxxi) = sign
(
wwwTzzzi + b

)
(2.36)

The main disadvantage of equation (2.36) is that zzzi are unknown representations of xxxi in
the hyperspace Z . Even that, substituting equation (2.35) into equation (2.36), we obtain the
following expression:

Γ(xxxi) = sign

(
NSV∑
c=1

λcyczzzczzzi + b

)
(2.37)

Subsequently, the inner product zzzczzzi is substituted by the kernel function κ(xxxc,xxxi) and equa-
tion (2.37) is reformulated as follows:

Γ(xxxi) = sign

(
NSV∑
c=1

λcycκ(xxxc,xxxi) + b

)
(2.38)

The constant b of the separator hyperplane, is calculated with the support vectors xxxc as
follows:

b = yc −
∑
λm>0

λmymκ(xxxm,xxxc) (2.39)

As an illustration, the pattern distribution, displayed in figure 2.17, is solved using: (i) the
dual SVM problem presented in equation (2.31), (ii) the RBF kernel function described in
equation (2.34), and (iii) rigid margin i.e. (C → ∞). As shown in figure 2.18, the separator
hyperplane H (www, b) = {zzz ∈ Z | wwwTzzz + b = 0} and the margins | wwwTzzz + b |= 1 delineate a
circular trajectory. Likewise, all patterns are on the right side of the hyperplane; red crosses
are inside, and blue circles are outside. Regarding support vectors that are surrounded by blue
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2.2. Pattern classification

circles, some of them seem to violate the margin, which is unusual considering the imposed
rigid margin C →∞. However, this behavior of support vector can be explained by analyzing
the classification in the hyperspace.
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Figure 2.18: Hyperspace top view.

Bearing in mind that the calculation of the inner product in the hyperspace Z is performed
using an RBF kernel function, the arrangement of patterns zzzi reflects a Gaussian distribution,
in which classes are projected to opposite sides of the belt as shown in figure 2.19. In the same
figure, we can observe the hyperplane H (www, b) = {zzz ∈ Z | wwwTzzz + b = 0} and the normalized
limits of vast optimal margin where | wwwTzzz + b |= 1.
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Figure 2.19: Hyperspace 3D view.
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2. Movement classification based on myoelectric signals

Besides Figure 2.20, which corresponds to a side view of Figure 2.19, shows the margin and
the support vectors which are in laying the margin. Summing-up, the non-linear support vector
machines use the kernel functions as a method to map patterns into a high dimensional space.
Thus, classification is possible using the same linear formulation of linear SVM, but substituting
the inner product of features by the kernel function. Moreover, the obtained representation of
the hyperplane, in the case of 2D, represents the intersection between the separator hyperplane
and the surface produced by the kernel function. Finally, the support vectors appear in the
wrong position of the margin, but in the space Z , they are correctly located.
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Figure 2.20: Classification results.

2.3 Movement SVMs classifier using sEMG signals

We have considered SVMs to classify upper limb motion based on patterns, because of their
above mentioned advantages. The patterns is the features extracted from sEMG signals from
upper limb muscles1. Thus, the proposed methodology consist in: (i) obtaining sEMG signal
from muscles, (ii) extracting sEMG produced during upper limb motion (iii) getting features
from sEMG (iv) establishing patterns (v) applying SVMs classifier in order to identify classes,
which correspond to the motion. In order to illustrate the procedure, Figure 2.21 presents the
methodology used.

1We only consider sEMG produced during movements in order to obtain properly patterns
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Figure 2.21: SVM scheme: (1) illustrates real environment motion capture laboratory in which
the subject are equipped with sEMGsensors and retro-reflective markers; (1.k) plots tracking
kinematic; (1.sEMG) plots B and T sEMG obtained during flexion and extension, which are
represents by red and black lines respectively; (1.kp) illustrates elbow angle calculated based
on (1.k); (2) shows the features space in which red squares and black circles are elbow flexion
and extension.
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2. Movement classification based on myoelectric signals

2.4 Experiments

We carried out an experiment with the aim to assess the sSVM performance in upper limb
motion classification, considering the same material and data processing as in sections 1.4.1
and 1.4.2.

In addition, entropy and mean frequency were selected in Section 1.5 as the couple features
with the highest Euclidean distance between them. Entropy is indicated as H , mean frequency
as MF , biceps and triceps muscles are respectively denoted by B and T .

Therefore, with these selected features, we define matrixXXX which is composed of:

X =
[
x1x1x1 · · · xxxN

]
(2.40)

where, xi correspond to different trial, that are elbow flexion in the first part (where i is verying
between 1 and N/2) and elbow extension in the second part (where i is varying between N/2 + 1

and N ) Furthermore, it is given by:

xixixi =


H(sssBi)

MF (sssBi)

H(sssT i)

MF (sssT i)

 (2.41)

where, H(sssBi) corresponds to entropy value of sssBi. Moreover, sssBi and sssT i are respectively the
biceps and triceps recorded sEMG signals .

Table 2.8 shows the extracted values of the selected features stored in the matrix XXX for 3
subjects and 22 trials. Subject 1, 2 and 3 correspond to (x1),(x2˘x5),(x6˘x22) respectively.

Flexion Extension

Elements of xi
Biceps Triceps

Elements of xi
Biceps Triceps

H MF H MF H MF H MF

x1 -0.47 -0.69 -0.07 -0.66 x12 2.25 2.14 2.55 1.65
x2 -0.26 -0.42 -0.57 -0.88 x13 -1.05 -1 -0.86 -1.1
x3 -0.03 -0.19 -0.52 -0.86 x14 -0.92 -0.79 -0.74 -1.09
x4 -0.63 0.28 0.47 -0.31 x15 0.19 0.04 0.16 0.07
x5 0 -0.55 -0.01 -0.09 x16 -0.76 -1.28 -1.2 -1.71
x6 2.03 2.67 1.38 1.49 x17 0.91 1.16 0.45 0.34
x7 -1.02 -0.57 -0.74 0.66 x18 -0.51 -0.12 -0.19 1.12
x8 -0.63 0.28 0.47 -0.31 x19 0.19 0.04 0.16 0.07
x9 -0.35 -0.64 -1.8 -1.25 x20 -0.68 -0.71 -0.19 0.5
x10 1.84 0.62 1.77 1.89 x21 0.77 0.52 0.42 0.47
x11 -0.48 -0.77 -0.38 0.31 x22 -0.39 0.01 -0.54 -0.32

Table 2.8: Description of X elements from x1 to x22.
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2.4. Experiments

Features distribution from B muscle is shown in Figure 2.22a, considering the feature se-
lected, the black circles represents elbow flexion and red squares illustrates elbow extension.
Moreover, Figure 2.22b plots MF(s) and H(s) feature values obtained from T muscle. Consid-
ering the dispersion of the data classes a linear separation is not possible.
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Figure 2.22: Distribution of features for flexion and extension, red circles presents flexion move-
ment and black squares extension movement.

The matrix X , is considered as a set of points in a 4-th dimensional features space, wherein
each i-th pattern xxxi ∈ R4, has an etiquette yi ∈ {1,−1}. The etiquette classifies the pattern into
two categories: flexion or extension.

Thus, the features extracted from B and T are separate into two classes flexion and exten-
sion. This classification has been performed using a non-linear SVM machine with soft margin,
as explained in section 2.2.3.
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2. Movement classification based on myoelectric signals

The support vectors are selected as explained in section 2.2.2.3, the decision function Γ(xxxi)

is applied to the remaining points xxxi of the matrix X . Then the result of Γ(xxxi) is compared
with yi. If the values match we consider that the SVM has correctly classified the point xxxl. As
a result, using a non optimal settings of σ and C, the algorithm may achieves a classification
percentage of 90.91%.
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Figure 2.23: Percentage of classification as function of σ and C.

2.5 Conclusion

We implemented a soft margin SVM classifier to separate patterns extracted from sEMG signals,
corresponding to two movements (elbow flexion and extension). We analyze the effect of the
parameters σ and C in order to identify their influence on the final percentage of classification.
As result, we found that there is an optimal area for values σ near to 1.1 and C close to 2.5,
where the percentage of classification reaches 100% as shown in Figure 2.23.

The successful classification indicates that high accuracy is obtained in laboratory condi-
tions, consequently, the proposed model can be extrapolated to: (i) out laboratory conditions
with healthy and amputee patients, (ii) amputates patients even when they have low level of
sEMG produced in the remained muscle.
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Chapter 3

Embedding grasping recognition

3.1 Review

The MyoArmbandTM is a wearable device used to control applications and systems, that is
based on sEMG and Inertial Measurement Units (IMU). It was recently introduced by Thalmic
Labs [60].

[38] performed the comparison of five time domain sEMG features. The features com-
pared were MAV, VAR, WAMP, WL and ZC. The research tested five motions: (i) closing the
hand, (ii) resting, (iii) mid-finger folding, (iv) gun-pointing and (v) half closing the hand. They
consider MAV the best feature as it is constant behavior over all experiments. Therefore they
proposed that time domain features have better performance with respect to frequency domain
features.

Three-wheeled omni-directional robot was controlled using a muscle gesture-computer in-
terface system. They considered only five gestures supported by the armband. Some other
related work describes the architectural model of a system that addresses MyoArmbandTM to
control home automation systems [61].

In the field of augmented reality, for instance, [62] proposed a neuro-rehabilitation game for
children, and [63] proposed a system to train physical rehabilitation situations.

[64] evaluated the level of acceptability of MyoArmbandTM, according to two situations,
(i) when doctors use the device as diagnostic tool and (ii) when patients use the device in their
daily life. As a result, the device has good acceptability by patients and doctors, considering 23
participants the average score is 69.21, where the maximum score is 100.

Finally, [61] described an architectural model of control for a home automatic systems,
controlled by hand gestures. As a result, they mentioned the feasibility of using the gesture as a
remote control interface braking the barrier of using touch user interface.
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3. Embedding grasping recognition

3.2 Wearable human interface concept

Human interface devices are proposed with the aim of having an interpreter between human and
machines in real-time. Thus, wearable human interface is a device which is attached to the user
as a piece of clothing (e.g. smart watches, jewellery and intelligent eyewear). Those devices
have multiple applications, for instance, blind persons assistance [65], ambulation, transporta-
tion, exercise, fitness and military activities [66]. Measuring several attributes such as motion,
location, temperature and vital signals.

One of the most successful wearable companies is Fitbitr[67], whereby several devices
for measuring motion patterns are produced. The device studied by [68] measures steps and
distance traveled. The collected data is captured from triaxial accelerometers based on Micro-
ElectroMechanical systems (MEMS) [67]. Similarly, new innovative devices have been devel-
oped not only for measuring the patterns but also for identifying motion and more specifically
gestures, considering gestures as a non-verbal communication [61].

For the present research work, we use the MyoArmbandTM bracelet, which is a wearable
device for gesture recognition. It comprises a set of eight sEMG sensors and one inertial mea-
surement units sensors that are composed by: (i) a three-axis gyroscope (ii) a three-axis ac-
celerometer and (iii) a three-axis magnetometer. These capture are used to sense motion in all
directions, obtaining the reference position using Euler angles and Quaternions formulation.

The data from sEMG and movements are transmited via Bluetooth Low Energy (BLE) wire-
less connection. Furthermore, it is equipped with an ARM Cortex-M4 microprocessor of low
consumption. The MyoArmbandTM electrodes are labeled with IDs from 1 to 8 and are dis-
posed as shown Figure 3.1. The fourth channel (CH4) has a blue marker, and is placed in
lower forearm followed by third channel (CH3) in clockwise and fifth channel (CH5) in counter
clockwise. The sampling frequency is 200Hz.

1
2

3 4 5

6
78

Figure 3.1: MyoArmbandTM sEMG sensors.

Once a subject is wearing the bracelet, sEMG sensor are located radially around a circum-
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3.3. Movement detection model

ference of the forearm. According to the placement of the bracelet, different muscles can be
measured. Thalmic Labs suggest sliding bracelet into the forearm until it is just below the elbow.
Following this instruction, the muscles closer to the sensors are those presented in figure 3.2.

Flexor
carpi ulnarisExtensor

carpi ulnaris

Extensor
digitorium

Bracelet
placement

(a) Frontal muscles.

Extensor
carpi radialis

Palmaris
longus

Flexor
carpi radialis

Bracelet
placement

Pronator
teres

(b) Posterior muscles.

Figure 3.2: Forearm muscles considering the MyoArmbandTM placed in.

3.3 Movement detection model

Merging the concepts and models about the relationship between ElectroMyoGraphic and up-
per limb kinematics, and the experimental results obtained under laboratory conditions a new
movement detection model is introduced. Our model allows real-time detection and identifi-
cation of two hand movements, allowing a user to interact in a natural way with the ProMain
robotic hand prostheses.

In order to define the movements to be detected by our method, we take into account ex-
perimental results, analyzing daily living grasps [69], which suggest that a limited number of
gestures are enough for dexterous manipulation of a wide range of objects. The idea is that a
Prosthetic hand does not need to mimic human hand movements, but it should be functional.
Thus, we attempt to identify two simple movements inside the sEMG signal, hand open and
close, aiming to allow a user to control the ProMain soft robotic hand prosthesis in a more
natural way.

One important consideration for our movement detection model is that human motion pro-
cess can be equated to a communication system, where messages (desired action) are trans-
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3. Embedding grasping recognition

mitted from α–motoneurons to muscular fibers. Consequently, sEMG signals take the role of
information carriers, containing the subject’s intention. Therefore, a suitable and smart interpre-
tation of sEMG signal allows the identification of subject’s desired actions. Three main stages
are required to extract information embedded in sEMG signals as follows: (i) Modeling of sur-
face ElectroMyoGraphic signals, (ii) Identifying movement inception and (iii) Recognition of
prehension patterns. The following section present these stages in detail.

3.3.1 Modeling of sEMG signals

Human movements result from muscular contractions in the musculoskeletal system, which
are induced by impulsive electrical stimuli δ transmitted from the α–motoneurons to muscular
fibers. For a total number of muscular fibers Nf , the Stimuli δi(t), ∀ i ∈ {1, · · · , Nf}, are
modeled as Dirac delta impulse train δi(t), as shown in the following equation [70]:

δi(t) =

Np∑
j=1

δ(t− tj) (3.1)

where Np is the total number of impulses and tj are impulse’s time occurrences.
Each muscular fiber has its own impulsive response ψi(t), which is known as a Motor Unit

Action Potential (MUAP). In the state of the art, MUAPs have been estimated using wavelet
analysis, e.g. examples of MUAPs, adapted from the proposed by [71], are shown in Figure
3.3. Taking into account that δi is the convolution modulus, the response of muscular fibers is a
set of ui(t) composed of Np occurrences of MUAPs at tj instants. These signals are known as
Motor Unit Action Potential Trains (MUAPTs) and are formulated as follows [70]:

ui(t) =

Np∑
j=1

ψi(t) ∗ δ(t− tj) =

Np∑
j=1

ψi(t− tj) (3.2)

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39

10 ms

Figure 3.3: Example of impulsive response waveforms of motor unit action potentials ψi(t).
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3.3. Movement detection model

The sum of the complete set of MUAPTs ui(t) define to the real EMG signals. Addition-
ally, due to the multiple biological and environmental conditions a component of additive white
Gaussian noise η(t) is added, to constitute sEMG signals. Figure 3.4 shows the sEMG gener-
ation scheme. After discretization the model of the generated sEMG signals s(k), being k the
discret time index, is as follows:

s(k) =

Nf∑
i=1

ui(k) + η(k) (3.3)

Sensor

EMG Signal

Gaussian Noise

sEMG Signal

Firing Pulses
(Activation) (MUAPTs)

∑

∑

ψ1(t)

(MUAPs)

δ1(t)

δNf (t) ψNf (t)

...
...

noised EMG Signal

Figure 3.4: sEMG signal generation scheme.

In summary, the sEMG signal s(k) is a discrete representation of s(t), which is the response
of subject’s muscular fibers while electrical stimuli δi(t) exist. Furthermore, the stimuli δi(t)
are considered as a coded message, embedded in the ElectroMyoGraphic, containing the sub-
ject’s movement intention. Thereupon, based on the sEMG signal model, considered as shown
in equation 3.3, we identify the presence of information, and moreover, extract and classify
patterns embedded in the sEMG signals.

3.3.2 Identifying movement inception

In the state of the art [20], the movement recognition is frequently addressed using artificial
intelligence algorithms to classify patterns extracted from sEMG signals. Those methods have
shown a high efficiency under controlled conditions using offline analysis, but the problem is
more complicated when real-time processing is required out of laboratory conditions. Hence,
we introduce a procedure that improves the efficiency of movement identifications out of labo-
ratory conditions and in real time.
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3. Embedding grasping recognition

3.3.2.1 Measure of produced information rate

The procedure is based on the analysis of a quantity H that measures at what rate the infor-
mation, embedded in a sEMG signal, is produced during a movement. Each sample of sEMG
signal results from the combination of a finite number of MUAPTs ui(k). Thus, the samples are
directly related to muscular activity and movements. Likewise, samples are mapped into a set
of finite events, whose probabilities of occurrence pl are p1, p2, . . . , pNi , being Ni the number
of finite events. Consequently, the quantity H is calculated examining the signal samples in a
segment of the signal.

Furthermore, to measure how much information is produced, the quantity H is required to
be: (i) continuous in the pl, (ii) a monotonic increasing function over the number of samples
if all pl values are equal to 1/Ni, and (iii) the weighted sum of the individual values of H if a
choice is broken down into two successive choices. All these assumptions are satisfied with:

The only H quantity satisfying the above assumptions is of the form:

H =

Ni∑
l=1

pl log pl (3.4)

The form of H is recognized as entropy which is defined in formulations of statistical me-
chanics, in Boltzmann’s H–theorem and in the Shannon’s entropy of information theory [72].

In vectorial notation, a sEMG signal si(k), with a total number of samplesW , is represented
as sssi = {s1 i , . . . , sW i}T . Consequently, for this sEMG signal sss1, the entropy will be written
as H(sss1); thus sss1 is not an argument of a function but a label for a number, to differentiate it
from H(sss2) which is the entropy of the sEMG signal sss2. The entropy has several interesting
properties and two of them characterize its maximum and minimum values: (i) H is zero if and
only if one of all probabilities of occurrence pl is almost equal to zero (ii) for a given number
of events Ni, entropy is a maximum H = log(Ni), when all pl = 1/Ni. The last property
represents the most uncertain situation. In our case, since we use binary digits the selected base
is 2. As a result, the entropy for an sEMG signal fragment sss with W samples is given by:

H(sss) =

Ni∑
l=1

pl log2 pl (3.5)

The probabilities of occurrence p1, p2, . . . , pNi is estimated based on the absolute occurrence
frequency fl normalized by the total of events as follows:

pl =
fl
Ni

, for l = 1, 2, . . . , Ni (3.6)

Classically, absolute occurrence frequencies fl are described as the amount of favorable out-
comes over the number of all possible outcomes. In that case, we consider favorable outcomes
as the number of signal samples belonging to one discrete event l, and the number of all possible
outcomes as the total number of discrete events Ni. Taking into account that sEMG signal is
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3.3. Movement detection model

acquired using the MyoArmbandTM bracelet, which employs a 8-bit (1-byte) analog to digital
converter, it is reasonable to set the total number of discrete intervals Ni to 256. Likewise,
to evaluate if a sample belongs to a particular discrete interval l, the following membership
function is introduced:

ε(sk, l) =

1 if l−1.5
Ni−1

≤ sk <
l−0.5
Ni−1

0 otherwise
(3.7)

where sk is the kth sample of the sEMG signal. Thereupon, absolute occurrence frequencies fl,
for a signal with W samples, are calculated as:

fl =
W∑
k=1

ε(sk, l), for l = 1, 2, . . . , Ni (3.8)

3.3.2.2 Entropy flow and movement inception

Considering that the entropy H(s), is a measure of the information rate, we analyze its value to
identify the information contained in the sEMG signal. These variations are extracted through
the calculation of the entropy flow Ḣ(s), which corresponds to the first derivative of the over
time. In consideration of the discrete nature of the sEMG signals, we consider to use a numerical
approximation of the derivative, thus we adopt the following discrete-time differential operator
D:

D =
δ

µδT + 1
(3.9)

where, δ = (z − 1)/T , z is the usual shift-operator, and T is the sampling period.
The parameter µ is any real number, and it is usually chosen between three options: (i) µ = 0

if the derivative is on future and current values using forward difference, (ii) µ = 1/2 if the
derivative is computed in a middle point between two samples and is operated using future or
past values merged with the current measures. The method is typically known as Tustin or bilin-
ear transform, and (iii) µ = 1 if the derivative is on the past and present values using backward
difference. The following equation summarizes the criterion to choose the µ parameter:

µ =


0 Forward difference

1/2 Tustin transform

1 Backward difference

(3.10)

In our case, the parameter µ is set to 1, assuring that the derivative is causal (i.e it is calcu-
lated based on the past and current values, and not on future values of entropy). Consequently,
the discrete-time differential operator is rewritten as follows:

D =
1− z−1

T
(3.11)
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Figure 3.5: Backward derivative of a noisy signal s(k).

In time series analysis, the shift operator z leads the kth sample of a time series to produce
the following (k + 1)th element. When the shift operator is raised to negative power, e.g z−1 in
equation 3.11, it lags the kth sample of a time series to produce the previous (k− 1)th element.
Therefore, when the D operator is applied to a discrete signal Dsss, the numerator (1 − z−1)sk

becomes sk − sk−1. As a result, the first derivative of the signal s(k) presented in equation 3.3
written as follows:

ṡ(k) = ṡss =
sk − sk−1

T
(3.12)

This numeric approximation, using backward difference is simple, fast, and accurate, even
that, it is not robust in the presence of noise. Figure 3.5 shows this disadvantage when the
derivative of a noised signal sss = sin(ωkT ) + η(k) is approximated using backward difference;
the frequency ω belongs to the sEMG spectrum and η(k) is the additive white Gaussian noise.

The problem of sensibility to noise can be overcome analyzing separated samples instead
consecutive samples. Hence, we modify the power of the shift operator to z−KW , producing
a lag of KW samples. Thus, the D operator is equal to D = (1 − z−KW )/(T KW ) and the
formulation of the derivative, so-called sliding backward derivative, is rewritten as follows:

ṡss =
sk − sk−KW
T KW

(3.13)

The numeric derivative, introduced in equation 3.13, was tested with the same noised signal
sss = sin(ωkT ) + η(k) using KW = 80. The choose of KW = 80 is done considering the
MyoArmbandTM sampling frequency and the experimental results obtained in the motion cap-
ture laboratory (see section 2.4). Indeed, the approximation is much more accurate as shown in
Figure 3.6.

The entropy is analyzed continuously, to maximize the identification of changes that rep-
resents the movement intention. However, the analysis is performed in a limited number of
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Figure 3.6: Backward sliding derivative of a noisy signal s(k).

samples. Thus, the proposed method consists in calculating the entropy not along all the sEMG
signal, but along segments matching the size of the sliding derivative

interval. So that, for an sEMG signal sssi, the entropy H(k,sssi) is calculated along the sEMG
signal segment sssi = {si k−KW , . . . , si k}T . It is to note that k and sssi are not arguments of
the entropy, the notation H(k,sssi) means the entropy of the sEMG signal at the discret-time k
calculated along the segment sssi.

Considering that the entropyH(k,sssi) is a time series, its variation is calculated applying the
sliding backward derivative proposed in equation (3.13). As a result, we obtain the expression
of Ḣ(k,sssi), where Ḣ(k,sssi) means the entropy flow of the sEMG signal at the discret-time
k calculated in the discrete-time interval [k − KW , k]. The expression of Ḣ(k,sssi) is shown
equation (3.14).

Ḣ(k,sssi) =
H(k,sssi)−H(k −KW , sssi)

T KW

(3.14)

The obtained experimental results, presented in section 1.5, have shown that the entropy of
an sEMG signal remains constant when no movement is produced. Hence, when a movement is
performed, the entropy of the corresponding sEMG signal presents visible variations, causing
sharp peaks in the entropy flow. Therefore, our method tracks the significant changes of entropy
by detecting peaks in the entropy flows.
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Figure 3.7: Backward sliding derivative of a noisy signal s(k).

The occurrence time k of each positive peak in the entropy flow corresponds to a move-
ment inception and the occurrence time k of each negative peak corresponds to a movement
termination. Figure 3.7 exemplary shows the calculation of the entropy and the entropy flow
of an sEMG signal sss8 captured from the 8th sensor of the MyoArmbandTM during several open
and close movements of the hand. Clearly, the peaks in the entropy flow Ḣ(k,sss8) overlap the
beginning of the steady state of the entropy for each movement. The same result has been found
with all other sensors of the MyoArmbandTM, as shown in Figure 3.8.
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Ḣ(k, s8)

Figure 3.8: Entropy flow of the complete set of sEMG signals.

It can be seen in Figure 3.7 that the entropy H(k,sssi) reaches two different steady-state
values after positive peaks, which is reasonable considering that the signal contains information
of two different movements. In the following, we introduce the classification method, which is
applied subsequently to the detection of movement inception.

3.3.3 Recognition of prehension patterns using Support Vector Machines

As presented in section 2.2.2, Support Vector Machines (SVMs) are a kind of classifiers that
attempt to find a separator classes using an hyperplane that has the largest possible margin with
respect to patterns. According to the classification problem there are three possibilities of sep-
aration: (i) rigid margin SVM for linearly separable data, (ii) soft margin SVM for slightly
non-linearly separable data, and (iii) kernel function based SVM for heavily non-linear separa-
ble data.

Furthermore, the achieved result regarding the classification of elbow flexion and extension,
as is shown in sections 2.3 and 2.4, whereby classification rate is 100%, let presume that: (i) the
problem has a feasible solution out of laboratory conditions and (ii) the machinery of a soft-
margin SVM classifier could be suitable to separate two classes, (i.e. open and close hand).
Moreover, in consideration of the signal acquisition technology used in MyoArmbandTM, which
delivers eight signals in real time, using of multiple features or mapping into a hyperspace are
not necessary. Therefore, the proposed approach to the classification of prehension patterns
recalls the following soft margin SVM model:

min
1

2
wwwTwww + C

N∑
i=1

ξi

subject to yi(www
Txxxi + b) ≥ 1− ξi

ξi ≥ 0 for i = 1, . . . , N

(3.15)
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3. Embedding grasping recognition

where ξ ∈ RN is a slack measuring margin violation, C is a constant that gives the relative
importance of the slack with respect the margin, and www ∈ Rn and b ∈ R are the separator
hyperplane parameters.

Likewise, the dual formulation of the above primal soft margin SVM problem is formulated
using the Lagrangian multipliers λλλ as follows:

min
λλλ

1

2
λλλTQλλλ+ (−111T )λλλ

subject to yyyTλλλ = 0

000 ≤ λλλ ≤ 111C

(3.16)

In order to calculate the b value, we use the normalization yc(wwwTxxxi + b) = 1, substituting xxxi
by one of the found support vectors; the value of b is the same using any of the support vectors.
To calculate parameterwww of the hyperplane H (www, b), equation (3.17) below is used:

www =
N∑
i=1

λiyixxxi = 0 (3.17)

Each pattern xxxi is calculated extracting the entropy from the group of sEMG signals cap-
tured simultaneously by the MyoArmbandTM bracelet, (see Figure 3.9). The adopted notation
to represent the group of incoming signals is Si = {sss1i, sss2i, . . . , sss8i}T , being sss1i the signal cap-
tured by the first sensor of the bracelet, sss2i the signal measured by the second sensor, and so on.
Afterward, the entropy is calculated for each signal belonging Si, resulting in a set of entropies
from H(sss1i) until H(sss8i). Taking into account that the target is to find the optimal margin
during separation, it is a good practice to normalize inputs. The normalization emphasizes the
differences or similarities (whichever the case) between patterns. As a result, the feature space
X ∈ R8 is composed of the normalized entropies Ĥ(sss1i) to Ĥ(sss1i), and the pattern xxxi can be
written as:

xxxi =



Ĥ(sss1i)

Ĥ(sss2i)
...

Ĥ(sss7i)

Ĥ(sss8i)


(3.18)
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Figure 3.9: Complete set of sEMG signals captured using MyoArmbandTM.

3.4 Experimental analysis and model validation

One of the main obstacles in the classification or recognition of human movements, out of lab-
oratory conditions, is related to the uncertainty of the movement occurrence time. To solve this
problem, we have introduced a methodology based on the analysis of the entropy flow, which
allows to detect the movement inception. Thus, in the following, we present an experiment that
aims to verify the performance of the proposed methods in the classification of two prehension
patterns, that are grasp (close hand) and release (open hand).

The proposed methodology is tested using MyoArmbandTM bracelet, and the introduced
models are implemented in software developed using C++. The software is composed of: (i) a
connection with bracelet via Bluetooth , (ii) a graphic interface to display the hand gesture, and
(iii) a principal cycle that iterates every 5 ms. In the beginning, the software gets connected to
MyoArmbandTM, display the first gesture, and initializes with zero parameters k and i, which
respectively correspond to the discrete time and pattern index.

Once the cycle is active, the sEMG signals acquisition is started, each received sample
produces an increment of discrete-time stamp k. When k reaches a limit of KW samples (value
defined in section 3.3.2.2 to calculate sliding derivative), the normalized entropy is calculated
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3. Embedding grasping recognition

along the signal segments X i.
Afterwards, when k reaches a limit of 2KW the entropy flow calculation is launched. The

entropy flow is analyzed to find peaks; if a positive peak is found, the present set of values is
saved and tagged with the present label. Entropy values are saved until negative peak rises.
After a negative peak, the signal, the entropy, the entropy flow and the label are stored to hard
disk. Subsequently, a new visual indication is displayed and the process restarts. The number
of instruction to displayed must be set before executing the software. Figure 3.10 shows the
capture process flow chart.

MyoArmbandTM

Data Capture
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Si
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Figure 3.10: Pattern capture flow chart.

3.4.1 Materials and methods

The experiment, was performed with three subjects with the MyoArmbandTM, which was placed
as recommended by Thalmic Labs to capture signals from the following principal muscles:
(i) Extensor carpi radialis longus, (ii) Palmaris longus, (iii) Flexor carpi radialis, (iv) Flexor
carpi ulnaris, (v) Pronator teres, and (vi) Extensor carpiradialis. Likewise, subjects received
instructions directly from a laptop screen, in which images concerning the movement that they
should perform were displayed.

Subsequently, the software captures the set of sEMG signals Si, processes the entropies
H(sss1i) to H(sss8i), and when a positive peak is found in the entropy flow, it pushes values into a
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matrix, which is stored to hard disk with the labels that correspond to the image shown in the
screen when a negative peak is detected in the entropy flow.

During the experiment, the subjects are asked to open five times the hand from a relaxed
posture and close five times the hand from a carefree position. Figure 3.11 summarizes the
experimental set-up and the used methodology.
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Figure 3.11: Summary of experiment materials and methods.

3.4.2 Analysis of experimental entropy data

In the following, we present the analysis of obtained experimental data issued of the experiment.
Subjects performed two prehension patterns, say grasp (close hand) and release (open hand).
Thus, in the following, the experimental data is analyzed to:

1. Identify the lag time of the positive peak of entropy flow with respect the sEMG signal
activation.

2. Compare cross relation of entropy data to fix the most adapted classification amongst the
introduced SVM algorithms.

The lag time tl of the entropy flow’s positive peak can be considered as: 1. the rising time
required for the entropy to achieve its steady state value from a stable reference or 2. the time
required to identify the presence of a pattern. In both cases, this lag will have a considerable
influence in the classification of movements. The value of tl is measured directly from the
experimental data as:

tl = tpa − tsa (3.19)

Where tpa is the peak occurrence time and tsa is the sEMG signal activation start.
Figure 3.12 shows the measures of tsa and tpa based on the 8th sEMG signal of subject 1

during trial 1. Thereafter, tl is measured for the ten trials (five for grasp and five for release)
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performed for each subject applying equation (3.19). Taking into account that the lag tl depends
on several phenomena (e.g. during a specific movement, the dominant muscle has less slack than
the auxiliary ones, as explained in section 1.4.1), the lag is measured over all signals captured
from different muscles and the values during an specific movements.
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Figure 3.12: Graphical representation of the peak occurrence time tpa and the sEMG signal
activation start tsa.

The lag obtained from the different muscles are averaged to obtained three quantities per
subject: 1. the mean value during grasp trials, 2. the mean value during release trials, and 3. the
overall mean value considering grasp and release trials. As a result, the global mean value
of lag is tl = 91.58 with a standard deviation of 19.792. The mean value during grasp trial
is tl = 87.941 with a standard deviation of 16.042. The mean value during release trials is
tl = 91.589 with a standard deviation of 17.65.

Figures 3.13a to 3.13c summarize the obtained results, wherein vertical axis is the total
number of observations within a given interval (absolute frequency), and the horizontal axis
corresponds to tl measured in number of samples. Furthermore, the red crosses are the mean
values and red vars the median.
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(a) Lag tl for release trials.
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(b) Lag tl for grasp trials.
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(c) Lag tl for all trials.

Figure 3.13: Forearm muscles activities tracked with MyoArmbandTMplaced in.

Table 3.1 summarizes the results for all subjects. Considering that the sample frequency
of the MyoArmbandTM is 200Hz, the maximal global lag is 457.9ms. According to the re-
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Table 3.1: Summary of lag values for all subjects.

Subject
release trials grasp trials overall

avg std_dev avg std_dev avg std_dev

1 tl = 91.58 17.64 tl = 87.9416 16.0424 tl = 91.58 19.7929

2 tl = 110.33 5.13 61.33 14.50 85.83 28.54

3 94.33 7.50 80.66 3.78 87.50 9.18

the values are measured in number of samples and STD is the acronym for standard devi-
ation.

sults, introduced in section 1.4.1, the sEMG signal gets activated 212ms1 before the movement
inception. Therefore, we can consider that our methodology allows to detect a movement ap-
proximatively in 245.9ms out of laboratory conditions.

Regarding the classification problem, the target is to verify if the patterns, captured after
inception detection, are separable or not. Figures 3.14 and 3.15 show two constellation of first
subject’s patterns. Clearly, the feature space is non-linearly separable with respect to entropies
of signals arising from sensors three and four. In contrast, despite some overlapped patterns,
the entropy extracted from sEMG signals coming from sensors one and eight seems linearly
separable through a soft margin SVM classifier.
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Figure 3.14: Values from electrodes three and
four.
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Figure 3.15: Values from electrodes one and
eight.

The formed feature space is composed of eight dimensions, one for each sEMG signal

1This values is measured comparing the movement kinematic registered with Vicon cameras and the sEMG
signal that are rerecord in real time, the sampling frequency are 200Hz for kinematic tracking and 1K Hz for
sEMG
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captured. Figure 3.16 shows the complete feature space, that contains in some dimensions
is linearly separable. Thus, the separation problem consists in training the soft-margin SVM
classifier proposes in equation (3.16).

The separator hyperplane H (www, b) = {xxx ∈ R8 | wwwTxxx+ b = 0} will be composed of a
vector www ∈ R8 and the scalar value b. The solution for the subject one, obtained solving
equation (3.17), iswww = {1135.4,−958.7, 388.2,−135.1,−542.6, 557.3,−275.5,−478.1}T and
b = 233.9. The last parameter result from the normalization yc(wwwTxxxi + b) = 1, substituting xxxi
by one of the found support vectors.
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Ĥ
(ss s

4
i)

Ĥ
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Figure 3.16: Experimental materials and methods.
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3.4.3 Method validation

The proposed methodology to validate classifier results using MyoArmbandTM bracelet, is based
on the test software used in the previous section, but replacing the storage phase by a movement
recognition phase wherein the SVM classifier is implemented. Thus, the software for validation
is composed of: (i) a connection via Bluetooth with bracelet, (ii) a graphic interface to display
recognized gesture, and (iii) a principal cycle that iterates every 5 ms. In the beginning, the
software gets connected to MyoArmbandTM, and initialize with zero parameters k and j, which
correspond to the discrete time and pattern index respectively. Once the cycle is active, the
sEMG signals acquisition is started, each received sample produces an increment of discrete-
time stamp k. When k reaches a limit of KW then the entropy are calculated. Therefore, when
k reaches a limit of 2KW then entropy flow are calculated.

The entropy flow is analyzed to find peaks; if a positive peak is found, the SVM classifier is
launched and the following decision function is applied to recognize the pattern xxxi:

Γ(xxxi) = sign
(
wwwTxxxi + b

)
(3.20)

If Γ(xxxi) = 1 the desired movement is grasp, and if Γ(xxxi) = −1 then the pattern corresponds to
release. The result of the classification is shown in the screen using an iconic image representing
the recognize gesture. Figure 3.10 shows the soft margin SVM classification flow chart.
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Figure 3.17: Pattern classification capture flow chart.
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3. Embedding grasping recognition

Then, the result of Γ(xxxi), is compared with the expected yi. If the values match, the SVM
has correctly classified the pattern xxxi As a result in the following table we summarize the rating
success for all subjects discriminating into grasp, release and general classification:

Table 3.2: Summary of lag values for all subjects.

Subject
release trials grasp trials overall

Trials Success [%] Trials Success [%] Trials Success [%]

1 20 100 20 100 40 100

2 20 95 20 100 40 97.5

3 20 100 20 90 40 95

3.5 Conclusion

We present a new movement detection method which is based on : (i) the model of sEMG
through the analysis of entropy produced during movement, (ii) the identification of movement
inception through the entropy flow, (iii) and the recognition of prehension patterns through
SVM. The proposed methodology is tested using MyoArmbandTM bracelet, performing two
experiments, one for patterns capture and one for movement recognition.

As a result, we propose a high efficiency recognition system in real-time. It operates out of
laboratory conditions. The system detects movement approximately in 245.9ms after movement
inception. The rating success for all subjects is 97.5%, and indicates that the proposed system is
able to identify with precision two grasping gestures.These results indicate that more grasping
motion can be trained even individual finger movements.
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Chapter 4

ProMain- I robotic hand control

4.1 ProMain-I Hand characteristics

The bio-inspired robotic hand prosthesis ProMain-I 1 has been developed, tested and manufac-
tured completely at the LEME laboratory. The hand has three fingers, which are disposed to
perform precision grasping, each finger has three joints: MetacarpoPhalangeal (MP), Proximal
Interphalangeal (PIP) and Distal Interphalangeal (DIP). All joints have one Degree of Freedom
(DoF) to perform flexion and extension.

Hence the Medial (M) and Distal (DP) phalanges are driven by the Proximal Phalanx (PP)
motion. The clockwise rotation of the actuator produces flexion, and the opposite rotation
produces extension. The rotation angles of the PIP and DIP joints are dependent on the rotation
angle of the MP joints, which are directly driven by servomotors. The relation between the
angles is θj2 = θj3 = 0.9θj1, where θj1 is the MP joint angle, θj2 is the PIP joint angle and θj3
is the DIP joint angle. The subindex j indicates the finger, with j = 1 for the thumb, j = 2

for the index and j = 3 for the middle finger. Likewise, lj1, lj2 and lj3 are the lengths of the
proximal, medial and distal phalanges. Figure 4.1 shows the lengths and the joint angles for the
index finger (j = 2).

Considering that the robotic hand is a under-actuated multi-link articulated chain, a partic-
ular control system based on the robotic hand kinematic model. Taking into account that the
controller requires sensory feedback, each finger is equipped with a new fingertip smart force
sensor, which produces a signal when contact with objects is detected. Description and per-
formed experimental identification of the new smart force sensor are presented in the following
sections.

The hand controller is addressed in three main stages: (i) the identification of the finger
transfer function, (ii) the position control of the finger, (iii) and the formulation of a hybrid
force-position control system. The identification of the finger takes into account the parametric
model of the ProMain-I actuator, i.e. the XL-320 DynamixelTMservo-motor, coupled with the

1Patent Number: FR1656914
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4. ProMain- I robotic hand control
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𝑙23

Figure 4.1: ProMain-I Hand with angles θji and lengths lji.

finger mechanism. The position is identified directly using experimental data obtained from
the actuator, and the fingertip force transfer function is obtained from a complete measure of
the kinematic and fingertip force. The controller and transfer function parameters are estimated
using an optimization approach.

4.1.1 Soft fingertip force sensor

The smart force sensor (1B), presented in Figure 4.2, is a new measure system whose main target
is the detection of fingertip contact with obstacles or objects during grasping movements of the
ProMain-I hand. The sensor (developed, tested and manufactured at the LEME laboratory 2)
has high sensibility detecting contact with objects and offers robust measures of fingertip forces.

The smart force sensor is composed of: (i) a soft cover (40), (ii) a fixation ring (30) for
the resistive sensor (12), (iii) a Force Sensor Resistive (FSRTM) transducer3(12), (iv) bone (20),
(v) and two support rings (50). The soft cover (40) is completely manufactured in a flexible ma-
terial, using a 3D printed mold. The fixation ring (30), the bone (20), and the two support rings
(50) are fabricated with rigid materials using a 3D printer. Table 4.1 summarizes characteristics
and main properties of selected manufacture materials.

2Patent Number: FR1655991
3FSR is a Polymer Thick Film (PTF). This sensor varies its resistance depending on how much pressure is

being exercised to the sensitive area. In our particular case the sensor used is FSR01 which has an sensing circular
area of 5mm
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4.1. ProMain-I Hand characteristics

1A

Figure 4.2: New fingertip force sensor detail view.

Device Type Example Main characteristics

Soft cover (40) Flexible: Hyper-elastic

RTV 3535
Hardness Shore A = 50

Tensile Strength = 8 MPa
Polyaddition Elongation at break = 120%

RTV 127
Hardness Shore A = 22

Tensile Strength = 3MPa
Polyacondensation Elongation at break = 380%

SRS (30)
Polylactic Acid (PLA)

Elastic (Young’s Tensile)
Bone (20) Rigid: Thermoplastic, Modulus = 3.5 GPa

Supports ring (50) Polyester plastic Elongation at break = 6%

Table 4.1: Materials of smart sensor force components.

The soft cover (40) has a unique geometry developed to transfer the force that is applied
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4. ProMain- I robotic hand control

Figure 4.3: New fingertip force sensor: Detail view of new force sensor fingertip.

on the external fingertip surface toward the FSR transducer. The Soft cover (40) geometry is
formed by: i) an envelop (44), ii) the elements (42 and 43), iii) and two drillings (49a) and
(49b). Likewise, the soft cover (40) has a internal spheric zone (47), as shown in Figure 4.3,
which gets in contact with the FRS transducer (12) when an external force is applied over the
surface (45). This internal spheric zone (47) has a circular bound, which is defined by the zone
(46) and (48).

The soft cover (40) is covering elements (20), (12) and (30) (see Figure 4.3). The support
rings (50) pieces (42 and 43) to the bone (20) through two screws placed on the drilling (49a)
and (25b). This fixation guarantees that the zones (28) and (28b) are: (i) blocked along the X
axis, (ii) and in contact with the element (22). The FSR transducer (12) is placed over the zone
(26) and is hold by the areas (34) and (32), of the fixation ring (30). The zone (26), of the bone
(20), serves as a support for the force resistive sensor (12).

The operation of the smart force sensor is influenced by four geometrics parameters as
follows: (i) the thickness E of the soft cover, which is the distance between active zone (47) and
the external surface of soft cover (45) (see Figure 4.3), (ii) the thickness H of the fixation ring
(30), (iii) the distance D between active zone (47) and the FSR transducer (12), (iv) and the α
angle formed by the bone (20) (see Figure 4.3).

Considering that the target of the ProMain-I hand is precision grasping, we set the geo-
metrics parameters as follows (see [4] for more details about the influence of geometric sensor
parameters): E = 6.6mm, H = 0.39mm, D = 0.01mm and α = 36.79◦. The α value is proposed
considering disposition of the fingers in the ProMain-I hand [1], and parameters E, H, and D
are set regarding the required sensibility of the robotic hand that is up to 6N.
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4.1. ProMain-I Hand characteristics

Experimental characterization of smart force sensor

The contact detection and the measure of fingertip forces is performed using FSR transducer
(12) that transforms the intensity of an applied pressure into a variation of electrical resistance.
Thus, we designed an op-amp based conditioning circuit to transform the resistance variation
into voltage. As a result the force can be measured as a voltage variation. Furthermore, based
on the above geometric parameter and using the selected materials (see Table 4.1), we proposed
an experiment with the objective to know the correlation between external force and output
voltage of force sensor.

Control Machine

Labview Console

Software Labview

Testing Machine

Figure 4.4: Experimental set-up.

The experiment consists in applying a known amount force over the fingertip’s soft cover
(40). The force is applied perpendicular to the FSR transducer (12) surface, guaranteeing that
the force is distributed over FSR (12). Thereafter, the voltage produces by the smart force
sensor is captured. The force is applied using a test machine Zwick/RollTM(see Figure 4.4).
The machine is set to apply forces in the range [0, 18] N. Taking into account that it is necessary
to identify the influence of the direction of application of the external force, we replaced the
clamping jaws of the machine by two supports, one is located in the upper side to apply the
force using a horizontal plane and the other one is located lower sider to allow fingertip rotation
from −20◦ to 40◦. Figures 4.5a and 4.5b show the upper support black, and the lower support
(blue) that allows finger rotation.
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4. ProMain- I robotic hand control

(a) Support fingertip without rotation. (b) Support fingertip rotation = 40◦.

Figure 4.5: Support fingertip.

The fingertip sensor is rotated by regular intervals of 10◦, from 0◦ (see Figure 4.5a) up to 40◦

(see Figure 4.5b). These rotations allow us to quantify the relationship between external forces
and output voltage for different operation conditions. We developed a data capture interface
using LabviewTMthat: (i) captures output voltage signal issued from smart fingertip force sensor,
(ii) and captures position and force signals obtained from the testing machine. The sampled
frequency is 100[Hz] for all signals.

Analysis of experimental results

We performed several trials for each fingertip’s rotation value; during each trial, we measure
the force applied by the testing machine and in the same time the voltage produced by the force
fingertip sensor. Moreover, the experiments was performed considering two flexible materials:
(i) Silicone RTV 3535 polyaddition (ii) and Silicone RTV 127 polycondensation.

Regarding the experiments performed with the soft cover manufactured using the RTV3535
silicone, we repeated six trials six times when fingertip’s rotation value is zero, four times when
rotation is 10◦ and three times in all other cases; the number of trials for the experiment at 0◦

and 10◦ are higher than others as they constitute the most frequent operation for the ProMain-I
hand [1].

The raw data is shown in Figure 4.6a, in which blue line represents the force applied by
the testing machine, and orange line represents the output sensor voltage. The raw data was
analyzed to find a experimental expression describing the relationship between the applied ex-
ternal force and the output voltage. On the basis of the obtained results, a first order equation
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4.1. ProMain-I Hand characteristics

(computed by linear regression shown in Figure 4.6b) has been used to fit experimental data as
shown in equation (4.1) below:

y(fst) = mfst + b (4.1)
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(b) Raw data experiment and its corresponding linear regression of one trial.

Figure 4.6: Experiment result of one trial.

The complete set of experiments considering all trials for different rotations is summarized
in Table 4.2. The mean value and the standard deviation for each rotation are presented. More-
over, Figure 4.7 presents the obtained results for all rotations.
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Rotation Trial
Slope m [N/V] y-intercept b [N]

Value Mean std_dev Value Mean std_dev

0◦

1 8.199

7.867 0.270

-5.014

-4.856 0.271

2 7.861 -4.723
3 7.823 -4.859
4 8.162 -5.313
5 7.594 -4.640
6 7.565 -4.592

10◦

1 8.300

7.992 0.305

-4.809

-4.814 0.320
2 8.152 -4.840
3 7.916 -5.197
4 7.600 -4.412

20◦
1 8.353

9.143 0.695
-4.830

-5.86 0.9852 9.414 -5.958
3 9.662 -6.793

30◦
1 11.313

11.08 0.211
-6.750

-6.462 0.2502 11.026 -6.3467
3 10.901 -6.2915

40◦
1 17.193

16.680 0.717
-13.385

-13.08 0.8862 15.861 -13.385
3 16.987 -13.778

−20◦
1 10.185

10.114 0.087
-7.078

-7.298 0.4892 10.016 -6.958
3 10.143 -7.86

Table 4.2: Experimental results fingertip force sensor.

Experimental results obtained considering all rotations (0◦, 10◦, 20◦, 30◦, 40◦, and −20◦)
have standard deviation regarding the calculated slope m and the ordinates-intercept b. the
lower standard desviation indicates that values m and b are clustered around a mean value that
describes the global behavior of all experiments. We found that for fingertip’s rotation of 0◦, the
slope mean value m is of 7.867[N/V] with standard deviation of the 0.270[N/V] and the mean
ordinates-intercept b is −4.856[N] with standard deviation of the 0.271[N].

In addition, the slopes values increase when the rotation increases (i.e. when the force
application plane is not parallel to the transducer surface the slopes values are higher than when
the force application plane is parallel to the transducer surface ). For instance, the case of 10◦

rotation, the mean slope value increases with respect to the values obtained at 0◦ rotation (see
Figures 4.7a and 4.7b). Similarly, the lower limit of the detected force increases, when the force
application plane is not parallel to the transducer surface. e.g. minimum detected values at 0◦

are about 6N, and at 10◦ are about 7N .
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(d) Rotation = 30◦.
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Figure 4.7: Experiment results of relation force and voltage, soft cover made of silicone RTV
3535.
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Furthermore, comparing the experiment performed at 20◦ rotation with respect to −20◦

rotation, we found that the fingertip sensor presents a symmetric behavior between positive
and negative rotations. During experiments at 20◦ rotation the mean slope was 9.143[N/V] and
experiments at −20◦ rotation the mean slope was 10.114[N/V] (see Figure 4.8 and Table 4.2).
Overall, the sensor is able to measure accurately external forces applied from −20◦ till 20◦

rotation.
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Figure 4.8: Experiment result of force applied with positive and negative inclination.

On the other hand, experiments performed using RTV 127 silicon, which is more soft with
respect to the RTV 3535, seven trial are performed at 0◦ and six for the other rotations; the more
elevated number of trials is due the higher sensibility of the sensor due to more soft material
usage. Figure 4.9 shows an example of the experiments performed and in this particular case
the fingertip has a 0◦ rotation.

Figure 4.10a shows the raw data and the polynomial regression for the experiment per-
formed at 0◦ rotation. The blue line represents the force applied by the testing machine, and
the orange line represents the output sensor voltage. Consequently, a mathematical description
is proposed aiming to find the relationship between the applied external force and the sensor
output voltage (see Figure 4.10b). Due to the observed nonlinear behavior, a third-degree poly-
nomial is considered:

y(fst) = afst
3 + bfst

2 + cfst + d (4.2)

where a, b, c, d are the polynomial’s coefficients to be experimentally identified.
The found polynomial’s coefficients values are summarized in Table 4.3. Additionally, Fig-

ure 4.11 presents the obtained results for all rotations. The standard deviation values, for trial
at 0◦, 10◦ and 20◦ rotation values, are below 9.2% for all coefficients. This standard deviation
is higher than the found for the first tested soft material, but it is still suitable for the measure of
grasping forces. Moreover, the sensitivity of the sensor is better as the measure starts at 3N.
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Figure 4.9: Experiments fingertip force sensor made of silicone RTV 127.

The standard deviation at 30◦ and 40◦ rotation values are higher than at 20◦. Furthermore,
we observed that the lower limit of the detected force increases when the force application plane
is not in parallel to the transducer surface. For example, the case at 0◦, 10◦ and 20◦ the minimum
value detected is about 3N. The case at 30◦ the minimum value is about 4N, and finally the case
at 40◦ rotation the minimum value is about 5N.
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Figure 4.10: Experiment result of one trial force applied.
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Rotation 0◦

Trial a[N/V] b[N/V] c[N/V] d[N]
1 5.044 -28.069 57.152 -34.642
2 4.710 -26.216 53.599 -32.450
3 5.328 -30.446 62.758 -38.953
4 4.496 -25.053 51.321 -30.934
5 4.015 -22.207 45.990 -28.071
6 3.827 -21.298 44.605 -27.219
7 3.595 -20.247 43.328 -26.948

Mean 4.431 -24.791 51.250 -31.317
std_dev 0.645 3.749 7.157 4.420

Rotation 10◦

1 3.725 -20.549 44.027 -27.306
2 3.910 -21.841 46.653 -28.967
3 5.270 -30.424 63.896 -40.068
4 3.948 -22.234 47.616 -29.731
5 4.231 -23.891 50.659 -31.693
6 5.232 -30.554 64.857 -41.228

Mean 4.386 -24.916 52.951 -33.166
std_dev 0.690 4.447 9.106 5.976

Rotation 20◦

1 5.515 -30.411 62.443 -38.281
2 4.099 -21.713 44.651 -26.398
3 4.579 -25.311 52.994 -32.461
4 3.855 -20.892 44.255 -26.754
5 4.132 -22.551 47.400 -28.764
6 4.360 -24.001 50.257 -30.611

Mean 4.423 -24.146 50.333 -30.545
std_dev 0.589 3.455 6.805 4.433

Rotation 30◦

1 11.245 -56.701 102.930 -58.008
2 12.258 -63.755 118.294 -69.004
3 7.105 -35.309 66.760 -38.335
4 9.164 -46.321 85.897 -49.017
5 9.111 -47.136 89.721 -52.694
6 10.212 -53.062 99.917 -58.432

Mean 9.849 -50.381 93.920 -54.248
std_dev 1.813 9.800 17.498 10.319

Rotation 40◦

1 10.423 -48.192 87.922 -48.902
2 17.302 -79.047 132.953 -71.060
3 17.936 -85.197 146.958 -80.702
4 27.217 -130.517 220.683 -120.240
5 35.721 -172.537 288.059 -155.389
6 13.790 -61.827 104.364 -55.355

Mean 20.398 -96.219 163.490 -88.608
std_dev 9.381 46.704 76.421 41.262

Table 4.3: Experimental results.
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(b) Rotation = 10◦.
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(c) Rotation = 20◦.
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(d) Rotation = 30◦.
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Figure 4.11: Experiment results of the relation force and voltage, softcover made of silicone
RTV 127.
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Comparing the results obtained when soft cover (40) are fabricated with RTV3535 and
RTV127 silicones, we find out that: (i) standard deviation obtained using RTV3535 are lower (∼
1%) than obtained during test with RTV127 (∼ 9%), (ii) the operation range of both materials
are the same, from−20◦ until 20◦, (iii) and the lower limits of the detected force using RTV127
are lower (∼ 3N) than considering RTV3535 (∼ 6N). Regarding grasping task, soft cover (40)
made of RTV127 is more suitable than RTV3535 for the ProMain-I hand because of its force
detection limits. In addition, the standard deviation founded in the experiments results are
enough for the ProMain-I hand application.

4.2 Robotic finger parametric model

The parametric modeling of the robotic ProMain-I hand prosthesis is addressed in three stages:
(i) formulation of a parametric model of the selected actuator XL-320 DynamixelTM, (ii) exper-
imental identification of actuator’s parameter, (iii) and experimental identification of the robotic
finger taking into account rotations θ1, θ2 and θ3 (of MP, DIP and PIP joints respectively) and
the applied fingertip force fj during grasping.

Consequently, in the following subsections, three stages to model and identify the robotic
finger are proposed. Taking into account that the ProMain-I hand is composed of three fingers
with the same architecture, the controllers and the models are applied to each finger of the hand.

4.2.1 Actuator transfer function

Parametric model of the actuator is based on the electric model and mechanical model. The
electric model considers the sum of the voltage produced in the circuit, that includes resistance,
inductor and internal voltage in the motor. The mechanical model takes into account the sum of
torque produced by the elements, like servomotor’s rotor and the ball bearing. Moreover, both
models are coupled, to find a mathematical model, which relates the rotation produced in the
servomotor θ(s) by the voltage applied Vin(s).

The input rotation θ1(s), which corresponds to MP joint, is provided by a XL-320 Dy-
namixel TM servomotor, which is a robotic smart actuator that integrates a DC motor, a reduc-
tion gear-box, drivers, a communication module, a controller, a torque sensor, and a position
sensor. Servomotor is represented by the block diagram shown in Figure 4.12, in which the
main blocks represent transfer functions of: (i) torque sensor Sτ (s), (ii) position sensor Sp(s),
(iii) proportional–integral–derivative controller PID(s), (iv) and direct current motor G(s).
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PID(s) G(s)

Sτ (s)

Sp(s)

τs(s)

IOIOI
R(s) εm(s) Um(s) θ(s)

θps(s)

+- ZOH

Figure 4.12: Servomotor block diagram.

The transfer function Sτ (s) represents the measure of magnitude and direction of the torque
τs(s), and the transfer function position Sp(s) depicts the measure of input angle θps(s). Both
τs and θps(s) signals are digitized and sent to the computer through the serial interface. The
computer calculates R(s), which corresponds to the desired reference angular value. The dif-
ference between R(s) and θps(s) is the error signal εm(s). This error signal is corrected through
a PID(s) controller, which output is the so-called control signal represented by Um(s). Fur-
thermore, Um(s) is the input signal of the G(s), say actuator input. The PID controller block
diagram, shown in Figure 4.13, is composed of a proportional element Kps(s), a integral ele-
ment Ki(s) and a derivative element Kds

2(s). The transfer function Gc of the PID is presented
in Equation (4.3) below:

Gc(s) =
Um(s)

εm(s)
=
Kds

2(s) +Kps(s) +Ki(s)

s
(4.3)

Kps(s)

Ki(s)

Kds
2(s)

Um(s)εm(s)
+

+
+

Figure 4.13: Proportional–integral–derivative controller block-diagram.

The transfer function of the direct current motor G(s) is determined through a parametric
model, considering electrical and mechanical behavior of the actuator. Figure 4.14 presents a
equivalent electromechanical model of a DC actuator. Electrical model considers the following
three internal elements: (i) a resistance Rdcm, (ii) a inductor L, (iii) and the electrical behavior
of the motor M . Considering that these elements are disposed in series, the same current I
flows through all the components, thus the Kirchhoff’s voltage law is written as follows:

VR + VL + VM − Vin = 0 (4.4)

91



4. ProMain- I robotic hand control
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Figure 4.14: Electro-mechanical motor equivalent model.

Furthermore, the electromotive force, which corresponds to the voltage produced by the
motor during movement, is modeled as Kiθ̇, where Ki is deduced from the Faraday’s Law, con-
sidering: (i) the number of turns in the coil, (ii) turns geometry, (iii) rotor geometry, (iv) and
magnetic field. As consequence Kirchhoff’s voltage law is reformulates as presented in Equa-
tion (4.5) below:

IR + L
dI

dt
+Kiθ̇ − Vin = 0 (4.5)

Mechanical model is based on torque equilibrium considering the following components:
(i) inertial reaction torque C, (ii) tthe ball bearings reaction torque Cb, (iii) and the motor torque
CM . ; and it is formulated as:

Cb − CM + C = 0 (4.6)

Taking into account that: (i) C = JM θ̈, being JM the motor’s moment of inertia and θ̈ the
angular acceleration, (ii) CM = KtI , being Kt the actuator torque, (iii) and Cb = bcθ̇, being bc
the damping constant of the ball bearing; equation (4.6) is reformulated as:

bcθ̇ −KtI + JM θ̈ = 0 (4.7)

Typically the coefficients Ki and Kt are considered to have the same magnitude, as a result
both are substituted by a coefficient KT . Then applying Laplace’s transformation to equa-
tions (4.5) and (4.7), the transfer function G(s) represents the relationship between the applied
voltage and the corresponding rotation as follows:

G(s) =
θ(s)

Vin
=

KT

JMs3L+ (bcL+ JMR) s2 + (KT
2 + bcR)s

(4.8)

The output of torque and position transfer functions Sτ (s) and Sp(s) correspond exactly to
the measured torque and position values. Thus both transfer functions is considered as Sτ (s) =

1 and Sp(s) = 1. Likewise, the PID controller is disable by setting the coefficients to Kp = 1,
Ki = 0 and Kd = 0. Thus, the block-diagram representation of the actuator (see Figure 4.12)
is simplified by the equivalent block-diagram shown in Figure 4.15. This simplified block-
diagram is reduced into only one block GT using the block diagram algebra, resulting in the
following transfer function:
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GT (s) =
θ(s)

R(s)
=

KT/JML

s3 + (bcL+JMR/JML) s2 + (KT 2+bcR/JML) s+ KT/JML
(4.9)

1 G(s)

1

IOIOI
R(s) εm(s) Um(s) θ(s)

θps(s)

+- ZOH

Figure 4.15: Equivalent block-diagram.

4.2.2 Actuator identification

The identification of actuator parameters (required for the governing equation (4.8)) is per-
formed using an experiment that consists in: (i) applying a step input R(s) = 300◦, (ii) mea-
suring θm(s) of servomotor using the embedded position sensor, (iii) calculating parameters
(JM , KT , L, R and bc) to fit the model proposed in equation (4.9) regarding experimental data,
(iv) and formulating the actuator transfer function substituting the found parameters in equa-
tion (4.8). Figure 4.16 presents the used experimental set-up.

Target value
𝑅[𝑠] = 300°

𝜃[𝑠]
Position 

𝜃𝑚[𝑡] → Mesure 

Figure 4.16: Experiment set-up.

The step input R(s) is sent to the servomotor using a software especially developed for
this experimentation. The software performs two tasks: (i) send the target value to the actuator,
(ii) and read the servomotor’s position value. The sent reference value and the obtained actuator
position are synchronized and stored for the post-processing analysis.

Experiment results

In order to estimate parameters JM , KT , L, R and bc of the servomotor, we solve equation (4.9)
for the angle θ(s), as a result equation (4.10) is introduced. It is to note that we substitute the
angle θ(s) by θc(s) to highlight that the resulting value is a simulation of the actuator angular
position, i.e. θc(s) corresponds to the simulated angular position in response to the step input
R(s) = 300/s.
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θc(s) =
KT/JML

s3 + (bcL+JMR/JML) s2 + (KT 2+bcR/JML) s+ KT/JML

300

s
(4.10)

Then, applying inverse Laplace transformation to θc(s), we obtain the position response in
time as θc(t) = L−1{θm(s)}. The simulated position value with respect to the time depends on
the parameters JM , KT , L, R and bc, thus it can be formulated as θc(t, JM , L,R, bc, KT ). The
simulated value θc(t, JM , L,R, bc, KT ) is compared with the experimentally measured rotation
θm(t) to compute the mean square error as follows:

δ =
1

P

∑
t

(θc(t, JM , L,R, bc, KT )− θm(t))2 (4.11)

Consequently, the parameters JM , KT , L, R and bc are calculated to fit experimental data
minimizing mean square error introduced in equation (4.11). Thus, the optimization problem is
formulated as:

argmin
JM ,KT ,L,R,bc

δ =
1

P

∑
t

(θc(t, JM , L,R, bc, KT )− θm(t))2

subject to JM > 0, KT > 0, L > 0, R > 0, bc > 0

The problem is solved using the minimization algorithm of constrained nonlinear multi-
variable functions of the MATLAB R© optimization toolbox, which uses a sequential quadratic
programming method. The obtained results are presented in Figure 4.17, in which the orange
points represent experimental data collected from the servomotors’ position sensor θm in de-
grees, and the blue line corresponds to the approximate value θc also in degrees. The yellow
line in Figure 4.17 represents the error signal along the discrete timeKT [s], which is calculated
finding the absolute difference between θm and θc.

KT[s]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-50

0
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350
θ
c
[°] Approximate θ

m
[°] Experimental Error[°]

Figure 4.17: Experimental results of the motor transfer function identification.
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4.2. Robotic finger parametric model

Table 4.4: Experimental parameters: XL-320 Servomotor.

Parameters Symbol Value
Rotor inertia JM 0.0483

Inductance L 0.0164

Resistance R 0.2168

Ball bearing bc 0.0931

Motor constant KT 0.2677

Furthermore, substituting the parameters JM , KT , L, R and bc (reported in Table 4.4 as a
result of the optimization problem) in equation (4.8) we obtain the G(s) transfer function that
corresponds to the actuator as follows:

G(s) =
0.26

0.0004 s3 + 0.0093 s2 + 0.0865s
(4.12)

Actuator control system

In this section, the tuning of proposed PID controller for the systemG(s) is introduced, the con-
trol system seeks to drives the position during grasping. The methodology to tune up the con-
troller consists in: (i) defining control conditions, (ii) establishing the desire response, (iii) and
finding the controller constants. The control conditions are taken into account to define the op-
erational boundaries of the control system. These conditions are defined regarding the object to
grasp and the prehension functionality of the robotic hand.

Regarding the object to grasp three considerations4 are proposed: (i) the object is placed
(with respect to the hand) in a position suitable for grasping, (ii) the object has the appropriate
size, (iii) and the distance to reach the object and the size object are unknown. Regarding the
functionality of the robotic hand, the only consideration is that the movement would be stopped
when the fingertip force5 reaches a value suitable to grasp the object in a steady way.

Based on the experimental observations carried out with the ProMain-I finger prototype6,
we find out that the finger response can be approximated using a second order behavior. Thus,
we define the desired response using the transfer function introduced in equation (4.13) below:

θd(s)

R(s)
=

Kω2
n

s2 + 2ζdωns+ ω2
n

(4.13)

where ζd is the damping ratio, ωn is the undamped natural frequency, K is a constant to handle
the output amplitude, and R(s) is a reference input signal.

The damping response of a second order system is influenced by parameter ζd. So that,
four types of damping responses are defined: (i) the Undamped step response obtained when

4These considerations are done considering that a user manages the prosthesis to place it in grasping position.
5The fingertip force is measured using the sensor described in section 4.1.1.
6These experiments are detailed in section 4.2.3.
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ζd = 0, (ii) the under-damped step response achieved when 0 < ζd < 1, (iii) the critically
damped step response reached when ζd = 1, and (iv) the over-damped step response obtained
when ζd > 1. Figure 4.18 shows the step response obtained changing the damping ratio ζd; the
reference signal is a step signal R(s) = 300◦/s.
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Figure 4.18: The influence of ζd.

The time response of a second order system has a strong relationship with undamped natural
frequency ωn. The higher ωn value, the faster step responses, the influence is plotted in the
Figure4.19, having the same reference signal R(s) = 300◦/s.
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Figure 4.19: The influence of ωn.
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4.2. Robotic finger parametric model

The force applied by humans during precision grasping presents a critically damped behav-
ior and a settling time of ts = 0.244s [73]. Therefore, we choose the damping ratio ζd = 1

to follow the critically damped behavior, and the undamped natural frequency ωn = 4/ts to
replicate the human settling time. The architecture of the controller Gc(s) is the same presented
in equation (4.3). Thus, kp, Ki, and Kd are calculated to fit the system to the human grasping
conditions. The block-diagram presented in Figure Figure 4.20 shows the complete feedback
control loop.

G(s)

1

IOIOI
R(s) Um(s) θ(s)

θps(s)

+ -

Kps(s)

ki(s)

kds
2(s)

εm(s)
++

+ZOH

Figure 4.20: Block-diagram scheme of the ProMain-I hand.

The system is reduced to a transfer function GT (s) = θ(s)/R(s), which is useful to compute
the system output as function of the controller constants kp, Ki, and Kd. For that purpose, the
controller is noted as Gc(s) transfer function, and the block-diagram is reduced as presented in
Figure 4.21.

G(s)

1

IOIOI
R(s) Um(s) θ(s)

θps(s)

+-
εm(s)

ZOH Gc(s)

Figure 4.21: Equivalent block-diagram scheme of the ProMain-I hand.

The equivalent transfer function GT (s) of the reduced system is computed using equa-
tion (4.14). Furthermore, the step input corresponding to reference value R(s) is formulated
as presented in equation (4.15) in which the constant K corresponds to the desired actuator
rotation and must be in the range [0◦, 300◦] respecting the actuator limits.

GT (s) =
θ(s)

R(s)
=

Gc(s)G(s)

1 +Gc(s)G(s)
(4.14)

R(s) =
K

s
(4.15)
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Therefore, operating equation (4.14) with the dc motor transfer functionG(s) (equation (4.3))
and controllerGc(s) (equation (4.12)), we obtain the transfer functionGT (s), which is operated
to calculate the output position θ(s) as follows:

θ(s) =
2600(kd s2 + kp s+ ki)

4.0 s4 + 93.0 s3 + (865.0 + 2600.0 kd) s2 + 2600.0 kp s+ 2600.0 ki

K

s
(4.16)

Then, applying inverse Laplace transformation to θ(s), we obtain the output position in
time domain as θc(t, kp, ki, kd) = L−1{θ(s)}. Furthermore, we use the notation θc(t, kp, ki, kd)
to highlight that the resulting value is a simulation of the controlled angular position (i.e.
θc(t, kp, ki, kd) corresponds to a simulation of the controlled angular position in response to
the step input R(s) = K/s).

Similarly, we calculate the desired output position, calculating the inverse Laplace transfor-
mation to θd(s). As a result, we find θd(t)that corresponds to the desired output position in time
domain. Subsequently, mean square error δPID between the simulated θc(t, kp, ki, kd) and the
desired θd(t) output signals is computed as follows:

δPID =
1

P

∑
t

(θc(t, kp, ki, kd)− θd(t))2 (4.17)

Thus, the controller constants are calculated using the following optimization problem:

argmin
kp,ki,kd

δPID =
1

P

∑
t

(θt,kp,ki,kd − θd(t))2

subject to kp > 0, ki > 0, kd > 0

The problem is solved using the minimization algorithm of constrained nonlinear multi-
variable functions of the MATLAB R© optimization toolbox, which uses a sequential quadratic
programming method. Figure 4.22 presents the step response of the controlled system, the blue
line is the simulated response of the controlled system, the yellow dashed line is the desired be-
havior and the red markers is the experimental measure of the controlled actuator. The obtained
values of the PID constants are presented in Table 4.5.

t[s]
0 0.2 0.4 0.6 0.8 1

-200

0

200

400

Measured Simulated Desired

θ[
◦ ]

Figure 4.22: Step responses of controlled servomotor.
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Table 4.5: Parameters servomotor control.

Parameters Symbol Value
Proportional constant kp 0.8566

Integral constant ki 0.0191

Derivative constant kd 0.0439

4.2.3 Robotic finger identification

The ProMain-I hand has three fingers: thumb, index, and middle. Each finger has the same
architecture, number of phalanges and joints. Likewise, joints are notated by subscripts i (i.e.
i = 1 represents MP joint, i = 2 PIP joint and i = 3 DIP joint). The kinematic model of the
ProMain-I hand [6] uses a subindex j to distinguish fingers, however, for the sake of simplicity
and considering that all fingers have the same behavior, we do not use this subindex7 j here.

Each finger of the ProMain-I hand is controlled only by one servomotor that is mechanically
coupled with the MP joint. The PIP and DIP joints of the finger are driven by a tendon-driven
mechanism that guarantee a angular relation between joints given by θ2 = θ3 = 0.9θ1, in
which θ1, θ2, and θ3, are joint angles of MP, PIP and DIP joints respectively. Moreover, the
force applied by fingertip is only present when the finger is in contact with an object or an
obstacle. Thus, the identification of one finger aims to find a set of transfer functions to model
the relation between the input angle θ(s) produced by the actuator and: (i) the joints rotation
θ1, θ2, θ3 (ii) and the force fj(s) produced during grasping task. Consequently, we define the
following transfer functions:

kθ1 =
θ1(s)

θ(s)
= 1 (4.18)

kθ2 =
θ1(s)

θ(s)
= 0.9 (4.19)

kθ3 =
θ1(s)

θ(s)
= 0.9 (4.20)

Gf (s) =
fj(s)

θ(s)fc(s)
(4.21)

The first three represent MP, PIP and DIP joints rotation, and are based on the fixed mechan-
ical rotation relations. The last one represents the relation between the fingertip force fj(s), the
input angle θ(s), and the object contact modeled as fc(s). Figure 4.23 shows the block-diagram
that represent the finger model.

7The proposed models and the identification methodology are used for all fingers, the subindex j is not used
only to simplify notation
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kθ1(s)

kθ2(s)

kθ3(s)

G(s)
θ(s)Um(s) θ1(s)

θ2(s)

θ3(s)

Gf (s)
fj(s)

Figure 4.23: Block-diagram of joint angles and fingertip force.

4.2.3.1 Experimental identification of Gf (s)

The force fj(s) produced during grasping tasks is influenced by input angle, and the position of
the object. Thus, an experiment to measure finger position and force is required.

Therefore, we designed a test platform in which a finger prototype is equipped with white
markers placed over joints that are tracked using a high-performance 4 megapixel CCD camera
Prosilica GE-2040. Figure 4.24 shows the experimental setup. A force sensor 8 is placed in
a support located in the fingertip trajectory, so that, during the movement the fingertip gets in
contact with the force sensor and the applied force is measured. A software to drive the finger
and synchronize measured data has been developed. The software controls the finger to produce
finger flexion until the finger gets in contact with the force sensor, and finally repositioning the
finger. Several trials have been performed. Figure 4.25 illustrates the force measure procedure.

Image processing

Figure 4.24: Set-up tracking position of the robotic finger articulations.

8The sensor is a FSR transducer Flexiforce R©
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Force Sensor

Force measuring

Servomotor control

Sensor circuit
Oscilloscope

Arduino Card

Figure 4.25: Set-up fingertip force.

Detection of joints position and angles

The images obtained from the camera are analysed with the aim of find the white markers
positions that correspond to the joints position. The image processing follows these steps:
(i) transformation image into a gray scale as shown in Figure 4.26b, (ii) detection of image
edges as shown in Figure 4.26c, (iii) and find the position of white markers in the image apply
Hough transform, see Figure 4.26d. Figure 4.27 shows a flexion cycle during four samples t[s].

(a) Original. (b) First step. (c) Intermediate step. (d) Final step.

Figure 4.26: Image processing to track link.
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Figure 4.27: Position of the robotic finger articulations during flexion.

Once the position of each market is recognized, following three vectors linking joints are
defined: (i) vector ~r1 between the MP and PIP joints, (ii) vector ~r2 between the PIP and DIP
joints, (iii) and vector ~r3 between the DIP joint and fingertip. These vectors are used to calculate
rotation angles θi as:

θi = arccos

(
~ri · ~ri−1

‖ ~ri ‖‖ ~ri−1 ‖

)
(4.22)

The first angle θ1 is calculated with respect to a reference positive vertical unitary vector
~r0 = {0, 1, 0}. As a result, we found that the relation between angle variation in all joints
are constant in time. The experiment is repetitive and corresponds to the mechanical design.
Furthermore, MP joint motion range is [0◦, 50◦], PIP and DIP joints motion range are from
[0◦, 45◦], as is shown in Figure 4.28.

Figure 4.28: Set-up tracking position of the robotic finger articulations.
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Identification of fingertip force

In order to identify the force as a non-parametric9 transfer function Gf (s), we analyze the
measured angle θi and fingertip force fj(s) performed during the experiments. The measured
fingertip force presents an overshoot as is shown in Figure 4.29, wherein blue lines correspond
to the measured force fj(t)[N] and orange lines tag the period whereby fingertip and the sensor
are in contact.

Fingertip force

0 100 200 300 400 500 600

1.5

1

0.5

0

t[s]

f f
t[

N
]

Figure 4.29: Experimental results fingertip force.

The fingertip force is modeled as transfer function Gf (s) (see Equation (4.21)) in which:
the output is the fingertip force fj(s) and the inputs are the angle θ1(s) and the contact fc.
The contact fc is considered as an input. Moreover, the input of the transfer function Gf (s) is
simplified to the angle increment ∆θ(s) as:

∆θ(t) =

0 if 6 ∃fc
θ(t)− θ(tc) if ∃fc

(4.23)

where tc is the contact occurrence time.
Consequently, transfer function Gf (s) is formulated as a second order dynamic system con-

sidering: an fingertip force gain kop, a natural undamped frequency ωnf , and a damping coeffi-
cient < 0ζf < 1. and Gf (s) is formulated as:

Gf (s) =
fj(s)

∆θ(s)
=

kopωnf
s2 + 2ζfωnf s+ ω2

nf

(4.24)

9The non-parametric estimation of dynamic system response uses time-domain correlation analysis of experi-
mental to generate a model in the form of a transfer function.
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The coefficients kop, ωnf , and ζf of the transfer function Gf (s) are approximated fitting the
experimental measures fjm(t) (shown in Figure 4.29) and the approximated fjc issued from
equation (4.24). Therefore, we propose an objective function based on the mean square error
between the experimental results an the simulated force as follows:

δfiden =
1

L

L∑
i=0

(fc − fd(t))2 +
Kp

L

L∑
i=tss

(fc − fd(t))2 (4.25)

where, L represents the total duration of the experiment, tss is steady state begin time, and Kp

is a constant used to emphasize the importance of steady state response.

The value Kp is set to zero is no special attention is presented to the steady state value, and
can be incremented to better fit steady state response the transfer function. Thus, the optimiza-
tion problem is formulated as:

argmin
ζf ,ωnf ,kop

1

L

L∑
i=0

(fc − fd(t))2 +
Kp

L

L∑
i=tss

(fc − fd(t))2

subject to 0 < ζf < 1

0 < ωnf < 40

0 < kop < 30

The numeric problem is solved using fmincon Matlabrfunction, as shown in Figure 4.30
wherein: (i) experimentally measured force fd is represented by blue crosses, (ii) yellow line
depicts the contact, (iii) simulated force is represented by purple line, and (iv) ∆θ(t) is repre-
sented by the orange line. The precision in steady state is increased setting Kp = 100.

0 1 2 3
0

0.5

1

1.5 fd[N]
Contact [logic]

∆θ [rad]
Simulated Force [N]

t[s]

Figure 4.30: Identifications results.
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Table 4.6 shows the results of the no-parametric identification of Gf (s). Furthermore, the
definitive transfer function Gf (s) is formulated as follows:

Gf (s) =
fj(s)

∆θ(s)
=

13.2669

s2 + 26.5338s+ 217.2671
(4.26)

Constants Symbol Values
Gain kop 30.0

Damping ratio ζ 0.9
Natural frequency wnf 14.741

Table 4.6: Results for Gf (s) transfer function.

4.3 Optimized finger controller

Once all the transfer function are defined, we proposed the complete control scheme. We
pointed out that: (i) force reference is denoted by Rf (s), (ii) error force is denoted by εf (s),
(iii) force controllerGcf (s) produces an output ∆θ, which is the angle increment required to reg-
ulate force during graping, (iv) and the angle feedback is performed with Uθ1(s) as it matches
the actuator angle value, the complete control system is presented in Figure 4.31.

Rf (s) εf (s)

Gcf (s)

U∆θ(s)

R(s)

εm(s) Um(s)

θ2(s)

θ(s) θ3(s)

θ1(s)

∆θ(s) fj(s)

+
-

+
+

-
Gc(s) G(s) 0.9

0.9

1

Gf (s)

Figure 4.31: Block-diagram of control Promain-I robotic hand control.

The control variables are θ(s) and fj(s), as consequence, we formulated a force-position
hybrid control. The controller consists of two closed loops, one using Gcf (s) and other using
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4. ProMain- I robotic hand control

Gc(s), in which the controller signals are U∆θ(s) and Um(s), respectively. The input signal of
Gcf (s) is εf (s), which is the force error value and is issued from the difference between force
reference value Rf (s) and the fingertip applied force fj(s). In other words, force error value is
the difference between the desired and the actual forces.

The error εm(s) results from the difference between of θ1(s) and the sum of U∆θ(s) signal
and R(s). Notably, it is also the difference between the actual θ angle value and commanded
angle after controller’s correction, considering not only the position ideal value but also the
force ideal value.

In addition, the internal closed-loop controls the θ(s) values thanks to the controller Gc(s),
which provides the control signal Um(s) to the G(s) plant in oder to generate a corrective input.
The loop is feeding with the θ1(s) value, with the aim to (i) predict how the G(s) plant will
function in future updates, (ii) and make corrections in the present state based on previous
evaluations.

The external closed-loop controls the fj(s) values, through theGcf (s) controller. The output
of the controller is the U∆θ(s) signal. This signal causes a perturbation on the internal closed-
loop providing a corrective input signal that also affects the θ1 variable. This configuration
based on feedback feeding improves the overall system performance.

In order to established the controller for the robotic finger, we followed these methodology:
(i) defining of the motion and force specifications, (ii) modeling all the elements which are
involved in the system, such as G(s), Gf (s), kθ1(s), kθ2(s), and kθ3(s), which are presented in
subsections 4.2.1, 4.2.2, and 4.2.3, (iii) proposing the controller structure, and (iv) simulating
the overall system.

Motion and force specifications

The first step toward the control of robotic finger consist in establishing the desired response
of the robotic finger. According to global control architecture presented Figure 4.31 as block-
diagram presented previously, it is required to establish two ideal responses: one for position
(angle), and one force. In both cases, the damping ratios are ζR(s) = ζRf (s) = 1 to guarantee a
critical response, and the natural frequency of the system is set wnR(s)

= wnRf (s) = 20, which
is higher than human grasping requirements [73]. Figure 4.32 presents the waveform of the
desired outputs signals.
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Figure 4.32: θ(s) and fj(s) desired response, represents by blue lines.

Controller structure

The hybrid force position controller is composed of two control loops, each loop is composed of
a PID controller. The position controller (internal loop) is the one formulated inequation (4.3).
The force controller is designed considering first-order filter on derivative term as follows:

Gcf (s) =
U∆θ(s)

εf (s)
=

(Kd + tf )s
2(s) +Kps(s) +Ki(s)

s
(4.27)

The controller tunning procedure is the same as in previous sections and can be sumarized
as follows: (i) the global system is reduced to a Multiple-Input Multiple-Output (MIMO) trans-
fer function; the inputs are reference values of force Rf (s) and position R(s) and the outputs
are finger rotation θ(s) and applied force fj(s), (ii) the reduced (MIMO) transfer function is
simulated to obtain calculated values of θs(s) and fsj(s), (iii) the values θs(s) and fsj(s) are
compared with desired responses to obtain objective function corresponding to the sum of po-
sition δp and force δf mean square errors, (iv) and the controller constant are calculated solving
a optimization problem that minimize the computed mean square error.

The optimization problem that minimizes the mean square error regarding force is multi-
plied by a constant Kp. The sum Kfδf + δp defines the position controller constants (kpp, tf ,
kip, and kdp) and force controllers constants (kpf , kif , and kdf ) which are constrained to guaran-
tee positive constant values. The constant Kf is used the enhance the importance of the force
control over the position control, which is important considering that during grasping the ob-
ject size is unknown and the finger can stop the motion when the fingertip force is detected
even before reaching the goal position. The following equation (4.28) presents the optimization
problem:

argmin
kpf ,kif ,kdf ,tf ,kpp,kip,kdp

Kfδf + δp

subject to kpf > 0, kif > 0, kdf > 0, kpp > 0, kip > 0, kdp > 0, tf > 0

(4.28)
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4. ProMain- I robotic hand control

Simulating the overall system

In the following the simulation of the complete hybrid control is presented. The obtained re-
sults are based on the experimental analysis performed with the finger prototype. The transfer
function is transformed into difference equation using the discrete-time differential operator D
introduced in section 3.3.2.2. In our case, the parameter µ is set to 1, assuring that the derivative
is causal (i.e it is calculated based on the past and current values). Consequently, the discrete-
time differential operator used is the proposed in equation (3.11).

Figures 4.33a and 4.33b present the simulation of the closed-loop response before launching
our hybrid force position controller. The blue lines correspond to the force fj(s) and angular
position θ(s) responses and yellow lines are the desired responses. Clearly, the finger motion is
stopped approximately at 0.8 rad when the finger gets in contact with the object, and the force
presents an overshoot after contact of approximately 180% with respect to the desired value.
This overshoot implies the appliance of the double of the desired force over the object during
grasping.
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(a) Non-controlled closed loop for angular position
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(b) Non-controlled closed loop for fingertip force
response fj(s).

Figure 4.33: Non-controlled closed loop force-position responses.

The force and position controllers, described in equations (4.3) and (4.27) that solve the
optimization problem introduced in equation (4.28), are launched to control force-position re-
sponses of the finger. The controlled force-position responses are presented in figures 4.34a
and 4.34b, wherein blue lines correspond to the force fj(s) and angular position θ(s) responses
and yellow lines are the desired responses. Clearly, the position error in steady state is about
two times higher than the non-controlled position error, but the force overshoot is considerably
reduced guaranteeing a low steady state force error.
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(a) Controlled angular position responseθ(s).
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(b) Controlled fingertip force response fj(s).

Figure 4.34: Controlled closed loop force-position responses.

Regarding the control signal of the force controller, it is interesting to note that in steady state
it has a negative value as shown in Figure 4.35a. This negative value of U∆θ(s) corresponds
to the value subtracted to the reference position value in steady state (see Figure 4.31) that
increases the error position but produces a lower overshoot guaranteeing a force steady state
error that tends asymptotically towards zero as shown in Figure 4.35b.
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Figure 4.35: Force error and control signals during closed loop hybrid control.

4.4 ProMain-I Hand control

The hybrid force-position controller designed and tuned in previous sections is implemented
using a software interface developed using c++. The interface allows a user to calibrate the fin-
gertip force sensors and to normalize force values. Furthermore, the software allows to control
each finger individually and to perform open-close hand gestures allowing the prehension of
different objects.

The reference values Rf (s) and R(s), are defined according the desired movement intro-
duced by the user; the sensor values are captured using an analog to digital converter imple-
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4. ProMain- I robotic hand control

mented in an Arduino card (integrated in the robot forearm); the force and position errors are
calculated at each iteration, and then transmitted to the robot through a serial bus together with
the force control signal computed using equation (4.27). As a result, we achieve the grasping
gestures shown in Figures 4.37 to 4.42, 4.47 and 4.48. during grasping the force reference is set
to hold the object in steady way and is controlled to stop motion when the object is grasped.

Figure 4.36: Software interface of the controller.
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4.4. ProMain-I Hand control

Figure 4.37: Grasping gesture 1 (a).
Figure 4.38: Grasping gesture 1 (b).

Figure 4.39: Grasping gesture 2 (a). Figure 4.40: Grasping gesture 2 (b).

Figure 4.41: Grasping gesture 3. Figure 4.42: Grasping gesture 4.
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4. ProMain- I robotic hand control

Figure 4.43: Grasping gesture 5 (a). Figure 4.44: Grasping gesture 5 (b).

Figure 4.45: Grasping gesture 6. Figure 4.46: Grasping gesture 7.

Figure 4.47: Grasping gesture 8. Figure 4.48: Grasping gesture 9.

4.5 Conclusion

We present the ProMain-I hand characteristics, and the new smart force sensor, which has been
designed and manufactured (in the LEME laboratory) to implemented the feedback force loop.

Several experiments are carried out to characterize the new sensor, we find the relation
between the external applied force on the smart sensor and the obtained sensor voltage, these
experiments are performed using a testing machine. Additionally, we test two type of soft
materials, RTV3535 and RTV127.
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4.5. Conclusion

As a result, we find that the lower limit of the detected force using RTV3535 is ≈ 5N and
using RTV127 is≈ 3N. As a consequence, the selected soft material is RTV127 due to its more
suitable sensibility.

Subsequently, we introduce the robotic finger parametric model to characterize the finger in
force and position. Then, we design a optimized finger controller. Finally we propose a force
position-hybrid controller. As a result, we achieved to perform grasping gestures setting the
force reference to hold the object in steady way.
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Chapter 5

ProMain- II Soft Hand

5.1 Robotic Soft Hands

Soft robotics [18] is a new research field, that considers : (i) the use of soft materials such
as elastic, flexible or deformable bodies, (ii) the increment of degrees of freedom with respect
to conventional materials, (iii) the use of unconventional materials, like shape memory alloys,
thermoplastic polymer or electro-active polymers, (iv) and the innovation regarding mechanism,
which is the case of the under-actuated hands, for instance the Laval hands [74].

(a) Soft Hand based on flexible
micro-actuator [75]. (b) RBO Hand [17].

Figure 5.1: Soft hands (part A.)

Wakimoto et al. [75] developed a soft hand based on a flexible micro-actuator, as shown in
Figure 5.1a. It is composed of fiber-reinforced rubber structure with multi air chambers. The
working principle is to inject air in rubber structures chambers, producing bending motion.

Considering the uses of pneumatics continuum actuators, RBO hand [17] was designed
using a pneuflex, as shown in Figure 5.1b, that has a high compliance with grasped objects. The
main advantages of this hand are: (i) robust to impact, (ii) and safe.

ROBIOSS hand is a fully-actuated and endowed with 16 DoF, as is shown in Figure ??. The
hand has four fingers, each one with four DoF actuated by four DC actuators using a driving
mechanism with an elastic transformation[76].

Pisa–IIT SoftHand [16, 77] is an under-actuated hand, as illustrated in Figure 5.2a that is
built on the motor control principle of synergies [78]. This concept allows grasping objects with
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5. ProMain- II Soft Hand

a single motor. The mechanism consists in a tendon routing and elastic bands at the joints. The
hand is simple, adaptable and robust. These characteristics enable to grasp several number of
objects.

(a) ROBIOSS Hand [76] (b) Pisa–IIT SoftHand [16, 77].

Figure 5.2: Soft hands (part B.).

The synergy concept is mainly defined as [79]: (i) postural synergies, which are related to
the description of the complete act of grasping using a small number of hand gestures, (ii) kine-
matic synergies, which studies joint angular velocities using a small number of linear combina-
tions ok kinematic chain parameters extracted from the non-limited hand movements. (iii) and
dynamic synergies that are the correlation between joint torques during precision grip move-
ments.

Summarizing, the main advantages of the soft robotics hand are: (i) compliant dexterous ma-
nipulation, (ii) safe interaction, (iii) low mechanical impedance, (iv) robust to impact, (v) high
flexibility and adaptability, (vi) and low cost.

5.2 ProMain-II Hand characteristics

The soft robotic hand ProMain-II1 [5, 73], has been designed and developed completely in the
LEME laboratory. It is created with the aim to increases the compliant of the hand, considering
flexible materials in the structure. It has three fingers disposed to carry out precision grasping.
Each finger has tree joints: MP, PIP and DIP. MP and PIP joints are driven by tendons and
each one has one DoF. MP is actuated by a servomotor XL-320 DynamixelTM, and DIP joint is
dependent on the rotation angle of the MP joint. PIP joint is a flexible link, which is made of
elastic material. It has a several number of DoF due to their flexible body.

1The hand mechanism includes a smart material, particularly a shape memory alloy wire. We can controller
the stiffness of the wire, influencing the grasping task.
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5.2. ProMain-II Hand characteristics

(a) Anterior view Hand. (b) Posterior view Hand.

Figure 5.3: ProMain-II Soft Hand.

5.2.1 Soft robotic finger

The soft link (1B) consist of three elements: (i) supports (10) that have elements (10a) and
(10b), (ii) support (20), that have elements (20a) and (20b), (iii) and soft body (30), as shown in
Figure 5.4. The elements (10) and (20) are made of rigid material like PolyLactic Acid (PLA),
the soft body is made of flexible material like silicone RTV 3535, as illustrated in Figure 5.5.
The rigid parts are manufactured employing a 3D Printer. The soft body is fabricated through a
mold in two parts.

1B

Figure 5.4: Assembling of soft link.
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5. ProMain- II Soft Hand

Rigid: PLA

Rigid: PLA

Soft: RTV 3535  

Figure 5.5: Soft joint.

The elements (10a), (10b), (20a) and (20b) have the same shape and size; 2, the detail view
is illustrated in Figure 5.6. It has an cavity (11) and a ribbing (12), both elements work together
to fix the soft body (30). Furthermore It has a drilling (40) that keeps in place elements (40)
and (30). The soft body (30) is detailed in Figure 5.7a. It has three sections (32), (36) and (34).
The section (32) is in contact with the section (11) of the elements (10a) and (10b). Similarly
element (34) is also in contact with the section (11) of the elements (20a) and (20b). The section
(33) is in contact with support (10a) and (10b), likewise the section (35) with supports (20a)
and (20b), as shown in Figure 5.7a and 5.7b.

Figure 5.6: Detail view Support(10a).

2The elements could have others dimension depend on the specific application
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5.2. ProMain-II Hand characteristics

𝜃3

(a) Soft body elements (30).

1B

𝛾3

(b) Assembling soft body (30) and supports
(10) and (20).

Figure 5.7: Soft link (1B).

The angle θ3 is formed by the axes S1 and S2. In addition, the section (36) has two arches,
which are influenced by the angle θ3. The γ3 is formed by the element (14) and (24) as is
illustrated in Figure 5.7b 3. γ3 angle limits the torsion of soft body (30), in both direction
positive and negative. Positive torsion appears when γ3 increases its value. It occurs because
the elements (10) and (20) are: (i) located opposite each other, (ii) and made of rigid material.
Moreover, the performance of the soft link are mainly influence by: (i) soft material selected,
and (ii) θ3 and γ3 angles.

The soft link is placed in the robotic finger that influences, the manipulation objects are also
influence. Thus, the hand compliance level is influences by: (i) the hardness of flexible material,
4 allowing PIP joint additional rotations in all directions, (ii) and the γ3 and the θ3 angles values
depends on the grasped object.

Experiment: Tracking position

The proposed experiment seeks to measure the position of each joint. Tracking position is
similarly carried out as in Section 4.2.3.1. Thus, a platform is designed and manufactured. The
platform supports a servomotor and a soft robotic finger. The soft robotic finger has two rigid
joints: MP and DIP, and one soft link PIP. The servomotor is controlled through the software
implemented using an Arduino Card. The software performs several repetitions of flexion and
extension, at the same speed and torque. Moreover, a high-performance 4 megapixel CCD

3The geometry is completely described in the patent document [2]
4In this case the soft link is made of RTV 3535
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5. ProMain- II Soft Hand

camera Prosilica GE-2040 is selected with the aim to track circular markers placed on the finger
joints and the fingertip, as shown in Figure 5.8.

Image processing

MP

PIP

Servo Motor

Soft Link DIP

Figure 5.8: Set-up tracking position of the soft robotic finger articulations.

(a) Original. (b) First step. (c) Intermediate step. (d) Final step.

Figure 5.9: Image processing to track links.

Once the desired images are obtained, a methodology is performed to process the images
with the aim to recognize markers. The image processing follows these three steps: (i) trans-
forming in gray scale digital images (see Figure 5.9b), (ii) detecting edges (see Figure 5.9c),
(iii) applying Hough transform to find marker in the image (see Figure 5.9d).

Then, it is calculated for each finger segment, and consequently, the angle formed by these
segments during flexion and extension Figure 5.8 illustrates MP and PIP joints. The α3 angle
that corresponds to the bending articulation (DIP), is described in of Figure 5.7a.
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5.2. ProMain-II Hand characteristics

Results

Several cycles of flexion and extension are performed. Figure 5.10 shows the sequence of the
flexion. Once the position of each marker is recognized, following three vectors linking joints
are defined: (i) vector ~r1 between the MP and PIP joints, (ii) vector ~r2 between the PIP and 20a
element of soft DIP joints, (iii) and vector ~r3 between the 10a element of soft DIP joints and
fingertip. These vectors are used to calculate rotation angles θi as in equation 4.22.

Figure 5.10: Position of the robotic finger articulations during flexion.

The first angle θ1 is calculated with respect to a reference positive vertical unitary vector
~r0 = {0, 1, 0}. As a result, we found that the relations between angle variation in all joints
are constant in time. The experiment is repetitive and corresponds to the mechanical design.
Furthermore, MP joint motion range is [18◦, 68◦], PIP joints motion range is from [2◦, 56◦],
DIP soft link is represented as a link3bending(DIP ) and its range motion is from [18◦, 4◦], as
shown in Figure 5.11.

This results shown that the α of link3bending(DIP ) decreases when the fingertip gets in
contact with the obstacle. As consequence, α angle linking bending depends on the object
grasped that is unknown. These results support the idea that the use of a soft link increases the
compliance of ProMain-II hand. Moreover the compliant level could be modified considering:
(i) selection of the constitutive element of soft body (30); (ii) the soft link geometry, for instance
θ3 and γ.
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Figure 5.11: Angles performed during flexion/extension soft robotic finger.

5.2.2 Conclusion

We present the ProMain-II hand in which we describe a new soft link. We carried out an
experiment for assessing the behavior of the soft link when the finger gets in contact with the
obstacle. As a result, we found that the soft link performs bending from 18◦ till 4◦ duringthe
experiments. This preliminar analysis allow us to identify: (i) a reduction in the overshoot of the
PIP joints[3] when the finger gets in contact with objects, (ii) the finger has a self adaptability
according to the object shape, (iii) and we identify a soft behavior represented by the bending
of the soft link during contact. As a consequence, the level of compliance of our robotic finger
increases using the new soft link.
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

One of the target of the present research is to asses the feature behavior during upper limb
motion, we have developed a novel approach that allows to established relation between the
feature of sEMG and the kinematic motion. Furthermore, we propose the criterion to chose the
best set of features calculating the maximum distance between the nearest values of each couple
of feature. We have analyzed the performance of five features mean absolute value, mean value,
harmonic, entropy and mean frequency. This study has identified that entropy and the mean
frequency features show the best fitness among mean absolute value, mean value, and harmonic
mean. Moreover, the maximum feature values are found in the range from 1m/s to 2m/s. In
contrast, the features variations at a higher speeds are not significant. It is highly recommended
to selected features with a low computational cost which is a relevant consideration in real time
applications, such as the control of a prosthesis hand based on sEMG.
We have proposed propose a methodology to identify upper limb motion based on patterns that
come from sEMG produced during motion. The produced scheme consists of: (i) extracting
features from sEMG produced during motion, (ii) normalizing features, (iii) performing linear
or non-linear SVM with σ and C optimized values. As a result the classification scheme has
a high accuracy. Moreover, the proposed model can be used out of laboratory conditions with
healthy and amputee patients.

Wearable technology are one of the most important advance to human machine interface.
We selected a MyoArmbandTM device in order to test in real time: (i) the novel model to detect
the inception of movements based on sEMG through the entropy and entropy flow measurement,
to find automatically the movement inception (ii) and the grasping gesture classification scheme
using entropy feature and Support Vector Machine. Furthermore, we developed a new interface
human-machine in real time out of laboratory condition which is able to identify with 97.5%
accuracy two hand gestures, using a wearable device. The results of this methodology proves
that the idea of considering only sEMG signals produced during motion is a right choice.

We present the new ProMain-I Hand. The hand has a new tactile smart sensor which allows
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to know the force applied by fingertips. Moreover, we present the characterization of the sensor
in different operational conditions, establishing the relation between applied force and measured
force. Then, we propose the following models: (i) a parametric model for the ProMain hand
servomotor, (ii) a experimental model for the finger position and finger force, (iii) and a hybrid
model to control fingers position and fingertips force. As consequence, the synergy among the
proposed model allows prosthesis hand to perform grasping gestures in steady way.

Finally, the new Soft hand ProMain-II is introduced describing its characteristics and partic-
ularly its new soft link. Moreover, several experiments have been carried out in order to assess
the performance of the soft link when it gets in contact with objects. The preliminary tests show
that the hand has the habitability to mold itself to the grasped objects.

6.2 Perspectives

Further research could also be conducted to validate the proposed methods in amputated patients
even when they have lower level of sEMG produced in the remained muscle, with or without
phantom sensation. Moreover, integrating into the present classification scheme other input
sensors such as inertial measurements units could be an interesting approach to improve the
way in which amputated and healthy patients interact with computers. On the other hand, an
interesting approach regarding pattern classification is related to the increment of the number
of recognized gesture with an automatic classification process, which leads to the possibility of
individual finger movements recognition that is still a challenge.

Additionally, the new soft hand ProMain-II, which is composed of Shape Memory Alloy
(SMA) wires tendons, requires the development of a control strategy including the control of the
smart materials, particularly SMA. This control enables the tendon stiffness adaptation allowing
an improvement in the force and position behavior of the finger. The new control strategy
must take into account: (i) position control considering perturbations issued from the stiffness
changes, (ii) force control considering perturbations issued from the stiffness changes, (iii) and
also a feedback of the stiffness to control wires. This new control strategy will be integrated
into the overall system. Additionally, exploring the use other types of smart materials such as
IPMC, in soft robotic hands as driven mechanism is an other exciting approach.

Furthermore, we plan to modify the stiffness of the soft link, handling the structure of soft
materials through 3D printing techniques. The inner material structure can be modified setting
printing parameters, e.g. infill patterns, which implies having different stiffness in the same soft
link. Consequently, the bending can be restricted in the desired direction or directions. This
provides a framework for the exploration of hybrid stiffness bodies in the soft robotics field.

The prototypes of the ProMain prostheses must be evaluated in amputated patients to test
the acceptability, the medical and the psychological implications. This study must be developed
in an interdisciplinary context and the result are valuable to improve the prosthesis providing
and suitable rehabilitation device.
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