

200 av. de la République 92001 Nanterre Cedex www.u-paris10.fr Ecole doctorale 139.
Connaissance, langage,
modélisation
EA4416

Laboratoire Energétique Mécanique Electromagnétisme (LEME)

Membre de l'université Paris Lumières

Jean LEMAIRE

Évaluation de la vulnérabilité sismique du bâti existant selon l'Eurocode : Essai méthodologique et application au cas de Mulhouse – Bâle

Volume 2 - Annexes

Thèse présentée et soutenue publiquement le 12/02/2018 en vue de l'obtention du doctorat de **Génie informatique**, **mécanique**, **génie civil** de l'Université Paris Nanterre

sous la direction de M. Luc DAVENNE (Université Paris Nanterre)

Jury:

Ahmed MEBARKI Rapporteur

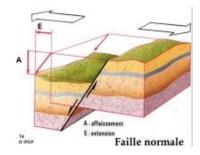
Sidi- Mohammed ELACHACHI Rapporteur

Yvette VEYRET Examinateur

Myriam MERAD Examinateur

Pierre MOUROUX Examinateur

Philippe SABOURAULT Examinateur


Luc DAVENNE Directeur de thèse

ANNEXES

- Annexe Chapitre 1
- Annexe Chapitre 2
- Annexe Chapitre 3
- Annexe Chapitre 4
- Annexe Chapitre 5
- Annexe Chapitre 6

ANNEXE - CHAPITRE 1

Faille normale

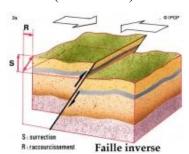

Escarpement de la faille normale séisme de Fuyun, Chine-Mongolie M=8 du 11 août 1931

Figure A 1 : Faille normale, l'exemple du séisme de Fuyun en Chine

Source : Documents pédagogiques, E.O.S.T Strasbourg

Faille inverse

(subduction)

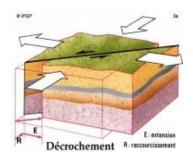

Escarpement de la faille inverse séisme d'El Asnam Algérie M=7,3 du 10 octobre 1980

Figure A 2 : Faille inverse, l'exemple du séisme d'El Asnam en Algérie

Source : Documents pédagogiques, E.O.S.T Strasbourg

Faille transformante

(Décrochement)

Faille décrochante du séisme de Luzon, Philippines, M= 7,7 du 16 juillet 1990

Figure A 3 : Faille transformante, l'exemple du séisme de Luzon aux Philippines

Source : Documents pédagogiques, E.O.S.T Strasbourg

ANNEXE – CHAPITRE 2

La règlementation française de réduction du risque sismique est intégrée à la gestion des risques naturels en générale. Elle s'articule autour de l'information des populations habitant les zones à risques, de la définition et de l'application des règles de construction et d'aménagement du territoire pour réduire la vulnérabilité et l'exposition au risque.

REGLEMENTATION

COMMENTAIRES

La loi n° 82-600 du 13 juillet 1982 modifiée, relative à l'indemnisation des victimes de catastrophes naturelles (art. L 125-1 à L 125-6 du code des assurances).

Cette loi précise dans son article premier :

Art 1 – Les contrats d'assurance, souscrits par toute personne physique ou morale autre que l'État et garantissant les dommages d'incendie ou tous autres dommages à des biens situés en France [...] ouvrent droit à la garantie de l'assuré contre les effets de catastrophes naturelles sur les biens faisant l'objet de tels contrats...

La loi n° 87-565 du 22 juillet 1987 relative à l'organisation de la sécurité civile, à la protection de la forêt contre l'incendie et à la prévention des risques maieurs.

Cette loi précise dans son article premier :

Art 1 – La sécurité civile a pour objet la prévention des risques de toute nature ainsi que la protection des personnes, des biens et de l'environnement contre les accidents, les sinistres et les catastrophes. La préparation des mesures de sauvegarde et la mise en œuvre des moyens nécessaires pour faire face aux risques majeurs et aux catastrophes sont assurés dans les conditions prévues par le présent titre. Elles sont déterminées dans le présent cadre de plan d'organisation des secours dénommés "Plan ORSEC" et de "Plan d'urgence"...

Loi relative à l'indemnisation des victimes de catastrophes naturelles.

Elle impose aux assurances d'indemniser les victimes de catastrophes naturelles, l'état de catastrophe naturelle étant reconnu par un arrêté interministériel. L'État a en charge d'élaborer les Plans d'Exposition aux Risques (PER) qui cartographient les zones exposées ou non. Dans les zones reconnues comme exposées par le PER, les assurances ne sont pas tenues d'indemniser les victimes. Les PER ont été remplacés par les PPR (cf.loi Barnier).

Loi relative à l'organisation de la sécurité civile, à la protection de la forêt contre l'incendie et à la prévention des risques majeurs.

Elle fixe l'organisation de la sécurité civile en France en déterminant qui gère les secours, qui déclenche le plan O.R.SE.C. [PR9], qui paye, quels sont les plans d'urgence. Dans le domaine de la prévention, cette loi reconnaît le droit à l'information préventive du public.

Tableau A 1 : Textes de lois relatifs à la réduction des risques naturels en France

Source : [VEYRET Y. (sous la Dir.) – 2003] ; [VEYRET Y. (sous la Dir.) et R LAGA-NIER, – 2013] ; [Observatoire Régional des Risques Majeurs – principales lois en matière gestion risques naturels]

REGLEMENTATION (Suite)

La loi n° 95-101 du 2 février 1995 dite loi "Barnier" relative au renforcement de la protection de l'environnement, qui a notamment institué les plans de prévention des risques naturels – PPRN.

Cette loi précise dans son article premier :

Art 1 – Les espaces, ressources et milieux naturels, les sites et paysages, les espèces animales et végétales, la diversité et les équilibres biologiques auxquels ils participent font partie du patrimoine commun de la nation...

La loi n° 96-393 du 13 mai 1996 relative à la responsabilité pénale pour des faits d'imprudence ou de négligence.

Cette loi précise dans son article premier :

Art 1 – Il n'y a de crime ou de délit sans intention de le commettre. Toutefois, lorsque la loi le prévoit, il y a délit en cas de mise en danger délibérée de la personne d'autrui...

La loi n° 2003-699 du 30 juillet 2003 (dite loi Bachelot) relative à la prévention des risques technologiques et naturels et à la réparation des dommages, qui a notamment institué les Plans de Prévention des Risques technologiques (PPRT) et renforcé l'information en matière de risques naturels.

Cette loi précise dans son article premier :

Art L125-5-I – Les acquéreurs ou locataires de biens immobiliers situés dans des zones de couvertures par un plan de prévention des risques technologiques ou par un plan de prévention des risques naturels prévisibles, prescrit ou approuvé, dans des zones de sismicité définit par décret en Conseil d'État, sont informés par le vendeur ou le bailleur de l'existence des risques visé par ce plan ou ce décret...

COMMENTAIRES

Loi relative au renforcement de la protection de l'environnement.

Elle reconnaît à l'État le droit d'expropriation dans le cas où les moyens de protection de la population sont plus coûteux que les indemnités d'expropriation. Un fond de prévention des risques, alimenté par des prélèvements sur les assureurs, est créé pour payer les indemnités d'expropriation et les démolitions. Cette loi crée les Plans de Prévention des Risques (PPR) en remplacement des PER de la loi de 1982.

Cette loi a été codifiée aux articles L200-1 et suivants du code rural et de la pêche maritime

Loi relative à la responsabilité pénale pour des faits d'imprudence ou de négligence.

Elle reconnaît la responsabilité pénale des élus pour des faits d'imprudence, de négligence ou de manquement à une obligation de prudence ou de sécurité prévue par la loi ou les règlements.

Loi relative à la prévention des risques technologiques et naturels et à la réparation des dommages.

Elle insiste sur le devoir d'information des Maires. Ce texte encadre les pratiques agricoles et instaure des règles concernant le foncier aux abords des rivières, autorisant par exemple la suppression des éléments aggravant le risque. Conformément à cette loi, un vendeur ou un loueur doit remettre à son client un état des lieux des risques naturels ou technologiques (document d'Information Acquéreur Locataire (IAL).

Tableau A 1 : Textes de lois relatifs à la réduction des risques naturels en France

Source : [VEYRET Y. (sous la Dir.) – 2003] ; [VEYRET Y. (sous la Dir.) et R LA-GANIER, – 2013] ; [Observatoire Régional des Risques Majeurs – principales lois en matière gestion risques naturels]

La législation des risques naturels en Suisse s'appuie sur la règlementation suivante.

REGLEMENTATION PRINCIPALE

L'arrêté fédéral de 1972 – RS 700 : oblige les cantons à prendre des mesures d'urgence en matière d'aménagement du territoire et en particulier à délimiter les zones menacées par des aléas

La loi fédérale de 1979 sur l'aménagement du territoire [LAT]

<u>Titre 1 Introduction - Art. 1 Buts</u>

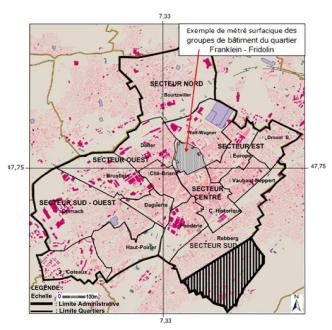
La Confédération, les cantons et les communes veillent à une utilisation mesurée du sol et à la séparation entre les parties constructibles et non constructibles du territoire [...]

Un article constitutionnel (74a) est en préparation qui intègre les risques sismiques (article intitulé : "Protection contre les dangers naturels".

Tableaux A 2 : Textes de lois relatifs à la réduction des risques naturels en Suisse

Source : [Office fédéral de l'environnement OFEV]

Cas ne laisai	nt pas l'ot	ojet de travaux lo	Cas faisant pas l'objet de travaux lourds				
Franc	е	Suiss	e	France		Suisse	
CI. des B ¹		CI, des Bt		CI. des Bt		Cl. des Bt	
Cat. I	X	COI	X	Cat. I	0	COI	Х
Cat. II	×	0011	0	Cat. II	0	0011	^
Cat.	X	COII	0	Cat. III	0	COII	0
Cat. IV	X	COIII	0	cat. IV	0	COIII	0
September 1997		bjet de travaux lo	urds	Communication in	nt pas I	'objet de travaux lo	ourds
Cas ne faisa Franc		(3)	urds		nt pas I	objet de travaux lo	ourds
Franc		bjet de travaux lo	urds	Cas faisa	nt pas I		ourds
September 1997		bjet de travaux lo Suiss	urds	Cas faisa France	nt pas I	Suisse	ourds
Franc CI. des B ^t	е	Suiss CI, des B¹ COI	ourds se	Cas faisa France Cl. des B ¹		Suisse CI. des Bt COI	
Franc Cl. des B ¹ Cat. I	e X	Suiss CI, des B ¹	ourds se	Cas faisa France Cl. des B:	0	Suisse Cl. des Bt	ourds X
CI. des B¹ Cat. I Cat. II	e X	Suiss CI, des B¹ COI	ourds se	Cas faisa France CI. des B¹ Cat. II	0	Suisse CI. des Bt COI	


Tableau A 3 : Analyse comparée des exigences de l'Eurocode et de la norme SIA-261 pour les bâtiments privés

Sources : [Euro code 8.1 et Euro code 8.3; Norme SIA – 261 à 267]

ANNEXE – CHAPITRE 4

Détail de calcul de la superficie d'emprise au sol des groupes de bâtiments

Cette superficie comprend les réseaux de communication. Dans cette étape, il s'agit d'évaluer la superficie d'emprise au sol des groupes de bâtiments. Cette superficie est calculée en réalisant un métré surfacique des groupes de bâtiment par îlots à partir des cartes suivantes (fig. n° A 4 et A 5)

LEGENDE

: Zones d'emprise au sol des groupes de bâtiments à usage d'habitation par quartier

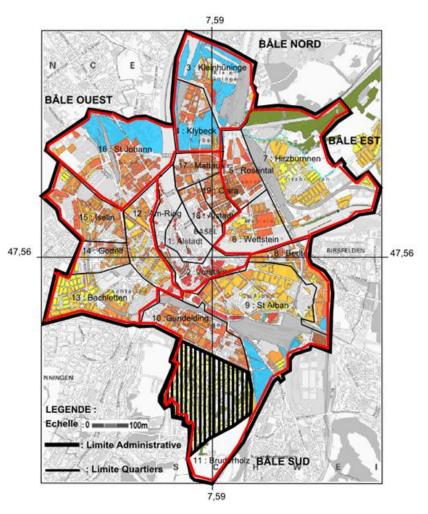
: Zone du bâti à usage d'habitation individuelle (Zone pavillonnaire qui n'entre pas dans le champ de notre étude)

: Zones du bâti d'activité industrielle et commerciale

: Zones du bâti d'activité industrielle et commerciale

: Limites Administratives : Limites des quartiers

: Limites des quartiers


RESULTATS

Secteurs	Quartiers	S ₁ (Km ²)
Centre ville	Bâti collectif	1,60
	continu	
1 : Nord	Bâti collectif	2,60
	continu et	
	discontinu	
2 : Est	Bâti collectif	3,19
	continu	
3 : Sud	Bâti collectif	3,46
	continu	
4 : Sud –	Bâti collectif	2,87
Ouest	continu	
5 : Ouest	Bâti collectif	2,10
	continu	
	TOTAL =	15,82

Figure n° A 4 : MULHOUSE – Fond de carte des zones d'emprise au sol des

groupes de bâtiments collectifs à usage d'habitation

Source : D'après [Géo portail – Carte IGN]

LEGENDE

: Zones d'emprise au sol des groupes de bâtiments à usage d'habitation par quartier

: Zone du bâti à usage d'habitation individuelle (Zone pavillonnaire qui n'entre pas dans le champ de notre étude)

: Zones du bâti d'activité industrielle et commerciale

: Zones de transport ferroviaire

: Limites Administratives

: Limites des secteurs historicogéographiques

RESULTATS

Secteurs	Quartiers	S ₁ (Km²)
Centre ville	Bâti collectif	1,57
	continu	
1 : Nord	Bâti collectif	0,40
	continu et	
	discontinu	
2 : Est	Bâti collectif	1,50
	continu	
3 : Sud	Bâti collectif	3,95
	continu	
4 : Sud –	Bâti collectif	3,35
Ouest	continu	
5 : Ouest	Bâti collectif	1,05
	continu	
	TOTAL =	11,82

Figure n° A 5 : BÂLE – Fond de carte des zones d'emprise au sol des groupes de bâti-

ments collectifs à usage d'habitation

Source : D'après [GEO PORTAL, Geoviewer, Canton de Basel, 2011]

Détail de la détermination du coefficient d'emprise au sol du bâti (C.E.S.)

Pour déterminer ce coefficient, M. Belliot et alii (2006) [BELLIOT M. et al. – 2006] ont analysé l'habitat de 110 quartiers parmi 57 communes réparties sur le territoire français. Les auteurs ont identifié six formes d'habitats urbains dont trois correspondent à notre cas d'étude. Ces trois formes d'habitats urbains se composent d'un habitat collectif continu, d'un habitat collectif discontinu et d'un habitat collectif continu et discontinu. Ce dernier résulte de la combinaison d'un habitat des deux formes précédentes. En définitive, les auteurs ont déterminé un coefficient pour chacune des formes d'habitats. En effet, le quadrillage des réseaux de communication diffère d'une forme d'habitat urbain à l'autre. Une étude similaire à été réalisée par le Centre d'études sur les réseaux, les transports, l'urbanisme et les constructions (CERTU¹) [DER MADIROSSIAN L., 2010]. Les différentes formes urbaines, ainsi que le coefficient d'emprise au sol du bâti sont très proches des résultats de l'analyse de M. Belliot et *alii*. Dans ces deux études, ce coefficient résulte du rapport entre la superficie d'emprise au sol des groupes de bâtiment et la superficie des réseaux de communications. Nous retiendrons une valeur moyenne (C_{moy}) est retenue pour chacune des formes d'habitat urbain (fig. n° A 6).

Types	(C _{moy})	Types Habitats	Exemples : Formes d'habitat urbain
Bâti collectif	l		
Continu	0,69		STRASBOURG – Îlot du quartier Allemand [BELLIOT, Page 39]
Discontinu	0,30		STRASBOURG – îlot de l'esplanade [BELLIOT, Page 57]
Continu et Discontinu	0,51		AUBAGNE – Îlot de la Zac des Défensions [BELLIOT, Page 187]

Figure n° A 6 : Coefficient d'emprise au sol du bâti selon les différentes formes d'habitats urbains

Source : Extrait [BELLIOT M. et al. – 2006, pp 36 - 255]

_

¹ CERTU : Centre d'études sur les réseaux, les transports, l'urbanisme et les constructions publiques

Il est possible d'appliquer les résultats fournis par Belliot en identifiant les formes urbaines du bâti de notre terrain d'étude grâce aux photos aériennes et aux cartes disponibles. S'agissant du quartier de la cité "Jean Wagner", de Mulhouse, les documents indiqués montrent un quartier de type "bâti collectif discontinu", ce type de bâti correspond aux "Grandes barres des années 1960 - 1970" (les photos aériennes ne permettent pas de dater els bâtiments). Le centre historique de Bâle est composé d'un habitat de forme urbaine de type "bâti collectif continu".

Photo – Agence d'Urbanisme de la Région Mulhousienne (Secteur d'habitat de la Zone Urbaine Prioritaire (ZUP) de Mulhouse créée en 1960

MULHOUSE

Cité Jean Wagner à son achèvement

Vue aérienne de l'habitat de forme urbaine de type "bâti collectif discontinu"

BÂLE

Quartier Sud du centre historique

Vue panoramique depuis le quartier
Sud de Bâle – Bruderholz de
l'habitat de forme urbaine de type
"bâti collectif continu"

Photo - mars 2013: J. Lemaire

Figure n° A 7 : Exemples de formes d'habitats urbains dans le quartier des Coteaux de Mulhouse et dans le centre ville de Bâle

Source : [BAUM. J-P et alii – 2013 ; Photo (J. Lemaire), Enquête de terrain de mars 2013]

Les résultats de l'identification des différentes formes de l'habitat urbain des quartiers de Mulhouse et de Bâle se décomposent ainsi.

MULHOUSE						
Secteurs Forme d'habitat urbain						
Centre ville	Bâti collectif continu					
1: Nord	Bâti collectif continu et discontinu					
2 : Est	Bâti collectif continu et discontinu					
3 : Sud	Bâti collectif continu et discontinu					
4 : Sud-ouest	Bâti collectif continu et discontinu					
5 : Ouest	Bâti collectif continu					
	BÂLE					
Centre ville	Bâti collectif continu					
1: Nord	Bâti collectif continu et discontinu					
2 : Est	Bâti collectif continu					
3 : Sud	Bâti collectif continu					
4 : Sud – Ouest	Bâti collectif continu					
5 : Ouest	Bâti collectif continu					

Tableau A 4 : Différentes formes d'habitats urbains des quartiers de Mulhouse – Bâle

Source : [BELLIOT M. et al. – 2006 ; BAUM. J-P et alii – 2013 ; Photo (J. Lemaire), Enquête de terrain de mars 2013 ; Géo portail – Carte IGN ;

GEO PORTAL, Geoviewer, Canton de Basel, 2011]

MULHOUSE : surface réelle d'emprise au sol du bâti								
Secteurs	Type de forme urbaine du bâti	S ₁ (Km ²)	C.E.S	S ₂ (Km ²)				
Centre ville	Bâti collectif continu	1,60	0,69	1,10				
1 : Nord	Bâti collectif continu et discontinu	2,60	0,51	1,35				
2 : Est	Bâti collectif continu et discontinu	3,19	0,51	1,65				
3 : Sud	Bâti collectif continu	3,46	0,69	2,40				
4 : Sud-ouest	Bâti collectif continu et discontinu	2,87	0,51	1,45				
5 : Ouest	Bâti collectif continu	2,10	0,69	1,45				
	TOTAL =	15,82	-	9,40				
	BÂLE							
Secteurs	Type de forme urbaine du bâti	S ₁ (Km ²)	C.E.S	S ₂ (Km ²)				
Centre ville	Bâti collectif continu	1,57	0,69	1,05				
1 : Nord	Bâti collectif continu et discontinu	0,40	0,51	0,20				
2 : Est	Bâti collectif continu	1,50	0,69	1,05				
3 : Sud	Bâti collectif continu	3,95	0,69	2,75				
4 : Sud – Ouest	Bâti collectif continu	3,35	0,69	2,30				
5 : Ouest	Bâti collectif continu	1,05	0,69	0,70				
	TOTAL =	11,82	-	8,05				

S₁: Superficie d'emprise au sol des groupes de bâtiments

Tableau A 5 : Surfaces réelles d'emprise au sol du bâti de la conurbation de Mulhouse

Source : [BELLIOT M. et al. – 2006; BAUM. J-P et alii – 2013; Photo (J. Lemaire), Enquête de terrain de mars 2013; [Géo portail – Carte IGN; GEO PORTAL, Geoviewer, Canton de Basel, 2011]

S₂ : Surface réelle d'emprise au sol du bâti CES : coefficient d'emprise au sol du bâti

Etude statistique

Pour évaluer la superficie des six zones à visiter, nous avons réalisé une étude statistique dans laquelle nous avons transformé la forme réelle du territoire de Mulhouse et de Bâle en un territoire fictif de forme carrée en conservant la superficie initiale des deux villes (voir Illustration de l'étude statistique – fig. n° A 8) dans le but de simplifier le calcul des superficies. En effet, il est beaucoup plus simple de calculer la surface d'un carré que de calculer la surface réelle de ces deux villes, qui nécessite un calcul "d'intégrale mathématique", compte tenu de la forme des territoires. Dans cette étude statistique, un échantillon correspondra à une portion du territoire qui est égale à 10% de la superficie totale du territoire de Mulhouse et de Bâle (soit 2,22 Km²). Cet échantillon de 10% est suffisamment important pour collecter assez d'informations, comme il sera démontré par la suite. La superficie totale des six zones que nous envisageons de visiter correspond à 10% de la superficie totale du territoire.

L'étude statistique illustrée ci-après (fig. n° A 8) se résume à simplifier la forme du territoire, puis à découper ce territoire en plusieurs échantillons, puis à décomposer un échantillon en six zones. Ces zones, sont réparties sur l'ensemble du territoire de Mulhouse et de Bâle. Pour s'assurer que la superficie des six zones, c'est-à-dire la superficie d'un échantillon égale à 10% est suffisamment importante, nous devons découper le territoire en détail. Le découpage le plus fin pour examiner le bâti est le découpage en parcelles foncières. En zone d'occupation d'habitat, chacune des parcelles comporte au moins un bâtiment à usage d'habitation.

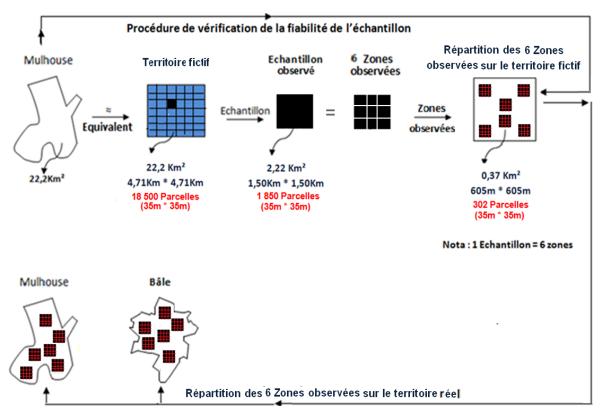


Figure n° A 8 : Procédure de définition des échantillons et de vérification de la fiabilité des échantillons examinés sur les territoires de Mulhouse et de Bâle

J. LEMAIRE

Pour démontrer l'utilité d'un découpage affiné du territoire, il peut être envisagé deux scénarios fictifs (fig. n° A 9). Les deux cas représentent le même territoire. Dans le premier cas, le territoire est découpé en quatre échantillons identiques. Dans le second cas, en seize échantillons identiques. Dans ces deux scénarios, on sait que l'étude statistique (calcul de la marge d'erreur que nous verrons plus après) montre qu'un seul échantillon est suffisamment important pour collecter les informations nécessaires. Dans ce cas, il suffit d'aller visiter un seul échantillon du scénario 2, qui nous apportera les mêmes informations que la visite d'un seul échantillon du scénario 1. Cette démarche est plus avantageuse puisqu'elle permet d'aller visiter une surface plus petite pour obtenir les mêmes informations.

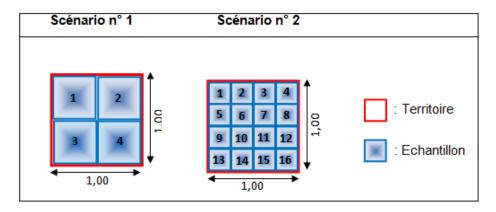


Figure n° A 9 : Intérêt d'un découpage affiné d'un territoire dans le cas d'une enquête de terrain

J. Lemaire

La procédure de calcul de cette étude statistique a pour objectif de vérifier si la superficie (la taille) de l'échantillon observé est assez importante. La superficie (la taille) des six zones à visiter s'obtient en divisant la taille de la superficie d'un échantillon par 6 (six zones observées). Pour vérifier que la taille d'un échantillon est suffisamment importante, il suffit de calculer un indicateur que nous appelons en étude statistique "Marge d'erreur". La communauté scientifique admet généralement une marge d'erreur inférieure ou égale à 5% comme étant acceptable. Appliqué à notre étude statistique, cela signifie que l'échantillon de 10% est suffisamment important pour collecter les informations nécessaires, si la marge d'erreur est inférieure ou égale à 5%. Le calcul de cette "Marge d'erreur" nécessite un découpage affiné du territoire. Le découpage le plus fin pour recenser le bâti est le découpage en parcelles foncières. Ce mode de découpage sert à prendre en compte le nombre total de parcelles (n) inclues dans la superficie de l'échantillon et la proportion (p) du nombre de parcelles ayant les mêmes caractéristiques. Les mêmes caractéristiques sont les parcelles dont le bâti appartient à au moins l'un des cinq types de bâtiments du plus ancien au plus récent (cela est valable pour toutes les parcelles bâties). Autrement dit, il n'est pas pris en compte les parcelles non bâties ainsi que les parcelles ayant des bâtiments qui ne sont pas à usage d'habitation (bâtiments industriels, équipements sportifs, etc.).

Pour définir le nombre total de parcelles incluses dans la superficie de l'échantillon, nous avons déterminé une taille moyenne de la superficie d'une parcelle. Pour ce faire, nous avons évalué la superficie d'une centaine de parcelles à Mulhouse et autant à Bâle à partir des cartes disponibles [Géo portail – Carte IGN] pour Mulhouse et [GEOPORTAL, Geoviewer Canton de Basel] pour Bâle et on en a déduit que la taille moyenne est de 1 300m². La taille moyenne retenue dans notre étude est de (35m * 35m = 1 225M²). Ainsi,

le nombre total de parcelles recherché a été obtenu en faisant le rapport entre la superficie totale de l'échantillon et la superficie d'une parcelle (2,22Km² / 0,001225Km² = 1 850 parcelles).

Pour définir la proportion (p) du nombre de parcelles possédant les mêmes caractéristiques (les mêmes caractéristiques sont les parcelles dont le bâti appartient à au moins l'un des cinq types de bâtiments), nous avons utilisé la superficie d'emprise au sol du bâti collectif à usage d'habitation déterminée dans l'étude de la densité de population. Pour rappel, cette superficie est égale à 41% de la superficie totale du territoire de Mulhouse et égale à 36% de la superficie totale du territoire de Bâle. Nous admettons que seulement 36% des parcelles possèdent les mêmes caractéristiques, c'est-à-dire (p=0,36). En réalité, nous avons observé sur le terrain que la proportion de ces parcelles est supérieure à 36%. Toutes les variables sont identifiées, le calcul de la marge d'erreur peut être réalisé selon l'équation suivante.

Marge d'erreur : $\mathbf{e} = \mathbf{t} \sqrt{\frac{\mathbf{p}(\mathbf{1} - \mathbf{p})}{\mathbf{n}}}$ = 2,30%

Avec : N = 18 500 (nombre de parcelles sur l'ensemble du territoire, donné à titre indicatif)

n = 1 850 (nombre de parcelles dans l'échantillon)

p = 36% Proportion des parcelles possédant les mêmes caractéristiques

s : Seuil de confiance à 95% donc (t) = 1,96 (loi normale)

e : Marge d'erreur (Par exemple on veut connaître la proportion réelle à 5% près).

E: E = 2e (Fourchette d'incertitude)

Nota : Cette proportion (p) est connue ou supposée ou bien encore, estimée)

Le seuil de confiance généralement accepté scientifiquement est de 95%. Cela signifie *a contrario* qu'il existe 5% de marge d'erreur (1 chance sur 20) qui est en général considérée comme acceptable. En l'espèce, l'échantillon de 10% sélectionné (correspondant aux six zones visitées) connait une marge d'erreur de 2,30%, ce qui se trouve donc dans la marge d'erreur scientifiquement acceptable (entre 0 et 5%). Ainsi, on en déduit que l'échantillon de 10% est suffisamment important pour pouvoir collecter les données nécessaires à notre étude. En d'autres termes, le calcul nous permet d'affirmer que nous avons 97,70% de chance de trouver du bâti appartenant à au moins l'un des cinq types de bâtiments identifiés. Ainsi, ces zones de 600 mètres de coté sont localisées sur les cartes n° 50 et 51 (fig. n° 50 et fig. n° 51).

Détail de la composition du bâti mulhousien

	М	MULHOUSE : Répartition du bâti							
SECTEURS	1 à 2 étages	3	5	7	9	>9			
		étages	étages	étages	étages	étages			
Territoire global	0,3%	11,9%	34,6%	0,1%	0,0%	0,0%			
•	3,4%	6,4%	33,0%	0,6%	0,0%	0,0%			
•	0,0%	0,1%	2,4%	0,2%	0,1%	4,6%			
•	0,0%	0,3%	0,4%	0,0%	0,0%	0,0%			
	0,0%	0,0%	0,8%	0,6%	0,0%	0,1%			
Centre ville	0,0%	3,0%	12,6%	0,1%	0,0%	0,0%			
•	0,0%	0,6%	2,6%	0,0%	0,0%	0,0%			
•	0,0%	0,0%	0,4%	0,1%	0,1%	0,1%			
•	0,0%	0,3%	0,3%	0,0%	0,0%	0,0%			
	0,0%	0,0%	0,1%	0,3%	0,0%	0,0%			
1: Nord	0,2%	0,1%	2,2%	0,0%	0,0%	0,0%			
•	3,4%	2,1%	0,0%	0,0%	0,0%	0,0%			
•	0,0%	0,0%	0,5%	0,0%	0,0%	0,0%			
•	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%			
	0,0%	0,0%	0,4%	0,0%	0,0%	0,0%			
2 : Est	0,1%	1,5%	10,8%	0,0%	0,0%	0,0%			
•	0,0%	2,1%	1,1%	0,2%	0,0%	0,0%			
•	0,0%	0,0%	0,1%	0,0%	0,0%	0,0%			
•	0,0%	0,0%	0,1%	0,0%	0,0%	0,0%			
	0,0%	0,0%	0,2%	0,3%	0,0%	0,1%			
3 : Sud	0,0%	0,5%	1,3%	0,0%	0,0%	0,0%			
•	0,0%	0,2%	0,5%	0,0%	0,0%	0,0%			
•	0,0%	0,0%	0,1%	0,1%	0,0%	0,0%			
•	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%			
•	0,0%	0,0%	0,1%	0,1%	0,0%	0,0%			
4 : Sud-ouest	0,0%	3,3%	6,5%	0,0%	0,0%	0,0%			
•	0,0%	0,1%	27,4%	0,0%	0,0%	0,0%			
•	0,0%	0,0%	1,1%	0,0%	0,0%	4,5%			
	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%			
	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%			
5 : Ouest	0,0%	3,5%	1,2%	0,0%	0,0%	0,0%			
•	0,0%	1,4%	1,4%	0,4%	0,0%	0,0%			
•	0,0%	0,0%	0,2%	0,0%	0,0%	0,0%			
•	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%			
	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%			

LEGENDE

: Type 1 T1< 1900 Constructions en pierres naturelles : Bâtiment de 1 à 2 étages : Type 2 1950<T2<1970 Constructions en blocs de T.C : Bâtiment de 3 étages = : Bâtiment de 4 à 5 étages : Type 3 1950<T3<1970 Constructions en béton armé 1970<T4<1990 Constructions en blocs béton : Bâtiment de 6 à 7 étages : Type 4 : Bâtiment de 8 à 9 étages 1990<T5<2000 Constructions en béton armé : Type 5 : > 9 étages

O: Critère de l'âge et des matériaux de construction

☐: Critère de la hauteur des constructions

Tableau n° A 6 : Répartition du bâti par secteur historico-géographique selon les critères de l'âge, des matériaux et de la hauteur des constructions dans le territoire mulhousien

Source : Données collectées sur le terrain

Détail de la composition du bâti bâl	ois
--------------------------------------	-----

		BÂLE : Répartition du bâti							
SECTEURS		1 à 2 étages	3	5	7	9	>9		
			étages	étages	étages	étages	étages		
Territoire global		0,4%	5,5%	53,7%	2,9%	0,0%	0,0%		
		0,0%	1,8%	9,4%	0,3%	0,0%	0,0%		
		0,0%	0,8%	6,6%	10,0%	0,5%	0,2%		
		0,0%	0,2%	1,5%	0,0%	0,0%	0,0%		
		0,2%	0,1%	1,1%	4,6%	0,3%	0,0%		
Centre ville		0,0%	0,6%	19,3%	1,7%	0,0%	0,0%		
		0,0%	0,3%	0,8%	0,0%	0,0%	0,0%		
		0,0%	0,0%	1,2%	3,2%	0,0%	0,0%		
		0,0%	0,0%	0,2%	0,0%	0,0%	0,0%		
		0,0%	0,0%	0,2%	1,1%	0,1%	0,0%		
1 : Nord	•	0,0%	0,7%	2,4%	0,0%	0,0%	0,0%		
		0,0%	0,0%	0,0%	0,0%	0,0%	0,0%		
		0,0%	0,8%	0,2%	0,7%	0,2%	0,1%		
		0,0%	0,0%	0,6%	0,0%	0,0%	0,0%		
		0,0%	0,0%	0,0%	0,3%	0,1%	0,0%		
2 : Est		0,0%	1,5%	0,0%	0,0%	0,0%	0,0%		
		0,0%	0,5%	0,0%	0,0%	0,0%	0,0%		
	•	0,0%	0,6%	2,7%	0,1%	0,0%	0,0%		
		0,0%	0,0%	0,0%	0,0%	0,0%	0,0%		
		0,0%	0,0%	0,1%	0,0%	0,0%	0,0%		
3 : Sud	•	0,0%	0,5%	9,1%	0,9%	0,0%	0,0%		
		0,0%	0,1%	0,4%	0,3%	0,0%	0,0%		
		0,0%	0,2%	1,4%	0,5%	0,0%	0,1%		
		0,0%	0,1%	0,4%	0,0%	0,0%	0,0%		
	•	0,2%	0,0%	0,6%	1,2%	0,0%	0,0%		
4 : Sud-ouest	•	0,4%	1,0%	8,2%	0,0%	0,0%	0,0%		
		0,0%	0,9%	8,2%	0,0%	0,0%	0,0%		
	•	0,0%	0,0%	0,6%	2,4%	0,3%	0,0%		
		0,0%	0,1%	0,2%	0,0%	0,0%	0,0%		
	•	0,0%	0,0%	0,1%	1,0%	0,1%	0,0%		
5: Ouest	•	0,0%	1,2%	14,7%	0,3%	0,0%	0,0%		
		0,0%	0,0%	0,0%	0,0%	0,0%	0,0%		
		0,0%	0,0%	0,4%	3,0%	0,1%	0,0%		
		0,0%	0,0%	0,1%	0,0%	0,0%	0,0%		
	•	0,0%	0,0%	0,1%	1,0%	0,0%	0,0%		

LEGENDE

: Type 1 T1< 1900 Constructions en pierres naturelles
 : Type 2 1950<T2<1970 Constructions en blocs de T.C
 : Type 3 1950<T3<1970 Constructions en béton armé
 : Type 4 1970<T4<1990 Constructions en blocs béton
 : Type 5 1990<T5<2000 Constructions en béton armé

: Bâtiment de 1 à 2 étages
: Bâtiment de 3 étages
: Bâtiment de 4 à 5 étages
: Bâtiment de 6 à 7 étages
: Bâtiment de 8 à 9 étages
: > 9 étages

O : Critère de l'âge et des matériaux de construction

☐: Critère de la hauteur des constructions

Tableau n° A 7 : Répartition du bâti par secteur historico-géographique selon les critères de l'âge, des matériaux et de la hauteur des constructions dans le territoire bâlois

Source : Données collectées sur le terrai

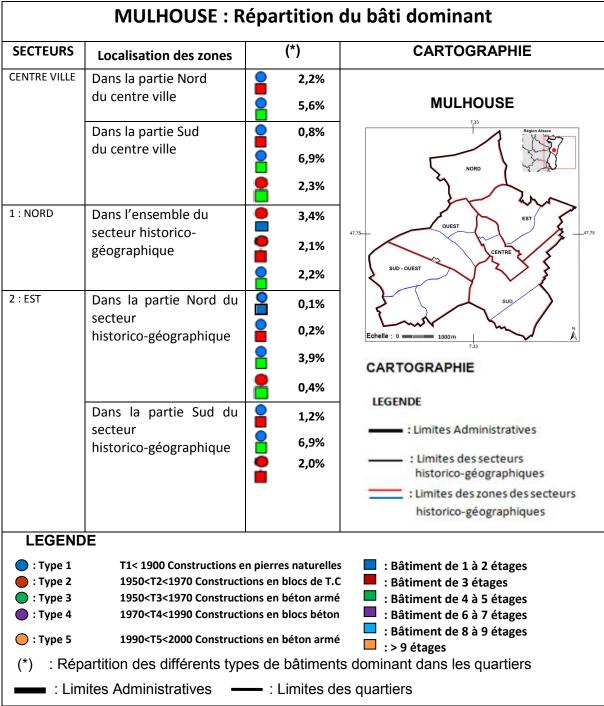


Tableau n° A 8 : Répartition des différents types de bâtiments dominants à l'intérieur de chaque secteur historico-géographique selon les critères de l'âge, des matériaux et de la hauteur des constructions dans le territoire de Mulhouse

Source : Données collectées sur le terrain

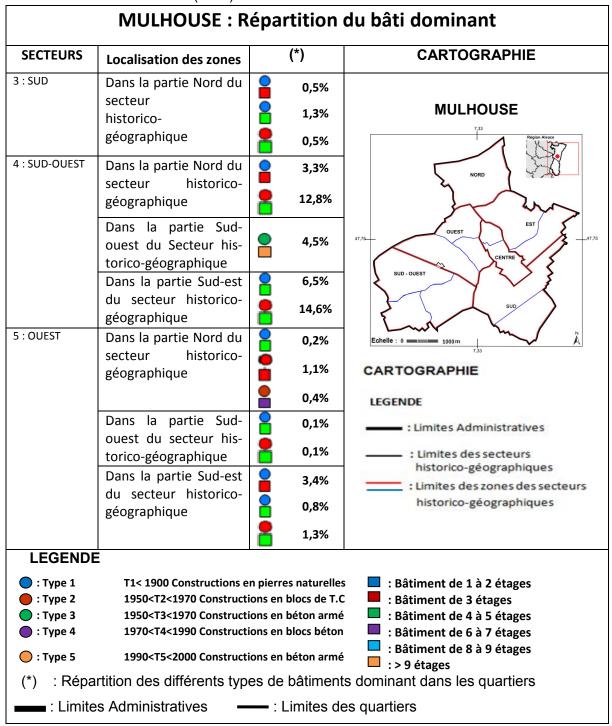


Tableau n° A 8 : Répartition des différents types de bâtiments dominants à l'intérieur de chaque secteur historico-géographique selon les critères de l'âge, des matériaux et de la hauteur des constructions dans le territoire de Mulhouse

Source : Données collectées sur le terrain

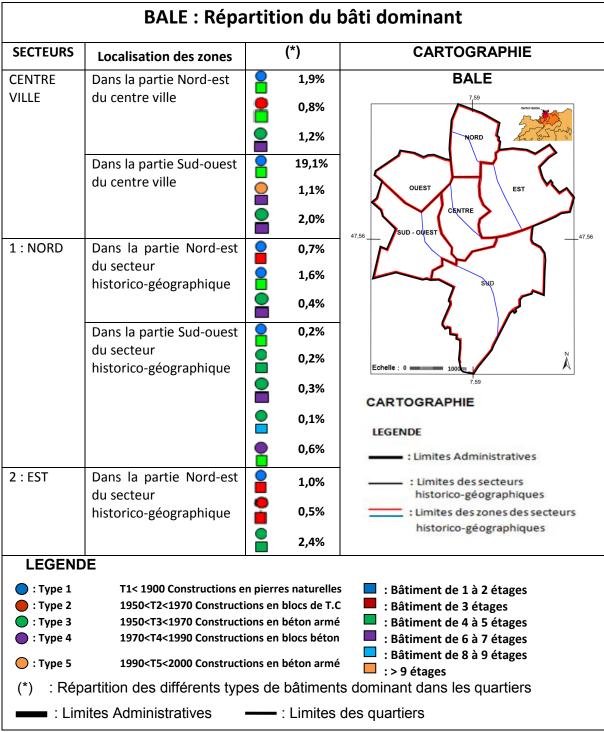


Tableau n° A 9 : Répartition des différents types de bâtiments dominants à l'intérieur de chaque secteur historico-géographique selon les critères de l'âge, des matériaux et de la hauteur des constructions dans le territoire de Bâle

Source : Données collectées sur le terrain

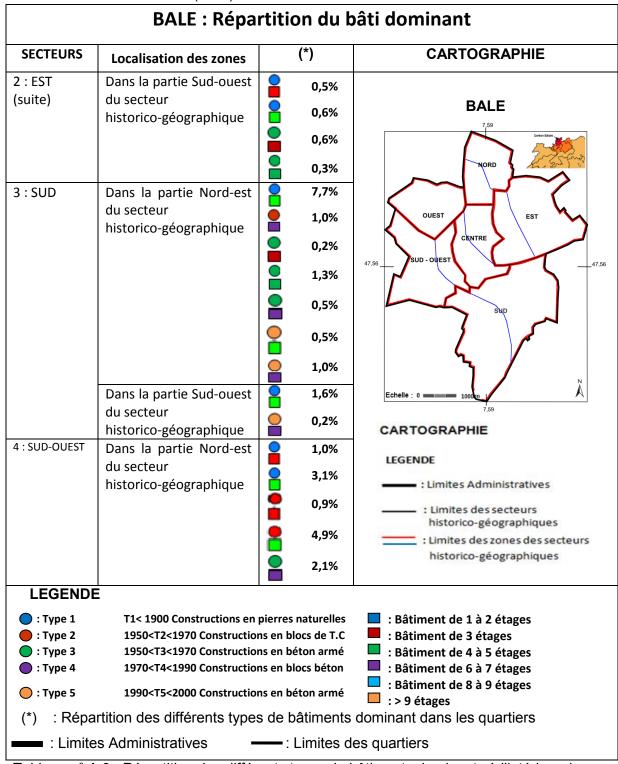


Tableau n° A 9 : Répartition des différents types de bâtiments dominants à l'intérieur de chaque secteur historico-géographique selon les critères de l'âge, des matériaux et de la hauteur des constructions dans le territoire de Bâle

Source : Données collectées sur le terrain

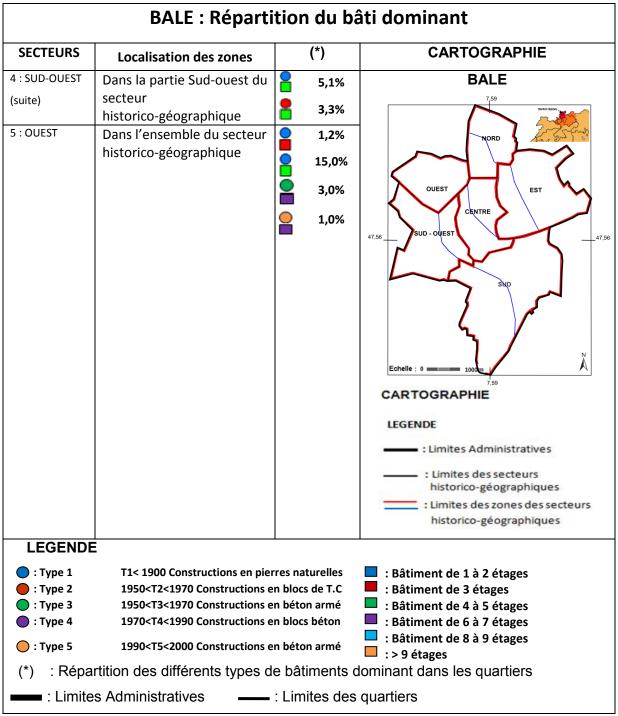


Tableau n° A 9 : Répartition des différents types de bâtiments dominants à l'intérieur de chaque secteur historico-géographique selon les critères de l'âge, des matériaux et de la hauteur des constructions dans le territoire de Bâle

Source : Données collectées sur le terrain

ANNEXE – CHAPITRE 5

Annexe 5.A - Echantillon des bâtiments

BÂTIMENTS	H ^t TOTALE	L	Lg	Nb ETAGES	SURFACE /	MATERIAUX
					ETAGE	
n°	(m)	(m)	(m)		(m ²)	
BATIMENTS EI	N MACONNI	ERIE				
1	8,00	15,00	11,00	3	495	Maçonnerie pierres naturelles et plan- chers bois
2	14,35	17,20	8,75	5	753	Maçonnerie pierres naturelles et plan- chers bois
3	6,60	17,65	11,00	2	388	Maçonnerie pierres naturelles et plan- chers bois
4	8,00	19,05	8,55	3	163	Maçonnerie pierres naturelles et plan- chers bois
9	7,00	20,60	17,30	2	712	Maçonnerie blocs de terre cuite ou bé- ton et planchers en béton armé
6	20,60	20,70	14,80	7	2 144	Maçonnerie blocs de terre cuite ou béton et planchers en béton armé
		31,80	15,20	5	2 416	Maçonnerie blocs de terre cuite ou
13	13,50	et	et	et	et	béton et planchers en béton armé
		16,00	15,20	5	1 216	
		31,80	15,20	5	2 416	Maçonnerie blocs de terre cuite ou
13 bis	13,50	et	et	et	et	béton et planchers en béton armé
		16,00	15,20	5	1 216	
14	31,00	25,00	20,00	12	6 000	Maçonnerie blocs de terre cuite ou béton et planchers en béton armé
BATIMENTS EI	N BETON AR	ME				
5	18,60	25,10	22,60	7	4 849	Béton armé et planchers en béton armé
7	6,40	26,30	11,90	2	626	Béton armé et planchers en béton armé
8	5,75	48,10	21,70	2	2 088	Béton armé et planchers en béton armé
10	17,70	43,10	14,40	7	4 345	Béton armé et planchers en béton armé
11	5,20	20,95	15,40	2	582	Béton armé et planchers en béton armé
12	7,50	25,50	11,50	3	880	Béton armé et planchers en béton armé
15	13,50	25,00	20,00	5	2 500	Béton armé et planchers en béton armé
16	13,50	20,80	17,40	5	1 809	Béton armé et planchers en béton armé

Tableau n° A 10 : Echantillon des bâtiments implantés dans le territoire de Mulhouse et de Bâle

Source : Données collectées sur le terrain

Annexe 5.B – Caractéristiques mécanique des matériaux

Caractéristiques des matériaux	Symbole	Valeur	Unité	Références
	I	Maçonr	erie	
Masse volumique Pierre naturelle (Type calcaire)	ρ_{m}	2000	kg/m³	Fiche technique
Masse volumique (Blocs T.C., Béton manufacturé)	ρ_{m}	2200	kg/m³	Fiches techniques (1.6 < densité < 2,2)
Coefficient partiel de sécurité de la maçonnerie qui tient compte des propriétés des matériaux et de leur mise en œuvre	YM(ELU)	2,70	-	EC8.3 - NF EN 1998-1-1/NA-clause 2.4.3 (1)P, déc. 2009
Coefficient partiel de sécurité de la maçonnerie qui tient compte des propriétés des matériaux et de leur mise en œuvre	Ym(ELS)	1,0	-	EC8.3 - NF EN 1998-1-1/NA-clause 2.4.4 (1)P, déc. 2009
Coefficient de confiance du niveau de connaissance	CF _{KL1}	1,35	-	EC8.3 - NF EN 1998-1-1 – Art. 3.3.1 (4) – Tab. 3.1, déc. 2009
Coefficient de conditionnement	δ_c	1,00	-	EC6 - NF EN 1996-1-1 – Art 3.6.1.2 (1)
Facteur de forme	δ	1,15	-	EC6 - NF EN 1996-1-1 – Art 3.6.1.2 (1)
Coefficient de passage	δ_p	1,18	-	Annexe NF EN 772-1 (Blocs béton)
Résistance à la compression du mortier (Type M2,5 - M10)	f _m	2,5 - 10,0	MPa	EC8.1 - NF EN 1998-1
Résistance caractéristique des pierres naturelles	R_c	1,7 - 13,0	MPa	Annexe NF EN 772-1
Résistance caractéristique des blocs perforés de T.C (Type BP 200 – groupe 3)	R _c	2,5 - 25,0	MPa	Annexe NF EN 772-1
Résistance caractéristique des blocs de béton de granulat courant plein ou perforés (type BP200 – groupe 3)	R _c	2,2 - 23,6	MPa	Annexe NF EN 772-1
Pierres naturelles et blocs de béton de granulat courant perforés ou pleins	К	0,45	-	EC6 - NF EN 1996-1-1 - Art. 3.6.1.2 -
Blocs terre cuite groupe 3 ou 4	K	0,35	-	Tableau 3.1 + 3.3
Résistance moyenne normalisée à la compression des blocs de pierres naturelles	f _b	2,0 - 15,0	MPa	EC6 - NF EN 1996-1-1/NA, déc. 2009 -
Résistance moyenne normalisée à la compression des blocs de T.C.perforés	f _b	3,0 - 30,0	MPa	Clause 3.6.1.2 (1) $f_b = R_c * \delta_C * \delta$
Résistance moyenne normalisée à la compression des blocs de béton de granulat	f _b	3,0 - 32,0	MPa	$f_b = R_c * \delta_C * \delta * \delta_p$ (Blocs béton)
Résistance caractéristique à la compression de la maçonnerie constituée de pierres naturelles	f_K	1,0 - 6,0	MPa	EC6 - NF EN 1996-1-1 - Clause 3.6.1.2 (1) -
Résistance caractéristique à la compression de la maçonnerie constituée de blocs T.C	f _K	1,3 – 9,7	MPa	+ Tab 3.3 (Pour la valeur de K)
Résistance caractéristique à la compression de la maçonnerie constituée de blocs béton	f _K	3,8 - 30,5	MPa	$f_K = K [f_b^{0,7} * f_m^{0,3}] Eq.3.2$
Résistance de calcul à la compression de la ma- çonnerie constituée de pierres naturelle	f _d	0,25 – 1,7	MPa	$f_d = f_K / (CF_{KL1} * \gamma_M)$
Résistance de calcul à la compression de la ma- çonnerie constituée de blocs T.C.	f _d	0,35 – 2,7	MPa	500 0 NE EN 4000 0 1/ 2005 1 1 2 5 5 1
Résistance de calcul à la compression de la ma- çonnerie constituée de blocs béton	f _d	1,4 – 11,3	MPa	EC8.3 - NF EN 1998-3, déc. 2005 - Art. 2.2.1 (5)P + Art. 2.2.1 (7)P

Tableau n° A 11 : Caractéristiques mécanique des matériaux

Source : [Documents techniques unifiés ; Eurocode 8 ; LEGIER F., janvier 2006]

Annexe 5.B – Caractéristiques mécanique des matériaux (suite)

Caractéristiques des matériaux	Symbole	Valeur	Unité	Références
	Ma	çonnerie	(Suite	:)
Résistance caractéristique initiale au cisaillement	f _{VKO}	0,15	MPa	,
de la maçonnerie constituée de pierres naturelles	VIO			NF EN 1996 – 1-1/NA – Clause 3.6.2(3) -
Résistance caractéristique initiale au cisaillement	f _{VKO}	0,20	MPa	Tableau 3.4
de la maçonnerie constituée de blocs de terre	VINO			
cuite et blocs de béton				
Résistance de calcul au cisaillement de la maçon-	f_{VK}	0,11	MPa	
nerie constituée de pierres naturelles	VK			EC8.3 - NF EN 1998-3, déc. 2005 - Art.
Résistance de calcul au cisaillement de la maçon-	f_{VK}	0,15	MPa	2.2.1 (5)P
nerie constituée de blocs de terre cuite de béton	·VK			
Module d'élasticité Pierre naturelle		2120		EC6 - NF EN 1996-1-1 - Clause 3.7.2 -
Brique de terre cuite	E _m	1651	MPa	
Bloc de béton de granulat		1850		Eq.3.8
Module de cisaillement Pierre naturelle	Gm	848	MPa	EC6 - NF EN 1996-1-1 - Clause 3.7.3 (40%E)
Brique de terre cuite		660		ECO - NF EN 1990-1-1 - Clause 3.7.3 (40%E)
Bloc de béton de granulat		740		
Caractéristiques des matériaux	Symbole	Valeur	Unité	Références
Donne	ées com	munes à	tout ty	pe de béton
Masse volumique Béton	ρ _c	2500	kg/m³	-
Coefficient partiel du béton		1,50	Kg/III	_
Coefficient partier du beton	γ c (ELU)	1,50	_	-
Coefficient partiel du béton	Yc(ELS)	1,00	-	EC6 - NF EN 1998-1-1 – Art. 2.4.4 (1)P, déc.
	10(220)			2009
0 (6)		4.05		
Coefficient de confiance du niveau de connais-	CF _{KL1}	1,35	-	EC8.3 - NF EN 1998-1-1 – Art. 3.3.1 (4) –
sance				Tab. 3.1, déc. 2009
Béton de rem	plissage	des anné	es 50	– 70 - Classe C12/15
Résistance caractéristique à la compression	f_{ck}	12,00	MPa	
				EC6 - NF EN 1996-1-1 - Art. 3.3.3(2) + Tab
Résistance caractéristique au cisaillement	f_{cvk}	0,27	MPa	3.2
nesistance caracteristique da cisamentent	CVK	0,2,	1411 G	
Résistance de calcul à la compression	f_{ckd}	8,00	MPa	$f_{cvd} = f_K / \gamma_c$
Résistance de calcul au cisaillement	f_{cvkd}	0,18	MPa	$f_{cd} = f_{cK} / \gamma_c$
	_			
Module d'élasticité Béton	E _{cm}	27 000	MPa	Eurocode 2 – Tab. 3.1

Tableau n° A 11 : Caractéristiques mécanique des matériaux

Source : [Documents techniques unifiés ; Eurocode 8 ; LEGIER F., janvier 2006]

Annexe 5.B – Caractéristiques mécanique des matériaux (suite)

Caractéristiques des matériaux	Symbole	Valeur	Unité	Références
Béton de remplissage /	Béton de	e structui	e des	années 70 - 80 - Classe C16/20
Résistance caractéristique à la compression	f _{ck}	16,00	MPa	EC6 - NF EN 1996-1-1 - Art. 3.3.3(2) + Tab
Résistance caractéristique au cisaillement	f _{cvk}	0,33	МРа	3.2
Résistance de calcul à la compression	f_{ckd}	10,67	MPa	$f_{cvd} = f_{cK} / \gamma_c$
Résistance de calcul au cisaillement	f _{cvkd}	0,22	MPa	$f_{cd} = f_K / \gamma_c$
Module d'élasticité Béton	E _{cm}	29 000	MPa	Eurocode 2 – Tab. 3.1
Béton de st	ructure d	les année	s 70 –	80 - Classe C20/25
Résistance caractéristique à la compression	f _{ck}	20,00	MPa	
Résistance caractéristique au cisaillement	f _{cvk}	0,39	МРа	EC2 - NF EN 1992-1-1 - Art. 3.1.2(9) + Tab 3.1
Résistance de calcul à la compression	f _{ckd}	13,33	MPa	$f_{cvd} = f_K / \gamma_c$
Résistance de calcul au cisaillement	f_{cvkd}	0,26	MPa	$f_{cd} = f_K / \gamma_c$
Module d'élasticité Béton	E _{cm}	30 000	MPa	Euro code 2 – Tab. 3.1
Béton de struc	ure post	érieur au	x ann	ées 90 - Classe C25/30
Résistance caractéristique à la compression	f _{ck}	25,00	MPa	EC2 - NF EN 1992-1-1 - Art. 3.1.2(9) + Tab
Résistance caractéristique au cisaillement	f _{cvk}	0,45	MPa	3.1
Résistance de calcul à la compression	f _{ckd}	16,67	MPa	$f_{cvd} = f_K / \gamma_c$
Résistance de calcul au cisaillement	f _{cvkd}	0,26	MPa	$f_{cd} = f_K / \gamma_c$
Module d'élasticité Béton	E _{cm}	31 000	MPa	Eurocode 2 – Tab. 3.1
Caractéristiques des matériaux	Symbole	Valeur	Unité	Références

Tableau n° A 11 : Caractéristiques mécanique des matériaux

Source : [Documents techniques unifiés ; Eurocode 8 ; LEGIER F., janvier 2006]

Annexe 5.B - Caractéristiques mécanique des matériaux (suite)

Caractéristiques des matériaux	Symbole	Valeur	Unité	Références
Acier	s des anı	nées 50/7	70 - CI	asse FeE400
Coefficient partiel de sécurité de l'acier	γs	1,15	-	NF EN 1998-1-1/AN 9.6 (3)
Résistance caractéristique (traction/compression)	f _{vK}	400	MPa	-
				EC2 - NF EN 1992-1-1/ANC - Art. C.1 - Tab
Résistance caractéristique (cisaillement)	f	120*A	MPa	C.1 (0,3*A* f_{vk}) (A est l'aire du fil)
Résistance de calcul (traction/compression)	f_{vd}	347	MPa	$F_{vd} = f_{vK} / \gamma_S$
Module d'élasticité Acier	E _A	210 000	MPa	-
Aciers	des ann	ées 80/20	000 - 0	Classe FeE500
Coefficient partiel de sécurité de l'acier	γ s	1,15	-	NF EN 1998-1-1/AN 9.6 (3)
Résistance caractéristique (traction/compression)	f_{vK}	500	MPa	-
District and district district and	f	420*4	140-	EC2 - NF EN 1992-1-1/ANC - Art. C.1 - Tab
Résistance caractéristique (cisaillement)	'	120*A	MPa	C.1 (0,3*A* f_{vk}) (A est l'aire du fil)
Résistance de calcul (traction/compression)	f_{vd}	435	МРа	$F_{vd} = f_{vK} / \gamma_S$
Module d'élasticité Acier	E _A	210 000	MPa	-

Tableau n° A 11 : Caractéristiques mécanique des matériaux

Source : [Documents techniques unifiés ; Eurocode 8 ; LEGIER F., janvier 2006]

Annexe 5.C - Principe de calcul des charges gravitaires - Résultats globaux

La valeur de calcul $E_{\rm d}$ des effets des actions en situation sismique doit être déterminée conformément à l'Eurocode EN 1990 :2003 – Art. 6.4.3.4. La combinaison d'actions sismique est la suivante.

Principe de calcul

G: Action permanente

P : Valeur représentative appropriée d'une action de précontrainte (voir EN 1992 à EN 1996, EN 1998 et EN 1999)

 $\sum_{j\geq 1} G_{k,j} "+"P"+"A_{Ed}" "+" \sum_{j\geq 1} \psi_{2,j} Q_{k,i} \quad A_{Ed} : Valeur de calcul d'une action sismique A_{Ed} = \gamma_1 A_{Ek}$

 $Q_{k,i}$: Valeur caractéristique de l'action i variable d'accompagnement ψ_2 : Coefficient définissant la valeur quasi-permanente d'une action variable

variable

Source : Norme Européenne – NF EN1990 : 2003 - \$ 6.4.3.4

Le résultat de la précédente combinaison d'actions prenant en compte la présence des masses associées à toutes les charges gravitaires se résume au tableau suivant.

Résultats globaux

RECAPITULATION DES CHARGES GRAVITAIRES A LA BASE DES BATIMENTS

BATIMENT EN MACONNERIE CONSTRUIT DE PIERRE NATURELLES

Pierres (Nb é	tage)		1		3		5		7		9		12	
			G	Ψ _{2i} * Q	G	Ψ _{2i} * Q	G	Ψ _{2i} * Q	G	Ψ _{2i} * Q	G	Ψ _{2i} * Q	G	Ψ _{2i} * Q
	Faible	(KN	2 372,70	49,50	5 781,85	148,50	9 190,99	247,50	-	-	-	-	-	-
BTeroch	Moyen	(KN	2 931,99	63,57	7 145,65	190,72	11 359,31	317,87	•	•	-	-	-	-
	Elevé	(KN	3 491,27	77,65	8 509,45	232,94	13 527,64	388,23	-	-	-	-	-	-

BATIMENT EN MACONNERIE CONSTRUIT DE BLOCS DE BETON DE TERRE CUITE

Blocs TC ou	Béton		1		3		5		7		9		12	
			G	Q	G	Q	G	Q	G	Q	G	Q	G	Q
BT _{ff_R-f}	Faible	(KN	2 423,10	85,14	5 627,50	255,42	8 831,90	425,70	12 036,30	595,98	•	-	-	-
	Moyen	(KN	3 280,30	132,60	7 991,20	397,80	12 702,10	663,00	17 413,00	928,20	•	-	-	-
	Elevé	(KN	4 243,90	166,77	10 475,30	500,31	16 706,70	833,85	22 938,10	1 167,39	-	-	-	-

BATIMENT EN MACONNERIE CONSTRUIT DE BLOCS DE BETON DE GRANULATS

Blocs TC ou	Béton		1		3		5		7		9		12	
			G	Q	G	Q	G	Q	G	Q	G	Q	G	Q
BTIRDCH	Faible	(KN	3 630,89	136,14	9 277,22	408,43	14 923,56	680,72	20 569,90	953,01	•	-	•	•
	Moyen	(KN	5 232,16	184,51	13 329,40	553,52	21 426,63	922,54	29 523,86	1 291,55	-	-	-	-
	Elevé	(KN	6 833,44	232,87	17 381,57	698,61	27 929,70	1 164,35	38 477,82	1 630,09	-	-	-	-

BATIMENT EN BETON ARME - CLASSE C16/20

Béton armé			1		3		5		7		9		12	
			G	Q	G	Q	G	Q	G	Q	G	Q	G	Q
BT _{11_R-1}	Faible	(KN	3 149,25	120,32	8 026,06	360,97	12 902,86	601,61	17 779,66	842,26	22 656,46	1 082,90	29 971,67	1 443,87
	Moyen	(KN	4 995,49	176,44	12 691,23	529,33	20 386,98	882,22	28 082,72	1 235,10	35 778,46	1 587,99	47 322,08	2 117,32
	Elevé	(KN	6 841,72	232,56	17 356,41	697,69	27 871,09	1 162,82	38 385,78	1 627,95	48 900,47	2 093,07	64 672,50	2 790,76

BATIMENT EN BETON ARME - CLASSE C25/30

Béton armé			1		3		5		7		9		12	
			G	Q	G	Q	G	Q	G	Q	G	Q	G	Q
	Faible	(KN	3 091,83	120,32	7 968,63	360,97	12 845,44	601,61	17 722,24	842,26	22 599,04	1 082,90	•	-
BT _{12_8-1}	Moyen	(KN	4 910,49	176,44	12 606,23	529,33	20 301,98	882,22	27 997,72	1 235,10	35 693,46	1 587,99	-	-
	Elevé	(KN	6 729,14	232,56	17 243,83	697,69	27 758,52	1 162,82	38 273,20	1 627,95	48 787,89	2 093,07	-	-

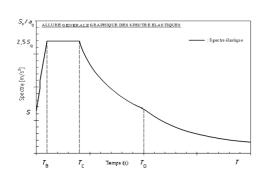
Annexe 5.D - Spectres élastiques - Efforts sismique à la base des bâtiments

Combinaison d'action

 $\sum G_{\mathbf{k},\mathbf{j}}"+"\sum \psi_{\mathbf{E},\mathbf{i}}\cdot Q_{\mathbf{k},\mathbf{i}}\quad : \texttt{EC8-NF EN1998-1, septembre 2005-art. 3.2.4-alinéa. (1)P}$

 $\Psi_{E,i} = \phi * \Psi_2$

: EC8 - NF EN1998-1, septembre 2005 - art. 4.2.4 - alinéa. (2)P


 $\Psi_{E,i} = 0.24$; $\Psi_{E,i} = 0.30$; $\Psi_{2} = 0.30$

: Eurocode 8 - Art. 3.2.4 - Alinéa (2)P.- Eq° 3.17

Principe de calcul

 $E_{q}(1) \quad 0 \le T \le T_{B}: \qquad \qquad S_{e}(T) = a_{g} \cdot S \cdot \left[1 + \frac{T}{T_{B}} \cdot \left(\eta \cdot 2, 5 - 1\right)\right]$ $E_{q}(2) \quad T_{B} \le T \le T_{C}: \qquad \qquad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot 2, 5$ $E_{q}(3) \quad T_{C} \le T \le T_{D}: \qquad \qquad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot 2, 5 \left[\frac{T_{C}}{T}\right]$

 $E_{q}(4)$ $T_{D} \le T \le 4s$: $S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot 2.5 \left\lceil \frac{T_{C}T_{D}}{T^{2}} \right\rceil$

Selon la valeur de la période fondamentale du bâtiment TB ≤ T ≤ TD l'une des équations précédente est utilisée pour calculer le spectre élastique.

Résultats globaux S_e(T) - Accélération de sol dans le sens X-X des bâtiments

BT3_RDCH													BT11_R	+1									
ETAGE	1		3		5		7		9		12		1		3	5		7		9		12	
Niveau faib	le															I							
Lambda	1,00	0	0,85		0,85		-		-		-		1,00		0,85	0,85		0,85		-		-	
Se (T ₁) CI A	1,399 (1) 1	ر,779	(1)	2,167	(1)	-	-	-	-	-	-	1,342 (1)	1,573 (1)	2,048	(1)	2,250	(2)	-	0	-	0
Niveau mo	yen																						
Lambda	1,00	0	,850		0,850		-		-		-		1,00		0,85	0,85		0,85		-		-	
Se (T ₁) CI A	1,855 (1) 2	2,530	(1)	2,750	(2)	-	-	-	-	-	-	1,887 (1)	2,422 (1)	2,750	(2)	2,750	(2)	-	0	-	0
Niveau éle	vé																						
Lambda	1,00	0),85		0,85		-		-		-		1,00		0,85	0,85		0,85		-		-	
Se (T ₁) CI A	2,363 (1) 3	3,250	(2)	3,250	(2)	-	•	-	-	-	-	2,521 (1)	3,250 (2)	3,250	(2)	3,250	(2)	-	-	-	-

BATIMENT EN MACONNERIE (construit de blocs de béton de granulats)

BT9 R+1 Niveau faible Lambda Se (T₁) Cl A 1,342 (1) 1,573 (1) 2,048 (1) 2,250 (2) Niveau moyen Lambda 1,00 0,85 0,85 Niveau élevé Lambda 1,00 0,85 0,85 0.85

BATIMENT					iusse c	-10,							ı		T EN B			•••	Ciusse		3,30			
BT11_R+1													BT12_	R+1										
ETAGE	1		3		5		7		9		12		1		3		5		7		9		12	2
Niveau faib	le																							
Lambda	1,00		0,85		0,85		0,85		0,85		0,85		1,00		0,85		0,85		0,85		0,85		-	
Se (T ₁) CI A	1,403	(1)	1,786	(1)	2,147	(1)	2,250	(2)	2,250	(2)	2,250	(2)	1,403	(1)	1,786	(1)	2,147	(1)	2,250	(2)	2,250	(2)	-	-
Niveau mo	yen	-																						
Lambda	1,00		0,85		0,85		0,85		0,85		0,85		1,00		0,85		0,85		0,85		0,85		-	
Se (T ₁) CI A	1,953	(1)	2,742	(1)	2,750	(2)	2,750	(2)	2,410	(3)	1,754	(3)	1,953	(1)	2,742	(1)	2,750	(2)	2,750	(2)	2,410	(3)	-	-
Niveau éle	vé												'		'									
Lambda	1,00		0,85		0,85		0,85		0,85		1,00		1,00		0,85		0,85		0,85		0,85		-	
Se (T ₁) CI A	2,590	(1)	3,250	(2)	3,250	(2)	2,496	(3)	1,907	(3)	1,398	(3)	2,590	(1)	3,250	(2)	3,250	(2)	2,496	(3)	1,907	(3)	-	-

: [EC8.1 - Art. 3.2.2.2(1)P Equations 3.2 à 3.5 + Figure 3.1 Forme Source du spectre de réponse élastique, p 25]

Résultats globaux $S_{\mbox{\tiny e}}(T)\,$ - Accélération de sol dans le sens Y-Y des bâtiments

BT3_RDCH													BT11_	R+1									
ETAGE	1		3		5		7		9		12		1		3	5		7		9		12	
Niveau faible	e															T		l					1
Lambda	1,00		0,85		0,85		-		-		-		1,00		0,85	0,85		0,85		-		-	
Se (T ₁) CI A	1,409	(1)	1,792	(1)	2,183	(1)	-	-	-	-	-	-	1,311	(1)	1,551 (1) 1,901	(1)	2,169	(1)	-	-	-	-
Niveau moy	yen																						
Lambda	1,00		0,850		0,850						-		1,00		0,85	0,85		0,85	.	-		-	
Se (T ₁) CI A	1,870	(1)	2,552	(1)	2,750	(2)	-	-	-	-	-	-	1,831	(1)	2,379 (1) 2,750	(2)	2,750	(2)	-	-	-	-
Niveau élev	/é																						
Lambda	1,00		0,85		0,85		-		-		-		1,00		0,85	0,85		0,85		-		-	
Se (T ₁) CI A	2,384	(1)	3,250	(2)	3,250	(2)	-	-	-	-	-	-	2,434	(1)	3,250 (2) 3,250	(2)	3,250	(2)	-	-	-	-

BT9_R+1						
ETAGE	1	3	5	7	9	12
Niveau faible						
Lambda	1,00	0,85	0,85	0,85		
Se (T ₁) CI A	1,311 (1)	1,573 (1)	1,901 (1)	2,169 (1)		
Niveau moyen			-	-		
Lambda	1,00	0,85	0,85	0,85		
Se (T ₁) CI A	1,831 (1)	2,422 (1)	2,750 (2)	2,750 (2)		
Niveau élevé	l '	l '				
Lambda	1,00	0,85	0,85	0,85		
Se (T ₁) CI A	2,434 (1)	3,250 (2)	3,250 (2)	3,250 (2)		

BATIMENT I BT11 R+1	EN BE	TON	ARM	E - c	lasse (16,	/25						BATIN BT12		T EN B	ETO	N AR	ME -	classe	C2	5/30			
ETAGE	1		3		5		7		9		12		1	K+1	3		5		7		9		12	
Niveau faible	e																							
Lambda	1,00		0,85		0,85		0,85		0,85		0,85		1,00		0,85		0,85		0,85		0,85		-	
Se (T ₁) CI A	1,428	(1)	1,787	(1)	2,187	(1)	2,250	(2)	2,250	(2)	2,250	(2)	1,428	(1)	1,787	(1)	2,187	(1)	2,250	(2)	2,250	(2)	-	-
Niveau moy	yen																							
Lambda	1,00		0,85		0,85		0,85		0,85		0,85		1,00		0,85		0,85		0,85		0,85		-	
Se (T ₁) CI A	1,745	(1)	2,744	(1)	2,750	(2)	2,750	(2)	2,154	(3)	1,506	(3)	1,994	(1)	2,744	(1)	2,750	(2)	2,750	(2)	2,154	(3)	-	-
Niveau élev	/é																							
Lambda	1,00		0,85		0,85		0,85		0,85		1,00		1,00		0,85		0,85		0,85		0,85		-	
Se (T ₁) CI A	2,651	(1)	3,250	(2)	3,250	(2)	2,343	(3)	1,907	(3)	1,398	(3)	2,651	(1)	3,250	(2)	3,250	(2)	2,343	(3)	1,705	(3)	-	-

Source : [EC8.1 – Art. 3.2.2.2(1)P Equations 3.2 à 3.5 + Figure 3.1 Forme du spectre de réponse élastique, p 25]

Principe de calcul de l'effort sismique à la base des ouvrages

BATIMENT n° 3_F CALCUL DES FORCES				GE					
NIVE	ΑU		Faible			Moyen		Elevé	_
NB etage		1			1			1	
Murs		39,66		T/m	48,42		T/m	57,18	T/m
Plancher		32,99		T	42,35		т	51,71	Т
Plancher		13,28		т	17,05		т	20,82	т
Toiture	G	15,23		т	19,55		т	23,87	т
Lambda		1,00			1,00			1,00	
Se (Tx ₁) Sol classe A		1,399		(1)	1,855		(1)	2,363	(1)
			G	Q		G	Q	G	Q
ETAGE avec toiture									
Toiture			15,23			19,55			
Plancher			32,99		I	42,35			
Murs			0,00	0		0,00	0	0,00	0
ETAGE COURANT				_					
Plancher			0,00		1	0,00			
Murs			0,00	0		0,00	0	0,00	0
RDCH									
Plancher			0,00	0		0,00	0	0,00	0
Murs			138,80	0		169,47	0	200,14	0
Masse	т		187,02			231,37			
Masse Sismique	Kg	187	016,03	3 187,67	231	370,00	4 092,00	275 723,97	4 996,33
TOTAL MASSE SISMIQU	E =	1	190,20	т		235,46	т	280,72	т
FORCE SISMIQUE [F _B]									
$F_b = Se(T1) * m * 1$	λ:	F _B =							
Clsse A		2	266,13	KN	4	136,73	KN	663,35	KN
Clsse B		3	359,27	KN	5	589,59	KN	895,52	KN
Clsse C			99,19		•	555,10	KN	995,02	KN
Clsse D		4	179,03	KN	7	786,12	KN	1 194,03	KN

Nota : Effort tranchant selon la direction X

Ce modèle de calcul est répété pour chaque type de bâtiment

Résultats globaux des efforts sismiques à la base des bâtiments

	_				·								1					
BT3_RDCH							NNERIE O			RE NATURE	LLES (Actio		selon X)		: :			
Nb ETAGES		3	5	7	9	12	1	3	5	7	9	12	1	3	5	7	9	12
Sol classe A		:	NIVEAU F	AIBLE	:				NIVEAU N	MOYEN :		:			NIVEAU E	LEVE	:	
F _{BX} (KN) =	266,1	696,7	1 347,2	-	-		436,7	1 226,8	2 116,4	-	-	-	663,3	1878,6	2 981,8	-	-	-
M _{BY} (KN) =	931,5	4 544,3	13 394,2	-	-	-	1 528,6	8 004,2	21 055,9	-	-	-	2 321,7	12 259,9	29 678,1	-	-	-
BT11_R+1				BATIMENT	EN MACO	NNERIE CO	NSTRUIT	DE BLOCS	DE BETO	N DE TERR	E CUITE (Ad	tion sismic	que selon	X)				
Sol classe A			NIVEAU F	AIBLE					NIVEAU Ņ	MOYEN					NIVEAU E	LEVE .		
F _{BX} (KN) =	374,8	955,4	2 001,2	3 030,8	-		752,6	2 095,5	3 825,9	5 272,7	-	-	1 307,3	3 650,0	5 867,4	8 084,8	-	-
M _{BY} (KN) =	1 311,9	6 314,5	19 804,4	40 564,6	-		2 634,3	14 631,0	39 044,5	74 449,3	-	-	4 575,4	23 988,5	57 872,7	108 301,3	-	
BT9_RDCH				BATIMENT	EN MACO	NNERIE CO	NSTRUIT	DE BLOCS	DE BETO	N DE GRAN	VULATS (Ac	tion sismiq	ue selon	X)				
Sol classe A			NIVEAU F	AIBLE					NIVEAU N	//OYEN					NIVEAU E	LEVE		
F _{BX} (KN) =	414,0	1 040,6	2 172,1	3 284,4	-	-	838,2	2 301,8	4 188,3	5 763,3	-	-	1 462,1	4 027,6	6 452,9	8 878,3	-	-
M _{BY} (KN) =	1 449,2	6 861,5	21 465,7	43 938,1	-		2 933,6	15 159,9	41 363,7	77 013,0	-	-	5 117,4	26 510,2	63 705,2	118 564,41	-	
BT11_R+1			·	i	BATIMENT	EN BETON	ARME - (CLASSE C1	5/20 (Acti	on sismiqu	ie selon X)							
Sol classe A			NIVEAU F	AIBLE					NIVEAU N	/OYEN					NIVEAU E	LEVE		
F _{BX} (KN) =	358,5	985,5	1 903,3	2 747,1	3 500,0	4 629,2	782,8	2 367,4	3 811,6	5 248,9	5 859,1	5 640,4	1 414,2	3 818,5	6 128,5	6 481,7	6 307,4	7 192,5
M _{BY} (KN) =	1 254,8	6 515,4	18 838,5	36 294,5	57 870,6	100 671,4	2 739,9	15 631,6	37 698,7	69 316,0	96 846,8	122 572,3	4 949,7	25 198,1	60 594,0	85 576,5	104 241,4	156 247,9
BT12_R+1				Ī	BATIMENT	EN BETON	ARME - (LASSE C2	5/30 (Acti	on sismiqu	ie selon X)							
Sol classe A			NIVEAU F	AIBLE					NIVEAU N	NOYEN					NIVEAU E	LEVE		
F _{BX} (KN) =	296,9	818,4	1 581,5	2 283,4	2 909,6		647,7	1 963,7	3 163,6	4 357,9	4 865,3	-	1 169,5	3 165,7	5 084,0	5 378,5	5 234,7	-
M _{BY} (KN) =	1039,2	5 411,8	15 656,3	30 170,8	48 709,4		2 266,8	12 966,1	31 290,3	57 549,4	81 381,7	-	4 093,1	20 896,4	50 275,2	71 019,0	87 513,0	
BT3_RDCH					BATIMENT	EN MACON	NNERIE O	ONSTRUIT	DE PIERR	RE NATURE	LLES (Actio	n sismique	selon Y)					
Nb ETAGES	1	3	5	7	9	12	1	3	5	7	9	12	1	3	5	7	9	12
Sol classe A			NIVEAU F	AIBLE	•			•	NIVEAU N	/OYEN			<u> </u>		NIVEAU E	LEVE		
F _{BY} (KN) =	268,0	702,1	1 357,4	-	-		440,2	1 237,6	2 116,4	-	-	-	669,2	1878,6	2 981,8	-	-	
M _{BX} (KN) =	938,0	4 579,2	13 496,1		-		1540,8	8 074,4	21 055,9	-			2 342,3	12 259,9	29 678,1	-	-	
BT11_R+1				BATIMENT	EN MACO	NNERIE CO	NSTRUIT		- :	N DE TERR	E CUITE (Ac	tion sismic						
Sol classe A			NIVEAU F						NIVEAU N		,				NIVEAU E	LEVE		
F _{BY} (KN) =	366,1	942,1	1857,2	2 921,2	-		730,4	2 058,3	3 825,9	5 272,7		-	1 262,4	3 650,0	5 867,4	8 084,8	-	
M _{BX} (KN) =	l i	6 226,6	18 379,6	39 097,2	-		2 556,4	14 371,2	39 044,5	74 449,3	-	-	4 418,2	23 988,5	57 872,7	108 301,3	-	
BT9_RDCH					EN MACO	NNERIE CO	NSTRUIT	DE BLOCS	DE BETO	N DE GRAN	NULATS (Ac	tion sismiq	ue selon	γ)				
Sol classe A			NIVEAU F	AIBLE					NIVEAU N	//OYEN	,			•	NIVEAU E	LEVE		
F _{BY} (KN) =	1 :	1 040,6	2 015,8	3 165,6	-		813,4	2 301,8	4 188,3	5 763,3	-	-	1 411,9	4 027,6	6 452,9	8 878,3	-	
M _{BX} (KN) =	l i		10 021 5	42 348,6	_		2 846,8	15 159,9	41 363,7	77 013,01	-	-	4 941,6	26 510,2	63 705,2	118 564,4	-	
	1 415,3	6 861,5	13 321,3	42 340,0 :														
BT11_R+1	1 415,3	6 861,5	13 321,3	- :	BATIMENT	EN BETON	ARME - (CLASSE C1	5/20 (Acti	on sismiqu	ie selon Y)							
BT11_R+1 Sol classe A			NIVEAU F		BATIMENT	EN BETON	ARME - (5 <mark>/20 (Acti</mark> NIVEAU N		ie selon Y)				NIVEAU E	LEVE		
_			NIVEAU F			EN BETON 4 629,2			NIVEAU N			4 841,1	1 447,9				6 307,4	7 192,5
Sol classe A	364,7	986,1	NIVEAU F. 1 938,5	AIBLE 2 747,1	3 500,0	4 629,2	699,2	2 368,9	NIVEAU N 3 811,6	лоуен 5 248,9	5 236,7			3 818,5	6 128,5	6 083,5	6 307,4 104 241,4	
Sol classe A	364,7	986,1	NIVEAU F. 1 938,5	AIBLE 2 747,1 36 294,5	3 500,0 57 870,6	4 629,2 100 671,4	699,2 2 447,3	2 368,9 15 641,7	NIVEAU N 3 811,6 37 698,7	ЛОҮЕN 5 248,9 69 316,0	5 236,7 86 559,0			3 818,5	6 128,5	6 083,5		
Sol classe A $F_{BY}(KN) = M_{BX}(KN) = BT12_R+1$	364,7 1 276,4	986,1 6 518,9	NIVEAU F. 1 938,5	AIBLE 2 747,1 36 294,5	3 500,0 57 870,6	4 629,2	699,2 2 447,3	2 368,9 15 641,7 CLASSE C2	NIVEAU N 3 811,6 37 698,7	00YEN 5 248,9 69 316,0 on sismiqu	5 236,7 86 559,0			3 818,5 25 198,1	6 128,5	6 083,5 80 319,4		
Sol classe A F _{BY} (KN) = M _{BX} (KN) =	364,7 1 276,4	986,1 6 518,9	NIVEAU F, 1 938,5 19 187,7 NIVEAU F,	AIBLE 2 747,1 36 294,5	3 500,0 57 870,6	4 629,2 100 671,4 EN BETON	699,2 2 447,3 ARME - 0	2 368,9 15 641,7 CLASSE C2	NIVEAU N 3 811,6 37 698,7 5/30 (Acti NIVEAU N	00YEN 5 248,9 69 316,0 on sismiqu	5 236,7 86 559,0 ie selon Y)	105 202,0	5 067,5	3 818,5 25 198,1	6 128,5 60 594,0	6 083,5 80 319,4 LEVE	104 241,4	156 247,9
Sol classe A F _{BY} (KN) = M _{BX} (KN) = BT12_R+1 Sol classe A	364,7 1 276,4 : 302,0	986,1 6 518,9	NIVEAU F. 1 938,5 19 187,7 NIVEAU F. 1 610,8	AIBLE 2 747,1 36 294,5 I AIBLE 2 283,4	3 500,0 57 870,6 BATIMENT 2 909,6	4 629,2 100 671,4 EN BETON	699,2 2 447,3 ARME - 0	2 368,9 15 641,7 CLASSE C2 1 965,0	3 811,6 3 811,6 37 698,7 5/30 (Acti NIVEAU N 3 163,6	69 316,0 on sismiqu MOYEN 4 357,9	5 236,7 86 559,0 ie selon Y)	105 202,0	5 067,5 1 197,3	3 818,5 25 198,1 3 165,7	6 128,5 60 594,0 NIVEAU E 5 084,0	6 083,5 80 319,4 LEVE	104 241,4 4 679,5	156 247,9

Nota : Il est présenté uniquement les résultats ayant permis de vérifier la résistance au cisaillement qui est prédominant.

Annexe 5.E - Répartition en élévation des forces sismiques horizontales

Principe de calcul

ACTION SISMIQUE SELON X - X OU Y - Y - SOL DE CLASSE A

BATIMENT n° 3_RDCH - NIVEAU FAIBLE - MACONNERIE EN PIERRES NATURELLES

DONNEES :			N	o Etage =	1 étage	3 étages	5 ét	ages	7 étages	9 étages
Nb Etages =		1 à 5	F	B _{min} (KN) =	266,1	696,7	13	47,2	-	-
					1 étage				3 étages	
	H_i^t	m	Z_{i}	m * Z _i	Fi	Mi	Z_{i}	m * Z _i	F_i	Mi
Etages	(m)	(KN)	(m)	(KN.m)	(KN)	(KN.m)	(m)	(KN.m)	(KN)	(KN.m)
R _{+1 (1étage)}	3,5	1749,7	3,5	6 124,1	266,1	931,5	3,5	6 124,1	165,7	580,1
R ₊₂	2,5	1353,2	-	-	-	-	6,0	8 119,1	219,7	1 318,4
R _{+3 (3étages)}	2,5	1353,2	-	-	-	-	8,5	11 502,1	311,3	2 645,9
R+ ₄	2,5	1353,2	-	-	-	-	-	-	-	-
$R_{+5(5\text{\'e}tages)}$	2,5	1505,5	-	-		-	-	-		-
		7314,8		6 124,1	266,1	931,5		25 745,2	696,7	4 544,3

Annexe 5.F- Distribution des forces sismiques sur les murs porteurs

Principe de calcul

		436,7	1 540,8	I _{XG}	440,2	1 528,6	lyg							
		(KN)	(KN.m)	0,0%	(KN)	(KN.m)	0,0%							
		BAT	IMENT	n° 3_ _{RD}	_{CH} - 1 ET	AGE - N	IVEAU	MOYEN	- SI	EISI	ME SELO	ON X-X	X ou Y-	·Υ
		D	imensions			Caractéristi	ques		Coeft	orsion	Résul	tats (Trans	slation)+(To	rsion)
		L	lg	Ht	l _{/xi}	I _{/vi}	I _{/Vxi}	I _{AMi}	δχί	δ_{Y_i}	F _{xi}	M _{vi}	F _{Yi}	M _{xi}
ELEMENT	TS VERTICAUX	(m)	(m)	(m)	(m ⁴)	(m ⁴)	(m ⁴)	(m ⁴)	-		KN	KN.m	KN	KN.m
Mur 1	Selon X	3,35	0,60	3,50		1,880	-	1,65	1,1	-	101,57	355,51	-	-
Mur 1	Selon X	2,45	0,60	3,50		0,735	-	0,68	1,1	-	42,08	147,27	-	-
Mur 1	Selon X	2,30	0,60	3,50		0,608	-	0,57	1,1	-	35,09	122,82	-	-
Mur 1	Selon X	2,25	0,60	3,50		0,570	-	0,54	1,1	-	32,98	115,44	-	-
Mur 1	Selon X	1,20	0,60	3,50		0,086	-	0,08	1,1	-	5,194	18,18	-	-
Mur 1	Selon X	1,05	0,60	3,50		0,058	-	0,06	1,1	-	3,52	12,31	-	-
Mur 2	Selon X	1,95	0,45	3,50		0,278	-	0,27	1,0	-	14,84	51,94	-	-
Mur 2	Selon X	1,10	0,45	3,50		0,050	-	0,05	1,0	-	2,753	9,63	-	-
Mur 2	Selon X	2,00	0,45	3,50		0,300	-	0,29	1,0	-	15,978	55,92	-	-
Mur 2	Selon X	1,05	0,45	3,50		0,043	-	0,04	1,0	-	2,37	8,30	-	-
Mur 3	Selon X	3,35	0,60	3,50		1,880	-	1,65	1,1	-	101,57	355,51	-	-
Mur 4	Selon X	2,45	0,60	3,50		0,735	-	0,68	1,1	-	42,08	147,27	-	-
Mur 4	Selon X	2,30	0,60	3,50		0,608	-	0,57	1,1	-	35,09	122,82	-	-
Mur 4	Selon X	2,25	0,60	3,50		0,570	-	0,54	1,1	-	32,98	115,44	-	-
Mur 4	Selon X	1,20	0,60	3,50		0,086	-	0,08	1,1	-	5,19	18,18	-	-
Mur 4	Selon X	1,05	0,60	3,50		0,058	-	0,06	1,1	-	3,52	12,31	-	-
Mur 5	Selon Y	8,30	0,60	3,50	28,589		15,51	-	-	1,4	-	-	200,96	703,36
Mur 6	Selon Y	3,05	0,60	3,50	1,419		1,27	-	-	1,2	-	-	14,15	49,52
Mur 7	Selon X	4,45	0,45	3,50	3,305		2,66	-	-	1,2	-	-	29,55	103,41
Mur 7	Selon X	5,80	0,45	3,50	7,317		5,18	-	-	1,2	-	-	57,56	201,47
Mur 8	Selon Y	1,05	0,52	3,50	0,050		0,05	-	-	1,2	-	-	0,55	1,92
Mur 8	Selon Y	2,60	0,52	3,50	0,762		0,70	-	-	1,2	-	-	7,82	27,36
Mur 8	Selon Y	4,05	0,52	3,50	2,879		2,40	-	-	1,2	-	-	26,63	93,20
Mur 8	Selon Y	0,95	0,52	3,50	0,037		0,04	-	-	1,2	-	-	0,41	1,42
Mur 9	Selon Y	9,35	0,60	3,50	40,870		19,74	-	-	1,5	-	-	274,07	959,24
Mur 9	Selon Y	0,60	0,60	3,50	0,011		0,01	-	-	1,5	-	-	0,15	0,53

Annexe 5.G- Distribution des charges gravitaires sur les murs porteurs

Principe de calcul

CALCUL DE P_{inf,j}

 $p_{inf,j} = K_{G,i} * P_{inf,j}$

 $\Psi_{2i} = 0.30$

						BATIN	MENT	_	•	•	EAU N	/OYE	EN)		
									ANS LA DII						
				1		3		5		7	:	9	:	12	:
		$K_{G,i}$	$K_{Q,i}$	G	Ψ _{2i} * Q	G	Ψ _{2i} * Q	G	Ψ _{2i} * Q	G	Ψ _{2i} * Q	G	Ψ _{2i} * Q	G	Ψ _{2i} * Q
$P_{inf,j}$	MN			2,314	0,051	5,582	0,153	8,850	0,256	-	-		-		-
1	Mur X	0,045	0,027	0,104	0,001	0,251	0,004	0,398	0,007	_	_		_		_
1	Mur X	0,035	0,032	0,081		0,195	0,005	0,310	0,008						-
1	Mur X	0,034	0,035	0,079		0,190		0,301	0,009				_		
1	Mur X	0,034	0,035	0,079		0,190		0,301	0,009						_
1	Mur X	0,018	0,022	0,042		0,100		0,159							_
1	Mur X	0,016	0,020	0,037		0,089		0,142							
2	Mur X	0,027	0,048	0,062	·	0,151		0,239		_					-
2	Mur X	0,015	0,027	0,035		0,084		0,133	0,007						-
2	Mur X	0,028	0,049	0,065		0,156	0,008	0,248	0,013		-				-
2	Mur X	0,014	0,025	0,032		0,078	0,004	0,124							-
3	Mur X	0,045	0,027	0,104		0,251		0,398							-
4	Mur X	0,035	0,032	0,081		0,195		0,310		-	-			-	-
4	Mur X	0,034	0,035	0,079		0,190		0,301	0,009	-	-			-	-
4	Mur X	0,034	0,035	0,079	0,002	0,190		0,301		-	-	-		-	-
4	Mur X	0,018	0,022	0,042	0,001	0,100	0,003	0,159	0,006		-				-
4	Mur X	0,016	0,020	0,037	0,001	0,089	0,003	0,142	0,005	-	-		-	-	-
5	Mur X	0,106	0,045	0,245	0,002	0,592	0,007	0,938	0,012	-	-		-	-	-
6	Mur X	0,060	0,118	0,139	0,006	0,335	0,018	0,531	0,030	-	-		-	-	-
7	Mur Y	0,043	0,018	0,099	0,001	0,240	0,003	0,381	0,005	-	-	-	-	-	-
7	Mur Y	0,056	0,023	0,130	0,001	0,313	0,004	0,496	0,006	-	-	-	-	-	-
8	Mur Y	0,015	0,020	0,035	0,001	0,084	0,003	0,133	0,005	-	-	-	-	-	-
8	Mur Y	0,037	0,051	0,086	0,003	0,207	0,008	0,327	0,013	-	-	-	-	-	-
8	Mur Y	0,057	0,079	0,132	0,004	0,318	0,012	0,504	0,020	-	-	-	-	-	-
8	Mur Y	0,042	0,058	0,097	0,003	0,234	0,009	0,372	0,015	-	-	-	-	-	-
9	Mur Y	0,128	0,093	0,296	0,005	0,714	0,014	1,133	0,024	-	-	-	-	-	-
9	Mur Y	0,008	0,006	0,019	0,000	0,045	0,001	0,071	0,002	-	-		-	-	-

Nota : $P_{inf,j}$ = Cumul des charges gravitaires du bâtiment à l'étage j (j : Rez de chaussé)

Annexe 5. H – Étapes successives de la détermination du modèle d'évaluation

Etape 1 : Etude mécanique déterministe

: Données : Résultats

DONNEES MECANIQUES DETERMINISTE - MURS DIRECTION Y RESISTANCE AU CISAILLEMENT (Demande et Capacité sismique)

Phénomène physique	Acceleration de sol
Bâtiments	Caractéristiques géométriques Caractéristiques mécaniques des matériaux Etc.

RESULTATS MECANIQUES DETERMINISTE - MURS DIRECTION Y RESISTANCE AU CISAILLEMENT (Demande et Capacité sismique)

	[NOMBRE ET	AGE						
			1	3		5		7		9		12	
Deande et	Capacité	D	С	D	С	D	С	D	С	D	С	D	С
BT3_RDCH	Faible	0,374	0,282	0,980	0,646	1,895	0,975	-		-	-	-	-
Antérieur à	Moyen	0,612	0,384	1,720	0,868	2,941	1,324	-	-	-	-	-	-
(Pierres nature	Elevé	0,927	0,475	2,602	1,090	4,129	1,686	-	-	-	-	-	-
BT11_R+1	Faible	0,393	0,365	1,012	0,936	1,995	1,329	3,139	1,691	-	•	-	-
Années 195	Moyen	0,785	0,597	2,213	1,282	4,113	1,873	5,668	2,485	-	-	-	-
(Blocs de terre	Elevé	1,358	0,716	3,926	1,598	6,311	2,449	8,696	3,285	-	-	-	-
BT11_R+1	Faible	0,392	10,813	1,059	10,824	2,082	10,826	2,951	10,822	3,760	10,824	4,973	10,826
Années 195	Moyen	0,752	12,040	2,547	12,040	4,097	12,045	5,643	12,041	5,629	12,030	5,204	12,030
(B.A Classe I	Elevé	1,557	12,143	4,107	12,151	6,592	12,149	6,544	12,153	6,785	12,156	7,737	12,156
BT9_RDCH	Faible	0,579	4,161	1,411	3,300	2,889	2,849	4,536	3,198	-	-	-	-
Années 197	Moyen	1,159	5,311	3,278	4,324	5,965	3,522	8,209	4,331	-	-	-	-
(Blocs de béto	Elevé	0,013	0,295	0,038	0,248	0,061	0,192	0,084	0,208	-	-	-	-
BT12_R+1	Faible	0,503	10,516	1,363	10,538	2,681	10,544	3,800	10,551	4,842	10,541	•	-
Années 199	Moyen	1,093	10,570	3,248	10,579	5,230	10,574	7,204	10,555	7,188	10,546	-	-
(B.A Classe I	Elevé	1,968	12,032	5,203	12,057	5,642	12,072	8,297	12,063	7,691	12,046	-	-

Etape 2 : Etude mécanique statistique déterministe

DONNEES STATISTIQUES DETERMINISTE - MURS DIRECTION Y RESISTANCE AU CISAILLEMENT (Demande et Capacité sismique)

						NOMBRE ET	AGE						
			1	3		5		7		9		12	
Deande et	Capacité	D	С	D	С	D	С	D	С	D	С	D	С
BT3_RDCH	Faible	0,374	0,282	0,980	0,646	1,895	0,975	-	-	-	-	-	-
Antérieur à	Moyen	0,612	0,384	1,720	0,868	2,941	1,324	-	-	-	-	-	-
(Pierres nature	Elevé	0,927	0,475	2,602	1,090	4,129	1,686	-	-	-	-	-	-
BT11_R+1	Faible	0,393	0,365	1,012	0,936	1,995	1,329	3,139	1,691	•	•	•	•
Années 195	Moyen	0,785	0,597	2,213	1,282	4,113	1,873	5,668	2,485	-	-	-	-
(Blocs de terre	Elevé	1,358	0,716	3,926	1,598	6,311	2,449	8,696	3,285	-	-	-	-
BT11_R+1	Faible	0,392	10,813	1,059	10,824	2,082	10,826	2,951	10,822	3,760	10,824	4,973	10,826
Années 195	Moyen	0,752	12,040	2,547	12,040	4,097	12,045	5,643	12,041	5,629	12,030	5,204	12,030
(B.A Classe I	Elevé	1,557	12,143	4,107	12,151	6,592	12,149	6,544	12,153	6,785	12,156	7,737	12,156
BT9_RDCH	Faible	0,579	4,161	1,411	3,300	2,889	2,849	4,536	3,198	•	•	•	•
Années 197	Moyen	1,159	5,311	3,278	4,324	5,965	3,522	8,209	4,331	-	-	-	-
(Blocs de béto	Elevé	0,013	0,295	0,038	0,248	0,061	0,192	0,084	0,208	-	-	-	-
BT12_R+1	Faible	0,503	10,516	1,363	10,538	2,681	10,544	3,800	10,551	4,842	10,541	•	•
Années 199	Moyen	1,093	10,570	3,248	10,579	5,230	10,574	7,204	10,555	7,188	10,546	-	-
(B.A Classe I	Elevé	1,968	12,032	5,203	12,057	5,642	12,072	8,297	12,063	7,691	12,046	-	-

RESULTATS STATISTIQUES DETERMINISTE - MURS DIRECTION Y RESISTANCE AU CISAILLEMENT (Demande et Capacité sismique)

						NOMBRE ET	AGE						
		1		3		5		7		9		12	
Demande et (Capacité	D	С	D	С	D	С	D	С	D	С	D	С
BT3_RDCH	μ_{r}	0,478	0,314	1,346	0,735	2,205	1,217						
Antérieur à	$\sigma_{\rm x}$	0,241	0,075	0,726	0,170	0,966	0,268						
(Pierres nature	$\sigma_x/2$	0,121	0,038	0,363	0,085	0,483	0,134						
BT11_R+1	μ	1,019	0,768	2,501	1,943	4,001	2,853	5,785	3,624				
Années 195	σ_v	0,518	0,288	1,513	0,513	2,340	0,893	3,045	1,233				
(Blocs de terre	$\sigma_{\rm r}/2$	0,259	0,144	0,757	0,257	1,170	0,447	1,523	0,617				
BT11_R+1	μχ	0,949	6,845	2,762	6,895	4,545	6,829	5,019	6,917	5,133	6,812	6,270	6,868
Années 195	σ_{x}	0,549	0,477	1,685	0,469	2,555	0,446	2,295	0,499	1,772	0,447	1,667	0,439
(B.AClasse)	$\sigma_x/2$	0,275	0,239	0,843	0,235	1,278	0,223	1,148	0,250	0,886	0,224	0,834	0,220
BT9_RDCH	μγ	1,055	9,743	2,868	8,184	4,794	6,028	6,370	7,023				
Années 197	σ_v	0,636	2,830	1,688	2,132	2,562	1,810	5,255	2,171				
(Blocs de béto	$\sigma_{\rm r}/2$	0,318	1,415	0,844	1,066	1,281	0,905	2,628	1,086		-		
BT12_R+1	μ	0,921	14,301	2,286	14,256	3,574	14,025	4,019	14,277	4,529	14,265		
Années 199	σ _γ	0,461	0,964	1,341	1,023	2,151	1,005	1,809	0,981	1,393	1,036		
(B.AClasse)	σ _γ /2	0,231	0,482	0,671	0,512	1,076	0,503	0,905	0,491	0,697	0,518		

Etape 3 : Etude mécanique probabiliste

DONNEES PROBABILISTE - MURS DIRECTION Y RESISTANCE AU CISAILLEMENT (Demande et Capacité sismique

						NOMBRE ET	AGE						
		1		3		5		7		9		12	
Demande et Car	pacité	D	С	D	С	D	С	D	С	D	С	D	С
BT3_RDCH	μ	0,478	0,314	1,346	0,735	2,205	1,217					-	-
Antérieur à	σ _x	0,241	0,075	0,726	0,170	0,966	0,268						
BT11_R+1	μ	1,019	U,/68	2,501	1,943	4,001	2,853	5,785	3,624				
Années 195	σ_{v}	0,518	0,288	1,513	0,513	2,340	0,893	3,045	1,233			-	
BT11_R+1	μχ	0,949	6,845	2,762	6,895	4,545	6,829	5,019	6,917	5,133	6,812	6,270	6,868
Années 195	σ_{x}	0,549	0,477	1,685	0,469	2,555	0,446	2,295	0,499	1,772	0,447	1,667	0,439
BT9_RDCH	μ	1,055	9,743	2,868	8,184	4,794	6,028	6,370	7,023				
Années 197	σ_{v}	0,636	2,830	1,688	2,132	2,562	1,810	5,255	2,171				
BT12_R+1	μ,	0,921	14,301	2,286	14,256	3,574	14,025	4,019	14,277	4,529	14,265		-
Années 199	σ _γ	0,461	0,964	1,341	1,023	2,151	1,005	1,809	0,981	1,393	1,036	-	

RESULTATS PROBABILISTE - MURS DIRECTION Y RESISTANCE AU CISAILLEMENT (Demande et Capacité sismique)

			PROBAB	BLITE DE DEFA	ILIANCE/RE	SISTANCE					
_		Murs direction Y									
	Nbetage	1	3	5	7	9	12				
BT3_RDCH BATIMENTS (antérieur 1900) Maconnerie (Pierres naturelles)	Pf ₍₂₀₀₀₎	61,4%	80,3%	84,0%	-	-	-				
BT11_R+1 BATIMENTS (amées 1950 - 1970) Maçonnerie (Blocs de terre cuite)	$Pf_{(2000)}$	58,3%	74,1%	66,8%	70,1%	-	-				
BT11 R+1 BATIMENTS (années 1950 - 1970) Béton armé - Classe C 16/20)	Pf ₍₂₀₀₀₎	0,000%	0,34%	14,6%	18,6%	19,0%	43,1%				
BT9_RDCH BATIMENTS (amées 1970 - 1990) Maçonnerie (Blocs de béton)	Pf ₍₂₀₀₀₎	0,4%	2,6%	27,9%	45,4%	-	-				
BT12_R+1 BATIMENTS (amées 1990 - 2000) Béton amé - Classe C25/30)	Pf ₍₂₀₀₀₎	0,003%	0,01%	0,48%	0,01%	0,003%	-				

Annexe 5.1 - Analyse mécanique déterministe

Règlementations utilisées dans les calculs de la résistance sismique du bâti en maçonnerie et en béton armé

Principe de calcul

BATIMENT EN MACONNERIE DE PIERRES NATURELLES (Non armée non chainnée)

Données

Normes utilisées

ECO : EUROCODE 0 - Mars 2003 - NF EN 1990.1.1 - P 06-100-1 - "Bases de calcul des structures"

EC2 : EUROCODE 2 - Partie 1-1 - Octobre 2005 - NF EN 1992.1.1 - P 18-711-1 - "Règles générales et Règles pour les bâtiments"

ECG.1: EUROCODE 6 - Partie 1.1 - Mars 2006 - NF EN 1996.1.1 - P 10-611-1 "Règles générales pour ouvrages en maçonnerie armée et non armée"

ECG.1 : EUROCODE 6 - Partie 1.1 - Décembre 2009 - NF EN 1996.1.1/NA - P 10-611-1/NA "Annexe nationale à la NF EN 1996-1-1 : 2006"

EC8.1 : EUROCODE 8 - Partie 1 - Septembre 2005 - NF EN 1998.1 - P 06-030-1 - "Règles générales, Actions sismiques et Règles pour les bâtiments"

EC8.3: EUROCODE 8 - Partie 3 - Décembre 2005 - NF EN 1998.3 - P 06-033-1 "Evaluation et Renforcement des bâtiments"

Coefficients

γ _{M(ELU)} =	2,70 Coefficient partiel des matériaux (niveau de contrôle IL1)	EC6.1 - NF EN 1996.1/NA, déc 2009 - Clause 2.4.3 (1)P
CF _{KL1} =	1,35 Coefficient de confiance du niveau de connaissance	EC8.3 - NF EN 1998-3, déc 2005 - Art. 3.3.1(4) - Tab 3.1
K =	0,45 Valeurs de K à utiliser avec des mortiers d'usage courant	EC6 - NF EN 1996-1-1 - Art. 3.6.1.2 - Tableau 3.3
ρ =	1,00 Coefficient de hauteur effective des murs	[EC6 - NF EN 1996-1-1 - Art 5.5.1.2 - § ii]
Ht étage =	3,50	
Cisaillement		
f_{vk0} (Mpa) =	0,15 Résistance caractéristique au cisaillement de la maçonnerie	EC6.1 - NF EN 1996.1.1/NA, déc 2009 - Clause 3.6.2 (3) + Tab. 3.4
f _{vk0} (Mpa) =	0,11 Résistance de calcul au cisaillement des ouvrages	EC8.3 - NF EN 1998-3, déc 2005 - Art. 2.2.1 (5)P
Compression		
***	- 111	

Niveau		Faible		- 1	Moyen		E	levé	
Nb Etage	1	3	5	1	3	5	1	3	5
f_m (Mpa) =	2,50	2,50	2,50	5,00	5,00	5,00	10,00	10,00	10,00 EC6 - NF EN 1996-1-1 - Art 3.2.3.1 (2)
f_b (Mpa) =	2,00	5,00	8,00	3,00	7,00	11,00	4,00	9,00	15,00 Contrainte mini en situation hors sismique
$f_K (Mpa) =$	0,962	1,828	2,540	1,574	2,848	3,907	2,369	4,180	5,977
f_d (Mpa) =	0,26	0,50	0,70	0,43	0,78	1,07	0,65	1,15	1,64

f_m (Mpa): Résistance à la compression du mortier (Type M2,5 - M5 - M10)

f_b (Mpa) = Résistance moyenne normalisée à la compression (blocs de pierre: EC6 - NF EN 1996-1-1/NA, déc 2009 - Clause 3.6.1.2 (1)

f_r (Mpa) = Résistance caractéristique à la compression de la maçonnerie EC6 - NF EN 1996-1-1 - Art. 3.6.1.2 (2)

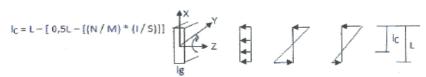
f_d (Mpa) = Résistance de calcul à la compression de la maçonnerie EC8.3 - NF EN 1998-3, déc 2005 - Art 2.2.1 (5)P - Art 2.2.1 (7)P Art. C4.2.1 (3)

Nota

A: Capacité de résistance au cisaillement controlée par la flexion

B: Capacité de résistance au cisaillement controlée par l'éffort tranchant

BATIMENT EN MACONNERIE DE PIERRES NATURELLES (Non armée non chainnée)


			Donné					VEDIEICAT	ON DE LA D	ESISTANCE A		III FRAFRIT					VERIFICATION	DE LA DEC	CTANCE A	LA CONADDEC	CION		1
			Donne	es					Sollicitation		Résist							DE LA RES			SIUN		
BT3_RDCH		_	_	-	10	-											Sollicitation	т О		Résistance			
NIVE	ΑU	Longue	Epaiseur	Hauteur	(Séisme d = Séisme di	ANALYSE Effort de	EC8.1-	COMBINAIS Efforts trar	DEMANDE Force de calcu Combinaison	RESISTA EC6 - Ar	Controlé	CAPACITE Résistanc [EC8.3 - /	EC8.3	VERIFIC pi=Di/	Charges	Charges	DEMAN orce d combir C8.1 -	Coeffici EC6 - Aı	Inertie I	RESISTA EC8.1 - EC6.1 -	Mur pa	Longue (Calcul	VERIFIC NRd,i / EC8.1 -
MOY		4		Τ,	irection	E SISMIQUE e translatio	Art 4.3	VAISON tranch	IDE e calcul laison c	ANCE de rt 3.2 (3	ם	TE nce à l'ı - Art. C	- NF EN	:ATION	perma	æ	NDE de calcul naison d Art. 3.2	ent de l rt 6.12	IY (murs	NCE de NF EN	rtiellem	en flexio	NF EN
(Ave					٠ ×	IQUE lation 4	.3.5.1 (NS D'AC	ul au cisa d'action	calcul) - Eq.	flexion o	effort ti	N 1998	L : OK	nentes	xploitation	l en com d'action 2.4 (1)P -	l'élance 2.2 - Eq	direc	calcul 1998-1	nent co	ontrain on com	ALAC >=1 1998-:
Etag	e)					+ Torsion	(3) - Eq. 4.18 et 4.19	TION	aillement 1	l au cisaillement des ouvrages 3.5	ou tranchant Voir Nota	tranchant (1)	-3, déc 2005 - Art. 4.4.2 (1)P]	SAILLEMENT	S		mpression n o - Eq. 3.17	ement géométrique _I . 6.4	ction X) IX (murs direction Y)	l à l'effort de compression 1, sept 2005 - Art. 9.6 (3) 1-1, mars 2006 - Art. 6.7.2 (1)	ımprimé si : lc < l	nte comprimée nposée)	OMPRESSION : OK 1, sept 2005 - Art. 9.6 (2)
VERTICAUX		L	lg	Ht	Htx	HtY	Hx	Ну	Ved, m	fvd	cf.	VRd,m	ρί	-	G	Ψ2i * Q	Ned, m	ф	IX ou IY	NRd, m	-	IC	oi -
		(m)			(MN)		(MN)	(MN)	(MN)	MPa	lota	(MN)	-	-	(MN)	(MN)	(MN)	-	m4	(MN)		(m)	
Mur 1 (Rive)	Selon X	3,35	0,60	3,50	0,102	-	0,102	0,030	0,102	0,05		0,048	2,122	NON OK	0,104	0,001	0,105	0,90	1,653	0,447	lc < l	1,92	4,241 OK
Mur 1 (Rive)	Selon X	2,45	0,60	3,50	0,042	-	0,042	0,013	0,042	0,05	Α	0,027	1,541	NON OK	0,081	0,002	0,083	0,90	0,685	0,346	lc < l	1,49	4,194 OK
Mur 1 (Rive)	Selon X	2,30	0,60	3,50	0,035	-	0,035	0,011	0,035	0,05	Α	0,025	1,408	NON OK	0,079	0,002	0,080	0,90	0,571	0,331	lc < l	1,42	4,118 OK
1	i	- 1	T I		1				I		I	l l	ı				1		1				
1 1	1	- 1	- 1	- 1	1			1		1	1 1		1	1		1	1	1	1		1		1 1
		1	1	1	1		1 1		1 1	l i	l i l	l i	l i				1	1			i	1 i l	i i

A : Capacité de résistance au cisaillement controlée par la flexion

Ht = H * p (hauteur effective des murs)

 f_{vd} : min [fvk0 + 0,4* σ_{d} ; 0,065*fb (Joint remplis)]

Avec:
$$\sigma_d = N_{ed} / [I_c / I_g]$$

 $v_{\rm Rd,m} = \min \left[V_{\rm f} = \frac{DN}{2H_{\rm o}} \left(1 - 1.15 v_{\rm d} \right) \right]$; $V_{\rm f} = f_{\rm vd} D^* t_{\rm o}$

 $V_{ed,m} = max [F_{xi}; 0,3 Pour la direction X]$

$$N_{Rd, m} = \Phi * Ig * I_C * f_d Avec fd = fvk / Y_{M|ELU}$$

$$N_{Rd, m} = \phi * Ig * I_c * f_d Avec fd = fvk / V_{M|ELU}$$

$$\Phi_i = 1 - 2 \frac{\Phi_i}{t} \qquad \Phi_i = \frac{M_{ed, m}}{N_{ed, m}}$$

 $N_{ed,m} = G + \Psi_{2i} * Q$

 $\rho_{global} = D_{global} / Cisaillement$

 $\rho_{global} = D_{global} / Compression$

Calcul en flexion composée

EC8.3 - Art. C.4.2.1 (1) - Eq° C.1 ; EC8.3 -Art. 4.3.1 (3) - Eq° C.2

EC8.1 - Art 4.3.3.5.1 (3) - Eq. 4.18 et 4.19

EC6.1 - Art. 6.1.2.1(2) - Eq° 6.2

EC6 - Art 6.1.2.2 - Eq. 6.4

ECO.1 - Art. 6.4.3.4 (1)P - Eq. 6.12(a)

EC8.3 - Art. 4.5.1 (1)P (Eléments fragiles)

EC8.1 - Art. 9.6 (2); EC 6.1 - Art 6.1.2.1(1)P

BATIMENT EN MACONNERIE DE BLOCS DE TERRE CUITE (Armée)

Données

Normes utilisées

ECO : EUROCODE 0 - Mars 2003 - NF EN 1990.1.1 - P 06-100-1 - "Bases de calcul des structures"

: EUROCODE 2 - Partie 1-1 - Octobre 2005 - NF EN 1992.1.1 - P 18-711-1 - "Règles générales et Règles pour les bâtiments" EC2

: EUROCODE 6 - Partie 1.1 - Mars 2006 - NF EN 1996.1.1 - P 10-611-1 "Règles générales pour ouvrages en maçonnerie armée et non armée" EC6.1

: EUROCODE 6 - Partie 1.1 - Décembre 2009 - NF EN 1996.1.1/NA - P 10-611-1/NA "Annexe nationale à la NF EN 1996-1-1 : 2006" EC6.1

: EUROCODE 8 - Partie 1 - Septembre 2005 - NF EN 1998.1 - P 06-030-1 - "Règles générales, Actions sismiques et Règles pour les bâtiments" EC8.1

EC8.3 : EUROCODE 8 - Partie 3 - Décembre 2005 - NF EN 1998.3 - P 06-033-1 "Evaluation et Renforcement des bâtiments"

Coefficients

EC6.1 - NF EN 1996.1/NA, déc 2009 - Clause 2.4.3 (1)P 2,70 Coefficient partiel des matériaux (niveau de contrôle IL1) YM(ELU) = EC8.3 - NF EN 1998-3, déc 2005 - Art. 3.3.1(4) - Tab 3.1 CF_{KI1}= 1,35 Coefficient de confiance du niveau de connaissance K = 0,45 Valeurs de K à utiliser avec des mortiers d'usage courant EC6 - NF EN 1996-1-1 - Art. 3.6.1.2 - Tableau 3.3 ρ= 0,75 Coefficient de hauteur effective des murs [EC6 - NF EN 1996-1-1 - Art 5.5.1.2 - § i]

Ht étage = 3,50

Cisaillement

f_{uko} (Mpa) = 0,20 Résistance caractéristique au cisaillement de la maçonnerie EC6.1 - NF EN 1996.1.1/NA, déc 2009 - Clause 3.6.2 (3) + Tab. 3.4

f_{vio} (Mpa) = 0,15 Résistance de calcul au cisaillement des ouvrages EC8.3 - NF EN 1998-3, déc 2005 - Art. 2.2.1 (5)P

Compression

Niveau		Faible				Moyen				Elevé		
Nb Etage	1	3	5	7	1	3	5	7	1	3	5	7
f_m (Mpa) =	2,50	2,50	2,50	2,50	5,00	5,00	5,00	5,00	10,00	10,00	10,00	10,00 EC6 - NF EN 1996-1-1 - Art 3.2.3.1 (2)
f_b (Mpa) =	3,00	8,00	12,00	16,00	5,00	11,00	17,00	23,00	6,00	14,00	22,00	30,00 Contrainte mini en situation hors sismique
$f_K(Mpa) =$	1,278	2,540	3,373	4,126	2,250	3,907	5,299	6,548	3,147	5,695	7,815	9,710
f_d (Mpa) =	0,35	0,70	0,93	1,13	0,62	1,07	1,45	1,80	0,86	1,56	2,14	2,66

f_m (Mpa): Résistance à la compression du mortier (Type M2,5 - M5 - M10)

Résistance moyenne normalisée à la compression (blocs de pierr EC6 - NF EN 1996-1-1/NA, déc 2009 - Clause 3.6.1.2 (1) $f_b(Mpa) =$

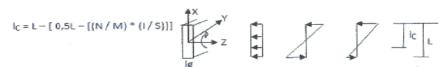
 $f_{\kappa}(Mpa) =$ Résistance caractéristique à la compression de la maçonnerie EC6 - NF EN 1996-1-1 - Art. 3.6.1.2 (2)

EC8.3 - NF EN 1998-3, déc 2005 - Art 2.2.1 (5)P - Art 2.2.1 (7)P Art. C4.2.1 (3) f_d (Mpa) = Résistance de calcul à la compression de la maçonnerie

Nota

A : Capacité de résistance au cisaillement controlée par la flexion

B: Capacité de résistance au cisaillement controlée par l'éffort tranchant


BATIMENT_11_R+1 - MACONNERIE ARMEE - BLOCS DE T.C.

		Donn	ées				VERIFICATI	ON DE LA R	ESISTANCE A	U CISAILI	LEMENT					VERIFICATIO	N DE LA RESIST	ANCE A LA	COMPRES	SION				1
BT_11_R+1								Sollicitatio								Sollicitation			Résistance	2				1
NIVEAU MOYEN (Avec 1 Etage)		Epaiseur	Hauteur	(Sélsme direction X ou Y)	ANALYSE SISMIQUE Effort de translation + Torsion	EC8.1 - Art 4.3.3.5.1 (3) - Eq. 4.18 et 4.19	7 G	DEMANDE Force de calcul au cisaillement Combinaison d'action FC8 1 - Art A 2 5 5 1 73 - Fr A 18 et A 10	RESISTANCE de calcul au cisaillement des ouvrages EC6 - Art 3.2 (3) - Eq. 3.5	ontrolé par flexion ou t	CAPACITE Résistance à l'effort tranchant [EC8.3 - Art. C.4.3.2 (1)]	C8.3 - NF EN 1	VERIFICATION AU CISAILLEMENT $ ho_i = D_i/C_i < = 1$: OK	Charges permanentes	Charges exploitation	DEMANDE Force de calcul en compression Combinaison d'action EC8.1 - Art. 3.2.4 (1)P - Eq. 3.17	Coefficient de l'élancement géométrique EC6 - Art 6.12.2 - Eq. 6.4	Inertie I_{γ} (murs direction X) I_{χ} (murs direction Y)	RESISTANCE de calcul à l'effort de compression EC8.1 - NF EN 1998-1, sept 2005 - Art. 9.6 (3) EC6.1 - NF EN 1996-1-1, mars 2006 - Art. 6.7.2 (1)	Mur partiellement comprimé si : lc <1	Longueur de contrainte comprimée (Calcul en flexion composée)		VERIFICATION A LA COMPRESSION NRd,; / Ned,; > = 1 : OK EC8.1 - NF EN 1998-1, sept 2005 - Art. 9.6 (2)	
	L	lg	Ht	H _{tx}	H _{tY}	H _×	Ну	V _{ed, m}	f _{vd}		V _{Rd,m}	ρι	-	G	Ψ _{2i} * Q	N _{ed, m}	ф	I _x ou I _y	N _{Rd, m}	-	Ic	ρί	-	1
ELEMENTS VERTICAUX	(m)	(m)	(m)	(MN)		(MN)	(MN)	(MN)	MPa		(MN)	-	-	(MN)	(MN)	(MN)	-	m ⁴	(MN)		(m)	-	-]
Mur 1 (Rive) Selon X	7,0	0,20	2,63			0,111	0,033	0,111			0,086		NON OK	0,144	0,004	0,148				lc < l	4,80		507 OK]
Mur 1 (Rive) Selon X		0,20		0,111	-	0,111	0,033	0,111			0,086		NON OK	0,144	0,004		0,90			lc < l	4,80		507 OK	ļ
Mur 2 (Int.) Selon X	1,9	0,20	2,63	0,003		0,003	0,001	0,003	0,09	Α	0,025	0,101	ОК	0,036	0,001	0,037	0,90	0,106	0,211	Ic = I	1,90	5,	724 OK	1
	1	1	1 !	1			!	!	!!!		!								!	!	!	!	!	
			H										-										!	

A : Capacité de résistance au cisaillement controlée par la flexion

B : Capacité de résistance au cisaillement controlée par l'éffort tranchant

Ht = H * ρ (hauteur effective des murs) f_{vd} : min [fvk0 + 0,4* σ_d ; 0,065*fb (Joint remplis)] Avec: $\sigma_d = N_{ed} / [I_c / I_g]$

V_{ed, m} = max [F_{xi}; 0,3 Pour la direction X]

$$N_{Rd, m} = \phi * \lg * \lg * \lg * \log A$$
 $N_{Rd, m} = \phi * \lg * \lg * \log A$ $N_{Rd, m} = 0$ $N_{Rd, m} = 0$

$$\Phi_i = 1 - 2\frac{\sigma_i}{t}$$

 $N_{ed, m} = G + \Psi_{2i} * Q$

 $\rho_{global} = D_{global} / Cisaillement$

 $\rho_{global} = D_{global} / Compression$

CISAILLEMENT

COMPRESSION

MIRS DE DIRECTION X : $\rho_{global} = D_{global} / C_{global}$ 0 912 <=1 · OK MIRS DE DIRECTION Y : $\rho_{global} = D_{global} / C_{global}$ 1,315 NON OK MIRS DE DIRECTION X : F_{Rglobal} = C_{global} / D_{global} = 3,238 >=1 : OK MIRS DE DIRECTION Y : F_{Rglobal} = C_{global} / D_{global} = 2,392 >=1:OK

Calcul en flexion composée

EC8.3 - Art. C.4.2.1 (1) - Eq° C.1 ; EC8.3 -Art. 4.3.1 (3) - Eq° C.2

EC8.1 - Art 4.3.3.5.1 (3) - Eq. 4.18 et 4.19

EC6.1 - Art. 6.1.2.1(2) - Eq° 6.2

EC6 - Art 6.1.2.2 - Eq. 6.4

ECO.1 - Art. 6.4.3.4 (1)P - Eq. 6.12(a)

EC8.3 - Art. 4.5.1 (1)P (Eléments fragiles)

EC8.1 - Art. 9.6 (2); EC 6.1 - Art 6.1.2.1(1)P

BATIMENT EN MACONNERIE DE BLOCS BETON (Chaînée)

Données

Normes utilisées

ECO : EUROCODE 0 - Mars 2003 - NF EN 1990.1.1 - P 06-100-1 - "Bases de calcul des structures"

EC2 : EUROCODE 2 - Partie 1-1 - Octobre 2005 - NF EN 1992.1.1 - P 18-711-1 - "Règles générales et Règles pour les bâtiments"

EC6.1 : EUROCODE 6 - Partie 1.1 - Mars 2006 - NF EN 1996.1.1 - P 10-611-1 "Règles générales pour ouvrages en maçonnerie armée et non armée"

EC6.1 : EUROCODE 6 - Partie 1.1 - Décembre 2009 - NF EN 1996.1.1/NA - P 10-611-1/NA "Annexe nationale à la NF EN 1996-1-1 : 2006"

EC8.1 : EUROCODE 8 - Partie 1 - Septembre 2005 - NF EN 1998.1 - P 06-030-1 - "Règles générales, Actions sismiques et Règles pour les bâtiments"

EC8.3 : EUROCODE 8 - Partie 3 - Décembre 2005 - NF EN 1998.3 - P 06-033-1 "Evaluation et Renforcement des bâtiments"

Coefficients

1,80 Maçonnerie - Coefficient partiel des matériaux (niveau de contrôle IL1) EC6.1 - NF EN 1996.1/NA, déc 2009 - Clause 2.4.3 (1)P + EC8.1 - NF EN 1998-1, sept

Y_{c(ELU)} = 1,50 Béton - Coefficient partiel des matériaux (niveau de contrôle IL1)

CF_{K11} = 1,35 Coefficient de confiance du niveau de connaissance EC8.3 - NF EN 1998-3, déc 2005 - Art. 3.3.1(4) - Tab 3.1

ρ = 0,75 Coefficient de hauteur effective des murs [EC6 - NF EN 1996-1-1 - Art 5.5.1.2 - § i]

Ht étage 3,50

Cisaillement

f_{vio} (Mpa 0,20 Résistance caractéristique au cisaillement de la maçonnerie EC6.1 - NF EN 1996.1.1/NA, déc 2009 - Clause 3.6.2 (3) + Tab. 3.4

f_{Ma} (Mpa 0,15 Résistance de calcul au cisaillement des ouvrages EC8.3 - NF EN 1998-3, déc 2005 - Art. 2.2.1 (5)P

Compression

•													
Niveau		Faible				Moyen				Elevé			
Nb Etage	1	3	5	7	1	3	5	7	1	3	5	7	
f _m (Mpa)	2,50	2,50	2,50	2,50	5,00	5,00	5,00	5,00	10,00	10,00	10,00	10,00	EC6 - NF EN 1996-1-1 - Art 3.2.3.1 (2)
f _b (Mpa) :	3,00	7,00	13,00	18,00	4,00	10,00	18,00	25,00	5,00	13,00	23,00	32,00	Contrainte mini en situation hors sismique
f _K (Mpa) :	3,83	6,94	10,70	13,44	5,77	10,97	16,55	20,82	8,31	16,22	24,18	30,47	
f _d (Mpa) :	1,42	2,57	3,96	4,98	2,14	4,06	6,13	7,71	3,08	6,01	8,96	11,29	
f_ (Mpa):		Résista	ance à l	a compr	ession o	lu morti	ier (Typ	e M2,5	- M5 - M10)	EC6 - NI	F EN 199	96-1-1/NA, déc 2009 - Clause 3.6.1.2 (1)

I_m (wpa). Resistance and compression du mortier (type wiz, 3 - wis - wite)

f_b (Mpa) = Résistance moyenne normalisée à la compression (blocs de pierres naturelle EC6 - NF EN 1996-1-1 - Art. 3.6.1.2 (2)

f_K (Mpa) = Résistance caractéristique à la compression de la maçonnerie EC8.3 - NF EN 1998-3, déc 2005 - Art 2.2.1 (5)P - Art 2.2.1 (7)P Art. C4.2.1 (3)

f_d (Mpa) = Résistance de calcul à la compression de la maçonnerie

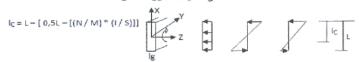
u i i i		
Béton Cl: C12/1	6 C16/20	
f _{cvk} (Mpa] 0,2	7 0,33	EC6 - NF EN 1996-1-1 - Art. 3.3.3(2) + Tab 3.2
f _{vk0} (Mpa 0,1	8 0,22	EC8.3 - NF EN 1998-3, déc 2005 - Art. 2.2.1 (5)P
f _{ck} (Mpa) 12,0	0 16,00	EC6 - NF EN 1996-1-1 - Art. 3.3.3(2) + Tab 3.2
fue (Mpa 8.0	0 10.67	

f_{cvk} (Mpa Résistance caractéristique au cisaillement

f_{vio} (Mpa Résistance de calcul au cisaillement

f_{ct} (Mpa) Résistance caractéristique à la compression

f_{vio} (Mpa Résistance de calcul à la compression


BATIMENT_9_RDCH - MACONNERIE ARMEE - BLOCS BETON

			Donné	es				VERIFICATI	ON DE LA R	ESISTANCE AL	CISAILLEMENT						VERIFICA	ATION DE L	A RESISTA	ANCE A LA COI	MPRESSION		
BT_9_RDCH									Sollicitatio	n		Résistanc					Sollicitation			Résistance			
NIVEA MOYE (Avec 1 Eta	N	Longueur	Epaiseur	Hauteur	Sé:	ANALYSESISMIQUE Effort de translation + Torsion	EC8.1-Art43.3.5.1(3)-Eq. 4.18 et4.19	COMBINAISONS D'ACTION Efforts tranchant	FORCE de calcul au disaillement Combinalison d'action EC8.1 - Art 4.3.3.5.1 (3) - Eq. 4.18 et 4.19	RESSTANCE de calcul au dsaillement des ouvrages EC6 - Art 3.2 (3) - Eq. 3.5	Nb de chainages dans mur	RESISTANCE de calcul au cisaillement EC6 - Art 6.72 (1) - Eq. 6.34	"edi" ed "	IFICATION AU	Charges permanentes	Charges exploitation	FORCE de calcul en compression Combinaison d'action EC8.1-Art.3.2.4 (1)P-Eq. 3.17	Coefficient de l'élancement géométrique EC6 - Art 6.12.2 - Eq. 6.4	l _, (mus direction X) OU I., (murs direction Y)	RESISTANCE de calcul à l'effort de compression EC8.1 - NF EN 1998-1, sept 2005 - Art. 9.6 (3) EC6.1 - NF EN 1996-1-1, mars 2006 - Art. 6.7.2 (1)	Mur partiblement comprimé si: k<	Longueur de contrainte comprimée (Calcul en flexion composée)	VERIFICATION A LA COMPRESSION NRd.J / Ned.J > = 1 : OK ECS.1 - NF EN 1998-1, sept 2005 - Art. 9.6 (2)
		L	lg	Ht	H _{tx}	H _{tY}	H _×	H _y	V _{ed, m}	f _{vd}	-	V _{Rd,m}	F _R	-	G	Ψ _{2i} * Q	N _{ed, m}	ф	I _X ou I _Y	N _{Rd, m}	-	Ic	F _R -
ELEMENTS VERTIC	CAUX	(m)	(m)	(m)	(MN)		(MN)	(MN)	(MN)	MPa	Uté	(MN)	-	-	(MN)	(MN)	(MN)	-	m ⁴	(MN)		(m)	
Mur 1 (Rive) Se	lon X	2,20	0,20		0,014	-	0,014	0,004	0,006	1,03	2	0,455	31,562	ОК			0,135				lc < l	0,28	4,805 OK
	lon X	1,60		2,63		-	0,006	0,002	0,006	1,08	2	0,277	48,785	ОК		0,004	0,099	0,70			lc < l	0,20	4,366 OK
Mur 1 (Rive) Se	lon X	1,60	0,20	2,63	0,006	-	0,006	0,002	0,006	1,08	2	0,347	60,969	ОК	0,095	0,004	0,099	0,70	0,066	0,432	lc < l	0,20	4,366 OK
1	1	- 1	- 1		1	1		1			1		1	I	- 1	1	I		1				
1	1	- !	- !		1	1	!	!	!!!	!	[!	Į.	1	1	!			!	!	!!	! !
														ı									

Ht = H * ρ (hauteur effective des murs)

 f_{vd} : min [fvk0 + 0,4* σ_{d} ; 0,065*fb (Joint remplis)]

Avec : $\sigma_d = N_{ed} / [I_c / I_g]$

 $V_{Rd} = f_{vd} \cdot t \cdot \ell_{mac} + \Sigma A_c \cdot (f_{cvk}/\gamma_c)$

 $f_{\rm vd}\,$ est la résistance de calcul au cisaillement de la maçonnerie

t est l'épaisseur du mur

 $\ell_{m = \varrho}$ est la longueur maçonnée du mur

ΣΑ, est la somme des sections de béton des chaînages verticaux

y, est le coefficient partiel de sécurité du béton = 1.5 à l'ELU fondamental et 1,2 en situation accidentelle

 $f_{\rm cyli}$ est la résistance caractéristique au cisaillement du béton, donnée dans le tableau suivant, en fonction de la classe de résistance du béton.

 $V_{ed, m} = max [F_{Xi}; 0,3*F_{yi}]$

 $N_{Rd, m} = \phi * Ig * I_C * f_d$

 $\Phi_{i} = 1 - 2 \frac{\Phi_{i}}{f}$ $N_{ed, m} = G + \Psi_{2i} * Q$

 $FR_{global} = V_{Rdglobal} / V_{edglobal}$

FRgiobal = Cglobal / Dglobal

Pour la direction X

Avec fd = $fvk / \gamma_{M(ELU)}$

 $\Theta_i = \frac{M_{ed, m}}{N_{ed, m}}$

Cisaillement

Compression

CISAILLEMENT COMPRESSION

MIRS DE DIRECTION X : $\rho_{global} = D_{global} / C_{global}$	0,095 <=1: OK
MIRS DE DIRECTION Y : $\rho_{global} = D_{global} / C_{global} =$	0,218 >=1:OK
MIRS DE DIRECTION X : F _{Rglobal} = C _{global} / D _{global} =	5,803 >=1:OK
MIRS DE DIRECTION Y : $F_{Rglobal} = C_{global} / D_{global} =$	5,870 >=1:OK

Calcul en flexion composée

EC6 - Art 6.7..2 (1) - Eq. 6.34

Avec intégration des chaînages verticaux

EC8.1 - Art 4.3.3.5.1 (3) - Eq. 4.18 et 4.19

EC6.1 - Art. 6.1.2.1(2) - Eq° 6.2

EC6 - Art 6.1.2.2 - Eq. 6.4

ECO.1 - Art. 6.4.3.4 (1)P - Eq. 6.12(a)

EC6 - Art 6.7..2 (1) - Eq. 6.33

EC8.1 - NF EN 1998-1, sept 2005 - Art. 9.6 (2)

BATIMENT 11 R+1 - BETON ARME - CLASSE C 16/20

Normes utilisées

Normes utilisées

	wormes utilis			MOTTHES UTILIS	(0)			
	EC8 - Partie S	3 - NF EN 1998-3, décembre 2005 - P 06-033-1 Euroco existar		EC8 - Partie 3	- NF EN 1998-3, décembre 2005 - P 06-033-1	Eurocode 8.3 - Séismes Bâtients existants		
	EC8 - ANNEXI	E A - (Informative), décembre 2005 - P-033-1 Euroco	de 83 - Annexe - Réton armé	EC8 - ANNEXI	A - (Informative), décembre 2005 - P-033-1	Eurocode 8.3 - Annexe - Béton armé		
		1990-1, mars 2003 Euroco	de O - Base de calcul des		.990-1, mars 2003	Eurocode O - Base de calcul des		
		structu	ires			structures		
ļ	DONNEES PO	IUR NIVEAU FAIBLE		DONNEES PO	IUR NIVEAU MOYEN		<u>DONNEES PO</u>	OUR NIVEAU ELEVE
(Coefficients			Coefficients			Coefficients	270 A 200
	Ym(ew) =	2,70 Coefficient partiel des matériaux (niveau de		үм(еш) =	2,70 Coefficient partiel des matériaux (niv		Yw(ew) =	2,70 Coefficient partiel des matériaux (niveau de contrôle IL1)
(CF _{N.1} =	1,35 Coefficient de confiance du niveau de connai	ssance	CF _{K1} =	1,35 Coefficient de confiance du niveau de		CF ₈₆₁ =	1,35 Coefficient de confiance du niveau de connaissance
(Coef =	0,825 Coefficient de dispositions constructives		Coef =	0,825 Coefficient de dispositions constructi		Coef =	0,825 Coefficient de dispositions constructives
	/e=	1,50 Coefficient ultime pour éléments primaires (Rotation de corde ultime)	γ _{el} =	1,50 Coefficient ultime pour éléments prir		Yel =	1,50 Coefficient ultime pour éléments primaires (Rotation de corde ultime)
(Coef =	1,60 Coefficient ultime pour éléments murs		Coef =	1,60 Coefficient ultime pour éléments mui	-	Coef =	1,60 Coefficient ultime pour éléments murs
1	/ ^{PI} el=	1,80 Coefficient plastique pour éléments primaire	es (Rotation de corde plastique)	γ ^{Pl} el=	1,80 Coefficient plastique pour éléments	orimaires (Rotation de corde plastique)	γ ⁿ el=	1,80 Coefficient plastique pour éléments primaires (Rotation de corde plastique)
(Coef =	0,60 Coefficient plastiquee pour éléments murs		Coef =	0,60 Coefficient plastiquee pour éléments	murs	Coef =	0,60 Coefficient plastiquee pour éléments murs
١	Yel =	1,15 Coefficient pour éléments primaires (Effort t	ranchant)	γ _{el} =	1,15 Coefficient pour éléments primaires	(Effort tranchant)	γ _{el} =	1,15 Coefficient pour éléments primaires (Effort tranchant)
	Béton			Béton			Béton	
f	f _{ok} (Mpa) =	16,00 (Béton de Classe C16/20)		f _{ork} (Mpa) =	20,00 (Béton de Classe C20/25)		f _{ork} (Mpa) =	20,00 (Béton de Classe C20/25)
	/c=	1,50 Coefficient partiel du matériaux EC8 NF EN199	98.1 - Art. 5.2.4 (3) A/N	γ _c =	1,50 Coefficient partiel du matériaux EC8 N	IF EN1998.1 - Art. 5.2.4 (3) A/N	γ _c =	1,50 Coefficient partiel du matériaux EC8 NF EN1998.1 - Art. 5.2.4 (3) A/N
	f _c (Mpa) =	7,90 Résistance de calcul à la compression des ou	uvrages	f _c (Mpa) =	9,88 Résistance de calcul à la compressio	n des ouwages	f _c (Mpa) =	9,88 Résistance de calcul à la compression des ouvrages
		,	•					
	Acier			Acier			Acier	
f	f _v (Mpa) =	400 (Acier de classe FE400)		f _γ (Mpa) =	400 (Acier de classe FE400)		f _γ (Mpa) =	500 (Acier de classe FE500)
	/c=	1,00 Coefficient partiel du matériaux		γ _c =	1,00 Coefficient partiel du matériaux		γ _c =	1,00 Coefficient partiel du matériaux
	f _{vw} (Mpa) =	296,3		f _{vw} (Mpa) =	296,3		f _{vw} (Mpa) =	370,A
	SELON EC2-1-			SELON EC2-1	1		SELON PS92	
		 mécanique d'armatures longitudinales		Pourcentage	mécanique d'armatures longitudinales		Pourcentage	mécanique d'armatures longitudinales
	max [0,01/0,0	01;ω/ω']=		max [0,01/0,	01;ω/ω']=		max [0,01/0,	01;ω/ω']=
	1	1,00 Car section symétrique			1,00 Car section symétrique			1,00 Car section symétrique
	Pourcentage t	total d'armatures longitudinales		Pourcentage	total d'armatures longitudinales		- 1	total d'armatures longitudinales
	p _{total} = (0 <mark>,0050 S</mark> ans unité		1 444	0,0050 Sans unité		riwal	0,00385 Sans unité
	Pourcentage	d'armatures transversales		Pourcentage	d'armatures transversales			d'armatures transversales
	p _{sx} = [ASX / (b	b*h _]]		ρ _{sx} = [ASX / (-		ρ _{sx} = [ASX / (r e e e e e e e e e e e e e e e e e e e
	p _{sx} = 7	7,8500E-04 Acier TS + aciers de confinement		ρ _{sx} =	<mark>7,8500E-04 Acier TS + aciers de confinemen</mark>	t	ρ _{5X} =	8,8880E-04 Acier TS + aciers de confinement
	Pourcentage c	d'armatures diagonales		Pourcentage	d'armatures diagonales			d'armatures diagonales
	p _d = (0,00 Car pas d'armature diagonale		ρ ₆ =	0,00 Car pas d'armature diagonale		ρ _σ =	0,00 Car pas d'armature diagonale
	Coefficient d'e	efficacité de confinement		Coefficient d'	efficacité de confinement			efficacité de confinement
	α = [1-(S _t /2b _c	o] * [1-(Sh/2ho)] * [1-(∑b;²/6ho*bo)]		α = [1-(S _h /2b	_{o]} * [1-(Sh/2ho)] * [1-(Σb _i ² / 6h ₀ *b ₀)]		α = [1-(S _t /2b	$_{0}$] * [1-(Sh/2ho)] * [1-(Σb_{i}^{2} / 6h ₀ *b ₀)]
	α= (0,3394 Sans unité		α=	0,3394 Sans unité		α=	0,1355 Sans unité
	Bras de Ievier	1		Bras de levie	1		Bras de levie	r
i	Z = hC -enrob	page (2fois 3 cm)			bage (2fois 3 cm)			bage (2fois 3 cm)
i	Z (m) = (0,14		Z (m) =	0,14		Z (m) =	
	Section A _c			Section A _c			Section A _c	
	L= (0,14		L=	*		L=	' and the second
	lg mur= (•		lg mur =			lg mur =	
	AC = L * Ig (m	nur) = 0,020		AC = L * lg (n	nur) = 0,020		AC = L * lg (n	nur) = 0,020

BATIMENT_11_R+1 - BETON ARME - CLASSE C 16/20

											VERIFICATION	I DE LA RE	SISTANCE A	A LA FLEXIO	N						VERIFICATIO	ON DE LA RESIS	TANCE A	U CISAILLE	MENT	
BT_11_R+1		Donne	ées	Charges sis	miques - g	ravitaires		Sollicitation	าร				Résistance						Résultats		Résistance				Résultats	
MOYEN (Avec 1 Etage)	ē	Epaiseur	Hauteur	EC8.1 - Art 4.3.3.5.1 (Combinaison d'action	EC8.3 - Art. 4.2. (1)P	Combinaison d'action	Force de calcul en com Combinaison d'action EC8.1 - Art. 3.2.4 (1)P	Force de calcul au cisai Combinaison d'action EC8.1 - Art. 3.2.4 (1)P 4.19	DEMANDE (Déplacement relatif in	lcul de flex on d'action . 3.2.4 (1)P	DEMANDE (Déplacement relatif in	Rotation de corde ultir EC8.3 - NF EN 1998-3 3.2.2 (3)	Rotation de corde plas déc 2005 - Art. 3.2.2 (Ductilité plastique	Ductilité ultime	CAPACITE (En déformation)	EC8.3 - NF EN 1998-3 (b)	EC8.3 - NF EN 3	VERIFICATION A LA FL p,= D,/ C, <= 1 : OK	CAPACITE Résistance à l'éffort to EC8.3 - NF EN 1998-3	CAPACITE Résistance à l'éffort to âmes EC8.3 - NFEN 1998-3	CAPACITE Résistance à l'éffort to			VERIFICATION AU CIS
				3) - Eq. 4.18 et 4.19	Efforts tranchant		Moment fléchissant	pression -Eq. 3.17	llement et Art 4.3.3.5.1 (3) - Eq. 4.18 et	nposé par les planchers)	ion et Art 4.3.3.5.1 (3) - Eq. 4.18 et	nposé par les planchers)	me , déc 2005 - Art. 3.2.2 (1)P et Ar	stique EC8.3 - NF EN 1998-3, (2) et Art. 3.2.2 (3)				: LEMENTS , déc 2005 - Art. 4.5.1 (1)P (a) e	3, déc 2005 - Art. 4.4.2 (1)P]	EXION	ranchant cyclique , déc 2005 - Art. A.3.3.1 (1)	ranchant par écrasement des , déc 2005 - Art. A.3.3.1 (2)	ranchant		3, déc 2005 - Art. 4.4.2 (1)P]	AILIFMENT
	١.,	lg	Ht	H _x	н	M _x	M _v	N _{ed. m}	V _{ed. m}	D,	M _{ed. m}	D,	θ _{υΜ}	θ ^{Pl} _{UM}	μ_{Δ}^{Pl}	μ_{Δ}	Ci	_	Pi	_	V _R	V _{R,max}	Ci = V _R	Controlé par	ρ, -	
ELEMENTS VERTICAUX	(m)		(m)	(MN)	(MN)	(MN.m)	(MN.m)	(MN)	(MN)	mm	(MN.m)	mm	m.rd	m.rd	ΡΔ	PΔ	mm		-	-	MN	MN	MN	<u> </u>		\neg
Mur 1 (Rive) Selon X		0,20		0,116					0,116			0,0063		0,015	2,155	3,155		FRAGILE	0,00008	ЭК	0,599			Effort tran	0,193 OK	\neg
Mur 1 (Rive) Selon X		0,20		0,116			0,121		0,116			0,0063		0,015		3,155			0,00008		0,60			Effort tran		\neg
Mur 2 (Int.) Selon X		0,20		0,003			0,003	0,044	0,003			0,0063		0,015		3,157			0,00008		0,57			Effort tran		\neg
1 1	İ		l i				1	1	T I		I			1	i i	1	1				1	1	i			
1 1	i	1	i	ĺ	l i		i		1		1	1		1		1	i	i		ĺ	1 i	1 i l	- I	i	[] i	
	i i	1	Ιi	l i	l i	l i l	l i	1 1 1	1			1	1 1 1	- 1		1 1	i	l i		i	I i	1 i l	Ĺ	l i	1 i i	

DE		

 $N_{ed, m} = G + \Psi_{2i} * Q$

V_{ed, m} = max [F_{Xi}; 0,3*F_{yi}] Pour la direction X

 $M_{ed, m} = G + \Psi_{2i} * Q$

CAPACITE

D : Déplacement relatif imposé par les planchers Calcul de la déformée des bâtiments

ECO.1 - Art. 6.4.3.4 (1)P - Eq. 6.12(a)

EC8.1 - Art 4.3.3.5,1 (3) - Eq. 4.18 et 4.19 CISAILLEMEN Calculs selon répartition des forces sismiques

FLEXION

MIRS DE DIRECTION X : $\rho_{global} = D_{global} / C_{global} = 0,0001$ OK MIRS DE DIRECTION Y : $\rho_{global} = D_{global} / C_{global} = 0,0001$ OK

CISAILLEMENT MIRS DE DIRECTION X : $\rho_{global} = D_{global} / C_{global} = 0,120 \text{ OK}$ MIRS DE DIRECTION Y : $\rho_{global} = D_{global} / C_{global} = 0,062 \text{ OK}$

$$\theta_{\text{um}} = \frac{1}{\gamma_{\text{el}}} 0.016 \cdot (0.3^{\circ}) \left[\frac{\max(0.01; \omega)}{\max(0.01; \omega)} \ell_{\text{c}} \right]$$

 $L_v = M_{ed} / V_{ed}$

EC8.3 - Art 3.2.2 (1) et Art 3.2.2 3) - Eq. A1 - Annexe A (informative) Structure béton armé EC8.3 - Art. 3.2.2 (1)P

 $V = Ned / [L * Ig * f_c]$

EC8.3 - Art. 3.2.2 (1)P

Rotation de corde plastique
$$d_{um}^{\text{pl}} = d_{um} - d_{v} = \frac{1}{\gamma_{\text{pl}}} 0.0145 \cdot \left(0.25^{\circ}\right) \left[\frac{\max(0.01; \omega')}{\max(0.01; \omega)} \right]^{0.3} \cdot \ell_{0}^{-0.2} \cdot \left(\frac{L_{v}}{h}\right)^{0.35} 25^{\left(\frac{\omega n_{ex}}{\ell_{0}}\right)} \left(1.275^{100 \rho_{2}}\right)$$

EC8.3 - Art 3.2.2 (1) et Art 3.2.2 3) - Eq. A1 - Annexe A (informative) Structure béton armé

Capacité en rotation de corde

Résistance à l'éffort tranchant cyclique

$$V^{1}_{\text{Rd}} = \frac{1}{\gamma_{\text{el}}} \left[\frac{h - x}{2L_{V}} \min \left(N : 0.55A_{\text{o}}f_{\text{o}} \right) + \left(1 - 0.05 \min \left(5 : \mu_{\Delta}^{\text{pl}} \right) \right) \cdot \left[0. \cdot 6 \max(0.5 : 100 \, \rho_{\text{sol}}) \left(1 - 0.16 \min \left(5 : \frac{L_{V}}{h} \right) \right) \sqrt{f_{\text{o}}} A_{\text{o}} + V_{\text{w}} \right] \right]$$
 EC8.3 - Art. A.3.3.1 (1)

Résistance à l'éffort tranchant par écrasement des âmes

$$V^{2}_{Rd} = \frac{O.85 \left[\frac{1 - 0.06 \min \left[5 : \mu_{\Delta}^{p} \right]}{V_{el}} \right] \left[1 + 1.8 \min \left(0.15 : \frac{N}{A_{c} I_{c}} \right) \right] \left(1 + 0.25 \max \left(1.75 : 100 \rho_{bb} \right) \right) \left[1 - 0.2 \min \left[2 : \frac{L_{\gamma}}{N} \right] \right] \sqrt{I_{c}} b_{w} Z_{el}$$

RESISTANCE

 $\rho_{global} = D_{global} / C_{global}$ Cisaillement ρ_{global} = D_{global} / C_{global} Flexion

EC8.3 - Art. 4.4.2 (1)P

BATIMENT_12_R+1 - BETON ARME - CLASSE C 25/30

Normes util	cáns	•	Normes utilisées
	3 - NF EN 1998-3, décembre 2005 - P 06-033-1	Eurocode 8.3 - Séismes Bâtients existants	EC8 - Partie 3 - NF EN 1998-3, décembre 2005 - P 06-033-1 Eurocode 8.3 - Séismes Bâtients existants
	E A - (Informative), décembre 2005 - P-033-1	Eurocode 8.3 - Annexe - Béton armé	EC8 - ANNEXE A - (Informative), décembre 2005 - P-033-1 Eurocode 8.3 - Annexe - Béton armé
	1990-1, mars 2003	Eurocode 0 - Base de calcul des structures	ECO - NF EN 1990-1, mars 2003 Eurocode 0 - Base de calcul des structures
	DUR NIVEAU FAIBLE		DONNEES POUR NIVEAU MOYEN ^{et} NIVEAU ELEVE
Coefficients			DUMELO FOR MITTER MOTER - MITTER ELECT
γ _{M(ELU)} =	2,70 Coefficient partiel des matériaux (niveau	de contrôle IL1)	Coefficients
CF _{KL1} =	1,35 Coefficient de confiance du niveau de cor	•	Y _{MEW)} = 2,70 Coefficient partiel des matériaux (niveau de contrôle IL1)
Coef =	0,825 Coefficient de dispositions constructives		CF _{ELE} = 1,35 Coefficient de confiance du niveau de connaissance Coef = 0,825 Coefficient de dispositions constructives
	· ·		γ _e = 1,50 Coefficient ultime pour éléments primaires (Rotation de corde ultime)
γ _{el} =	1,50 Coefficient ultime pour éléments primair	es (kotation de corde uitime)	Coef = 1,60 Coefficient ultime pour éléments murs
Coef =	1,60 Coefficient ultime pour éléments murs		$y_{s}^{Pl} = \frac{1,80}{1,80}$ Coefficient plastique pour éléments primaires (Rotation de corde plastique)
$\gamma_{el}^{Pl} =$	1,80 Coefficient plastique pour éléments prim	aires (Rotation de corde plastique)	Coef = 0,60 Coefficient plastiquee pour éléments murs
Coef =	0,60 Coefficient plastiquee pour éléments mu	rs	γ _e = 1,15 Coefficient pour éléments primaires (Effort tranchant)
γ _{el} =	1,15 Coefficient pour éléments primaires (Eff	ort tranchant)	
Béton			Béton
f _{cvk} (Mpa) =	20,00 (Béton de Classe C20/25)		f _{ork} (Mpa) = 25,00 (Béton de Classe C25/30)
γ _c =	1,50 Coefficient partiel du matériaux EC8 NF E	N1998.1 - Art. 5.2.4 (3) A/N	γ _c = 1,50 Coefficient partiel du matériaux EC8 NF EN1998.1 - Art. 5.2.4 (3) A/N
f _c (Mpa) =	9,88 Résistance de calcul à la compression des	ouvrages	f _c (Mpa) = 12,35 Résistance de calcul à la compression des ouvrages
Acier		v	Acier
f _γ (Mpa) =	500 (Acier de classe FE500)		f ₁ (Mpa) = 500 (Acier de classe FE500)
γ _c =	1,00 Coefficient partiel du matériaux		γ_c = 1,00 Coefficient partiel du matériaux
f _{vw} (Mpa) =	· ·		f _{rw} (Mpa) = 370,4
SELON PS92	514 51		Eurocode 8
	mécanique d'armatures longitudinales		Pourcentage mécanique d'armatures longitudinales
	01;ω/ω']=		max (0,01/0,01; ω / ω') =
	1,00 Car section symétrique		1,00 Car section symétrique
Pourcentage	total d'armatures longitudinales		Pourcentage total d'armatures longitudinales
$\rho_{\text{total}} =$	0,0039 Sans unité		P _{lottsl} = 0,0055 Sans unité
Pourcentag	e d'armatures transversales		Pourcentage d'armatures transversales
ρ _{SX} =[ASX/	b*h _i]		p _{SX} = [ASX / (b*h)]
ρ _{SX} =	8,8800E-04 Acier TS + aciers de confinement		p _{SX} = 1,5700E-03 Acier TS + aciers de confinement
	d'armatures diagonales		Pourcentage d'armatures diagonales
-	0,00 Car pas d'armature diagonale		p _e = 0,00 Car pas d'armature diagonale
	l'efficacité de confinement Bras de lev	rier Section A _c	Coefficient d'efficacité de confinement Bras de levier Section A _c
		robage (2fois 3 cm) L= 0,14	$\alpha = [1-(S_1/2b_0)] * $
	0,1355 Sans unité Z (m) =	0,14 lg mur = 0,14	α = 1,1094 Sans unité Z (m) = 0,14 lg mur = 0,14
**	Anna Anna Anna	AC = L * ig (mur) = 0,020	AC = L * ig (mur) = 0,020

BATIMENT_12_R+1 - BETON ARME - CLASSE C 25/30

							Γ			VERIFICATION	DE LA RE	SISTANCE A	A LA FLEXION	V						VERIFICATIO	N DE LA RESIS	TANCE A	U CISAILLEN	/ENT	
BT_12_R+1		Donne	ées	Charges sis	miques - g	ravitaires		Sollicitation				Résistance						Résultats		Résistance				Résultats	
NIVEAU MOYEN (Avec 1 Etage)	Longueur	Epaiseur	Hauteur	EC8.1 - Art 4.3.3.5.1 (3) - Eq.4.18 et 4.19	Combinaison d'action Efforts tranchant	EC8.3 - Art. 4.2. (1)P	Combinaison d'action Momen	E C E :	Force de carkul au cisaillement Combinasion d'action EC8.1 - Art. 3.2.4 (1)P et Art. 4.3.3.5.1 (3) - Eq. 4.18 et 4.19	Force de altul de flexion Combination d'action EC8.1 - Art. 3.2.4 (1)P et Art 4.3.3.5.1 (3) - Eq. 4.18 et 4.19	DEMANDE (Déplacement relatif imposé par les planchers)	Rotation de corde ultime EC8.3 - NF EN 1998-3, déc 2005 - Art. 3.2.2 (1)P et Art. 3.2.2 (3)	Rotation de corde plastique EC8. 3 - NF EN 1998-3, déc 2005 - Art. 3.2.2 (2) et Art. 3.2.2 (3)	Ductilité plastique	Ductiinė ultime	CAPACITE (En déformation)	IDENTIFICATION DES ELEMENTS EC8.3 - NFEN 1998-3, déc 2005 - Art. 4.5.1 (1)P (a) e (b)	[EC8.3 - NF EN 1	VERIFICATION A LA FLEXION Q = D / C <= 1 : OK	ACITE Istance à l'éfforttranchant cyclique .3 - NFEN 1998-3, déc 2005 - Art. A.3.3.1	CAPACITE Résistance à l'éffort tranchant par écrasement des âmes EC8.3 - NFEN 1998-3, déc 2005 - Art. A.3.3.1 (2)	CAPACITE Résistance à l'éffort tranchant		VERIFICATION AU CISAILLEMENT p₁= p/c₁ <= 1 : OK [ECS.3 - NF EN 1998-3, déc 2005 - Art. 4.4.2 (1)P]	
	١.				l	M _x			.,				Θ ^{PI} UM	PI		Ci				V _R	,,	ου	Controlé par	_	1
ELEMENTS VERTICAUX	(m)	lg (m)	Ht (m)	H _x (MN)	(MN)		(MN.m)	N _{ed, m} (MN)	V _{ed, m} (MN)	M _{ed, m} (MN.m)	D _i mm	θ _{υм} m.rd	m.rd	μ _Δ ΄΄	μΔ	mm	-	ρί	-	V _R MN	V _{R,max}	V _{R,max}	Pai	ρ _i -	
Mur 1 (Rive) Selon X		0,20		0,008	0,002	(MN.m) 0,029	0,009	0,074	0,008	0,029	0,005	0,023	0,015	2,121	3,121		FRAGILE	0.00006.0	- '	0,612			Effort tran	0,013 OK	
Mur 1 (Rive) Selon X		0,20		0,008	0,002		0,009	0,074	0,008	0,029	0,005	0,023	0,015	2,121	3,121		FRAGILE			0,612			Effort tran		
Mur 1 (Rive) Selon X		0,20		0.009			0,010	0.090	0,009	0,032	0,005	0,022	0,015	2,116	3,116		FRAGILE			0,614			Effort tran		
	1	1	1	1	1	3,032	1	1	1	1	1	1	1	1	1	1	I I	1		1 1	1	1		1 1	
	l i	i i	l i l	i	l i l	l i l	i	i 1	i	i l	- i	l i l	i 1	il	i l	i	l i l	i	i	l i	l i l	i	l i l	- i i	
ili	i	i_	l i	i	l i	L i l	i	_ i	<u>i l</u>	il	i	i	_ i	i	i	i	l i l	i	i	<u>l i </u>	i	<u>i</u>	l i l	<u>i I i </u>	

DEMANDE	
---------	--

 $N_{ed, m} = G + \Psi_{2i} * Q$

Calculs selon répartition des forces sismiques

 $M_{ed, m} = G + \Psi_{2i} * Q$ D : Déplacement relatif imposé par les planchers Calcul de la déformée des bâtiments

ECO.1 - Art. 6.4.3.4 (1)P - Eq. 6.12(a)

FLEXION

MIRS DE DIRECTION X : ρ_{global} = D_{global} / C_{global} = 0.00006 ОК MIRS DE DIRECTION Y : $\rho_{global} = D_{global} / C_{global}$

CISAILLEMENT MIRS DE DIRECTION X : ρ_{global} = D_{global} / C_{global} = MIRS DE DIRECTION Y : $\rho_{global} = D_{global} / C_{global}$ 0,103 ОК

Rotation de corde ultime

Rotation de corde ultime
$$\theta_{\text{urm}} = \frac{1}{\gamma_{\text{el}}} 0.016 \cdot \left(0.3^{\circ}\right) \left[\frac{\max(0.01;\omega')}{\max(0.01;\omega)} f_{\text{e}} \right]^{0.226} \left(\frac{L_{\text{V}}}{f_{\text{f}}} \right)^{0.35} 25^{\left(\frac{m_{\text{N}_{\text{N}}}}{f_{\text{e}}}\right)} \left(1.25^{100/\text{lu}}\right)^{-1} \left(1$$

EC8.3 - Art 3.2.2 (1) et Art 3.2.2 3) - Eq. A1 - Annexe A (Informative) Structure béton armé

EC8.3 - Art. 3.2.2 (1)P EC8.3 - Art. 3.2.2 (1)P

Rotation de corde plastique
$$\theta_{\rm im}^{\rm in} = \theta_{\rm um} - \theta_{\rm v} = \frac{1}{f_{\rm vir}^{\rm in}} 0.0145 \cdot \left(0.25^{\circ}\right) \left[\frac{{\rm max}(0.01;\alpha')}{{\rm max}(0.01;\alpha')}\right]^{0.3} \cdot f_{\rm c}^{-0.2} \cdot \left(\frac{L_{\rm v}}{h}\right)^{0.35} \frac{\left(\frac{L_{\rm vir}}{h_{\rm c}^{\rm in}}\right)^{0.3}}{25} \left(1.275^{100/3}\right)$$

 $C = \theta_{um} * H^t$

EC8.3 - Art 3.2.2 (1) et Art 3.2.2 3) - Eq. A1 - Annexe A (informative) Structure béton armé

Capacité en rotation de corde

 $L_v = M_{ed} / V_{ed}$

V = Ned / [L * Ig * f_C

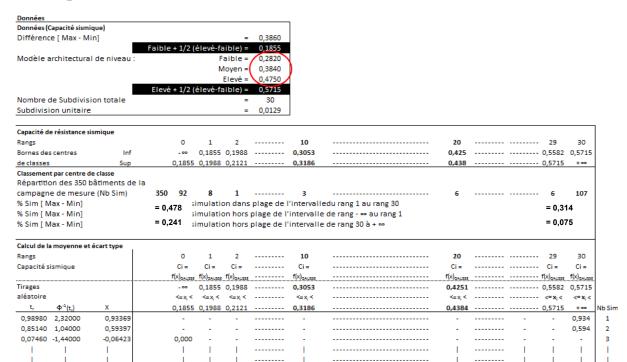
$$V^{1}Rd = \frac{1}{\chi_{el}} \left[\frac{h - \chi}{2L_{y}} min(N : 0.55A_{o}f_{o}) + \left(1 - 0.05 min(5 : \mu_{\Delta}^{pl}) \right) \cdot \left[0.^{\circ}6 max(0.5 : 100\rho_{opl}) \left(1 - 0.16 min(5 : \frac{L_{y}}{h}) \right) \sqrt{f_{o}}A_{o} + V_{w} \right] \right]$$
 EC8.3 - Art. A.3.3.1 (1)

$$V^{2}_{Rd} = \frac{0.85 \left[\frac{1 - 0.06 \min \left[5 : \mu_{\Delta}^{D} \right]}{\gamma_{cl}} \right] \left[1 + 1.0 \min \left(0.15 : \frac{N}{A_{c} f_{c}} \right) \right] \left(1 + 0.25 \max \left(1.75 : 100 \rho_{cd} \right) \right) \left[1 - 0.2 \min \left[2 : \frac{L_{V}}{h} \right] \right] \sqrt{f_{c}} b_{w} x}{r_{c} f_{c}}$$

RESISTANCE

 $\rho_{global} = D_{global} / C_{global}$ Cisaillement

 $\rho_{global} = D_{global} / C_{global}$ Flexion


EC8.3 - Art. 4.4.2 (1)P

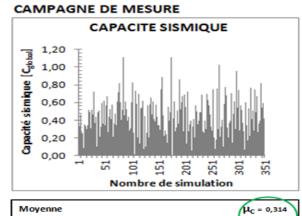
Annexe 5.J - Analyse statistique déterministe

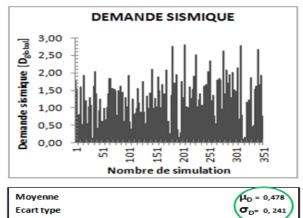
Principe de calcul de la Capacité – Demande sismique (Campagnes de collecte d'information par simulations de Monte Carlo)

DONNEES

BATIMENT 3_RDCH - 1 ETAGE - CAPACITE DE RESISTANCE SISMIQUE - SELON DIRECTION X

RESULTATS

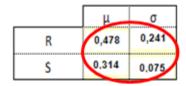

Ecart type


0,820

1,188

0,793

BATIMENT N° 3 - 1 ETAGE - SELON DIRECTION X



Le principe de calcul de la demande sismique est identique au calcul de la capacité sismique détaillé précédemment.

σ_C = 0, 075

Annexe 5.K - Analyse mécanique probabiliste - Principe de calcul

COMPTAGE DIRECT - BT3 RDCH - 1 ETAGE (SELON DIRECTION X - X)

Pf _(20,000)	30,8%	Probabilité de Défaillence
Pf _(20,000)	69,2%	robabilité de Résistance

tr=	ũr	r=	ts=	ũs	s =	e=r-s	Pf=	Nsim	Nb Pfi =	Pfi =
0,34180	-0,408	0,449	0,31257	-0,489	0,014	0,435	0	1	0	0,00000
0,97699	1,995	0,631	0,05926	-1,561	-0,487	1,118	0	2	0	0,00000
0,20582	-0,821	0,417	0,10470	-1,255	-0,344	0,761	0	3	0	0,00000
0,32931	-0,442	0,446	0,05948	-1,559	-0,486	0,932	0	4	0	0,00000
		1 1 1 1	 			1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1	!	
0,84322	1,008	0,556	0,27693	-0,592	-0,035	0,591	1	19998	6160	0,30810
0,16318	-0,981	0,405	0,07880	-1,413	-0,418	0,823	0	19999	6160	0,30810
0,22879	-0,743	0,423	0,70663	0,544	0,495	-0,072	1	20000	6161	0,30810
0,74035	0,644	0,528	0,71707	0,574	0,509	0,019	1	20001	6161	0,30810

Moyennes écarts types

μr; μs : Moyenne de la Demande et Capacité (Sollicitation et résistance sismique)

σ : Ecart type de la Demande et Capacité (Sollicitation et résistance sismique)

Simulations

tr; ts : Variables aléatoires simulées, distribution φ(u) obtenue par Tirages aléatoires de nombres

sur support compact [0,1] de la capacité et demande sismique

ũr; ũs : Fonction réciproque de la distributionφ(u) de la capacité et de la demande sismique

Abscisse de la fonction de distributionφ(u)

r, s = $[ur * \sigma_R] + \mu_r$; s = $[us * \sigma_S] + \mu_S$

Fonction d'état limite

e = R – S (Fonction d'état limite)

Nsim : Nombre de simulation

Probabilité de défaillance globale de la structure

Nb Pfi : Nombre de probabilité dont la fonction d'état limite est supérieur à zéro

Pf (i) $=\sum \underline{1}e^{(k)} \leq \underline{0} = \underline{Nb} \, Pf(i)$ Probabilité de défaillance globale de la structure à la i ème simulation

Nsim Nsim

SEPARATION DE VARIABLES ALEATOIRES - BT3 RDCH - 1 ETAGE (SELON DIRECTION X - X)

	μ	σ	_
R	0,478	0,241	
S	0,314	0,075	[

_			-
	Pf _(20 000) =	30,9%	Probabilité de Défaillence
			Probabilité de Résistance
_			-

ts =	űs	s =	Ur=	Fr (s) =	Nsim	Pfi =	∑ P fi =	P f =
0,31257	-0,489	0,014	-6,119	0,000	1	0,0001	0,0000	0,00010
0,05926	-1,561	-0,487	-12,711	0,000	2	0,0001	0,0001	0,00010
0,10470	-1,255	-0,344	-10,829	0,000	3	0,0001	0,0002	0,00010
0,05948	-1,559	-0,486	-12,698	0,000	4	0,0001	0,0003	0,00010
0,27693	-0,592	-0,035	-6,764	0,000	19998	0,0001	6184,77	0,30930
0,07880	-1,413	-0,418	-11,803	0,000	19999	0,0001	6184,77	0,30930
0,70663	0,544	0,495	0,211	0,584	20000	0,5836	6185,35	0,30930
0,71707	0,574	0,509	0,395	0,654	20001	0,6536	6186,01	0,30930

Moyennes é carts types

μr; μs : Moyenne de la Demande et Capacité (Sollicitation et Résistance sismique)

σr; σs : Ecart type de la Demande et Capacité (Sollicitation et Résistance sismique)

Simulations

ts : Variables aléatoires simulées, distribution φ(u) obtenue par Tirages aléatoires de nombre

sur support compact [0,1] de la demande sismique

ũs : Fonction réciproque de la de distributionφ(u) de la demande sismique

Abscisse de la fonction de distributionφ(u)

 $= [u_S * \sigma_S] + \mu_S$

 $u_r = [s - \mu_s] / \sigma_r$

Distribution de la capacité sismique

Fr (s) : Distribution de la variable simulée de la demande sismique

Nsim : Nombre de simulation

Probabilité de défaillance globale de la structure

Pf (i) = $\sum [Fr(s)] = 1$ Probabilité de défaillance globale de la structure à la i ème simulation

Nsim

 $\Sigma Pf(i) = \Sigma Pf_{(i-1)} + Pf_{(i)} Probabilité cumulée de défaillance globale de la structure à la i ème simulation$

Pf : Probabilité de défaillance globale de la structure avec n simulation

COMPTAGE DIRECT + TIRAGES CONDITIONNES - BT3 RDCH - 1 ETAGE (SELON DIRECTION X - X)

	,	0,07	5	0,29	7 0,1	93 0,	300	S.	0,30	0,075		Probabil	lité de Ré	sistance		Pf 20 000	68,6%
	A	vec R* et	5*								Avec Ret	5					_
R			S				E	R			5						
tr=	ũ	* =	ts=	ũs	1*=	est, -2,	1è*s0	hr (r)	ur	fr(d	hs (s)	US#	fs(s)=	Nsim	Pf=	ΣPfi=	Pf =
0,34180	-0,408	0,442	0,31257	-0,489	0,219	0,661	0	4,831	-0,487	4,663	0,760	-0,988	0,526	1	0,000	0,000	0,00000
0,97699	1,995	0,625	0,05926	-1,561	-0,719	1,344	0	0,718	1,922	0,828	0,254	-2,061	0,103	2	0,000	0,000	0,00000
0,20582	-0,821	0,411	0,10470	-1,255	-0,576	0,987	0	3,748	-0,895	3,517	0,390	-1,754	0,184	3	0,000	0,000	0,00000
0,32931	-0,442	0,440	0,05948	-1,559	-0,718	1,158	0	4,762	-0,514	4,600	0,254	-2,058	0,103	4	0,000	0,000	0,00000
-			-						-	-				i		-	!
0,84322	1,008	0,550	0,27693	-0,592	40,267	0,817	0	3,160	0,935	3,391	0,719	-1,091	0,473	19998	0,000	6 275,26	0,31380
0,16318	-0,981	0,399	0,07880	-1,413	-0,650	1,049	0	3,243	-1,053	3,016	0,316	-1,913	0,138	19999	0,000	6 275,26	0,31380
0,22879	-0,743	0,417	0,70663	0,544	0,263	0,154	0	3,984	-0,815	3,763	0,739	0,048	0,856	20000	0,000	6 275,26	0,31380
0,74035	0,644	0,522	0,71707	0,574	0,277	0,245	0	4,265	0,566	4,473	0,727	0,078	0,854	20001	0,000	6 275,26	0,31380

Moyennes écarts types

μr; μs : Moyenne de la Demande et Capacité (Sollicitation et résistance sismique)

Or; Os : Ecart type de la Demande et Capacité (Sollicitation et résistance sismique)

Indexe de fiabilité

$$\beta_E = (\mu_r - \mu_S) / [v(\sigma_r^2 + \sigma_S^2)]$$

$$\alpha_r = \sigma_r / [\sqrt{(\sigma_r^2 + \sigma_s^2)}]$$

$$\alpha_s = \sigma_s / [\sqrt{(\sigma_r^2 + \sigma_s^2)}]$$

Coordonnées du point P* dans l'espace standarisé

Ur* = αr * βE

Us* = αs * βE

Coordonnées du point P* dans l'espace physique

$$r^* = [\mu_r(1-\alpha_r, \beta_e^*C_r)]$$
; avec $C_r = \sigma_r / \mu_r$

$$s^* = [\mu_S (1 - \alpha_{s^*} \beta_E^* C_S)]$$
; avec $C_S = O_S / \mu_S$

Simulations

tr;ts : Variables aléatoires simulées, distribution φ(u) obtenue par Tirages aléatoires conditionnés de nombres sur support compact [0,1] de la capacité et demande sismique

ũr; ũs : Fonction réciproque de la distributionφ(u) de la capacité et de la demande sismique

$$r^* = [\tilde{u}r^*(=[\tilde{u}s^*\sigma_s] + \mu^*s]$$

Fonction d'état limite

e = r* -s* (Fonction d'état limite)

Distribution de la capacité et de la demande sismique qui possède son mode au point P*

$$hr(r) = 1/[\sigma r^{1}*V2\Pi^{1}]*e^{-(1/2)*(\tilde{u})^{2}} ; \quad hs(s) = 1/[\sigma s-1*V2\Pi-1]*e^{-(1/2)*(\tilde{u}s)^{2}} ; \quad h$$

Distribution de la capacité et de la demande sismique

$$fr(r) = \sigma r^{-1} * \sqrt{2} \Pi^{-1} * e^{-(1/2)^{*}(u)^{2}}$$
; $fs(s) = \sigma s^{-1} * \sqrt{2} \Pi^{-1} * e^{-(1/2)^{*}(u)^{2}}$

Nsim : Nombre de simulation

$$Pf(i) = \sum_{\substack{fr(r) \\ hr(r)}} {}^* \underbrace{fs(s)}_{hs(s)} {}^* \underbrace{\frac{1}{Nsim}}$$

 $\sum Pf(i) = \sum Pf_{(i-1)} + Pf_{(i)}$

Probabilité cumulée de défaillance globale de la structure à la i ème simulation

Pf : Probabilité de défaillance globale de la structure avec n simulation

Détails des résultats de la probabilité de ruine du bâti (mécanique probabiliste)

METHODE DE CALCUL PAR COMPTAGE DIRECT

METHODE DE CALCUL PAR COMPTAGE DIRECT

METHODE DE ONEOUET MITOU	- I I I I I I I I I I I I I I I I I I I	····						I-IL ITTODE DE CI
			RESIS'	TANCE	AU CIS	AILLE	MENT	
				NOMBR	EETAG	E		
Défailland	ce - Résistance	1	3	5	7	9	12	
BT3_RDCH	Pfgring	31,2%	80,6%	87,3%				BT3_RDCH
BATIMENTS (antérieur 1900)	1- Pf _[21111]	68,8%	19,4%	12,7%				BATIMENTS (antérie
Maçonnerie (Pierres naturelles)	Nb Sim	20 000	20 000	20 000				Maçonnerie (Pierres
BT11_R+1	Pfgang	63,1%	69,4%	64,2%	74,4%			BT11_R+1
BATIMENTS (années 1950 - 1970)	1- Pfթուդ	36,9%	30,6%	35,8%	25,6%			BATIMENTS (année:
Maçonnerie (Blocs de terre cuite)	Nb Sim	20 000	20 000	20 000	20 000			Maçonnerie (Blocs d
BT11_R+1	Pfgang	0,000%	1,14%	19,85%	19,5%	23,5%	36,3%	BT11_R+1
BATIMENTS (années 1950 - 1970)	1-Pfgrm	100,0%	98,9%	80,2%	80,5%	76,5%	63,7%	BATIMENTS (année:
(B.A Classe C 16/20)	Nb Sim	20 000	20 000	20 000	20 000	20 000	20 000	(B.A Classe C 16/20
BT9_RDCH	Pfgang	0,4%	2,6%	27,7%	41,9%			BT9_RDCH
BATIMENTS (années 1970 - 1990)	1- Pf _[21111]	99,6%	97,5%	72,3%	58,1%			BATIMENTS (année:
Maçonnerie (Blocs de béton)	Nb Sim	20 000	20 000	20 000	20 000			Maçonnerie (Blocs o
BT12_R+1	Pfgang	0,0%	0,0%	0,0%	0,0%	0,0%		BT12_R+1
BATIMENTS (années 1990 - 2000)	1-Pfgrm		100%	100,0%	100,0%	100,0%		BATIMENTS (année:
(B.A Classe C 25/30)	Nb Sim	20 000	20 000	20 000	20 000	20 000		(B.A Classe C 25/3

			RESIS1	FANCE	AU C	ISAILL	EMEN	T
				NOMB	RE ETA	\GE		
	Défaillance - Résistance	1	3	5	7	9	12	
BT3_ROCH	Pfgring	76,7%	80,3%	84,2%		-		
BATIMENTS (antérieur 1900)	1-Pf _{prim}	23,3%	19,7%	15,8%			.	
Maçonnerie (Pierres naturelles)	Nb Sim	20 000	20 000	20 000			.	
BTfLR+1	Pfgring	58,4%	74,1%	66,8%	70,2%			
BATIMENTS (années 1950 - 1970)	1-Pf _{Rimi}	41,6%	25,9%	33,2%	29,8%			
Maçonnerie (Blocs de terre cuite)	Nb Sim	20 000	20 000	20 000	20 000			
BT11_R+1	Pfgring	0,000%	0,51%	15,33%	19,2%	19,5%	43,1%	
BATIMENTS (années 1950 - 1970)	1-Pf _{pring}	100,0%	99,5%	84,7%	80,8%	80,5%	56,9%	
(B.A Classe C 16/20)	Nb Sim	20 000	20 000	20 000	20 000	20 000	20 000	
BT9_RDCH	Pfgang	0,1%	2,7%	27,9%	45,5%			
BATIMENTS (années 1970 - 1990)	1-Pf _{prim}	99,9%	97,3%	72,1%	54,6%		.	
Maçonnerie (Blocs de béton)	Nb Sim	20 000	20 000	20 000	20 000			
BT12_R+1	Pfgring	0,0%	0,0%	0,0%	0,0%	0,0%		
BATIMENTS (années 1990 - 2000)	1-Pf _[2110]	100,0%	100%	100,0%	100,0%	100,0%		
(B.A Classe C 25/30)	Nb Sim		20 000	20 000	20 000	20 000	.	

METHODE DE CALCUL PAR SEPARATION DE V.A.

METHODE DE CALCUL PAR SEPARATION DE V.A.

			RESIS ¹	TANCE	AU CIS	AILLE	MENT
				NOMBR	EETAG	E	
Défaillance	-Résistance	1	3	5	7	9	12
BT3_RDCH	Pfjarmj	31,1%	80,6%	87,2%	٠		
BATIMENTS (antérieur 1900)	1- Pհյաստ	68,9%	19,4%	12,8%			
Maçonnerie (Pierres naturelles)	Nb Sim	20 000	20 000	20 000			
BT11_R+1	Pfjannj	62,9%	69,5%	64,4%	74,2%		
BATIMENTS (années 1950 - 1970)	1- Pհյաստ	37,1%	30,5%	35,6%	25,8%		
Maçonnerie (Bloos de terre cuite)	Nb Sim	20 000	20 000	20 000	20 000		
BT11_R+1	Pfjannj	0,01%	1,07%	19,81%	19,5%	23,4%	36,4%
BATIMENTS (années 1950 - 1970)	1- Pհյաստ	99,99%	98,9%	80,2%	80,5%	76,6%	63,6%
(B.A Classe C 16/20)	Nb Sim	20 000	20 000	20 000	20 000	20 000	20 000
BT9_ROCH	Pfjannj	0,4%	2,5%	28,0%	41,9%	•	
BATIMENTS (années 1970 - 1990)	1- Pհյաստ	99,6%	97,5%	72,0%	58,1%		
Maçonnerie (Blocs de béton)	Nb Sim	20 000	20 000	20 000	20 000		
BT12_R+1	Pfjannj		0.0%	1,3%	0,0%	0,0%	
BATIMENTS (années 1990 - 2000)	1-Pf _{izroni}	99,99%	100%	98,7%	100,0%	100,0%	
(B.A Classe C 25/30)	Nb Sim		20 000	20 000	20 000	20 000	

		RESISTANCE AU CISAILLEMENT									
				NOME	REETA	\GE					
	Défaillance - Résistance	1	3	5	7	9	12				
BT3_RDCH	Pfpmm	31,1%	80,3%	84,0%	٠	٠					
BATIMENTS (antérieur 1900)	1-Pf _[2110]	68,9%	19,7%	16,0%							
Maçonnerie (Pierres naturelles)	Nb Sim	20 000	20 000	20 000							
BT11_R+1	Pfgang	58,0%	74,2%	67,0%	70,0%						
BATIMENTS (années 1950 - 1970)	1-Pf _[2110]	42,1%	25,8%	33,0%	30,0%						
Maçonnerie (Blocs de terre cuite)	Nb Sim	20 000	20 000	20 000	20 000						
BT11_R+1	Pfgrin	0,01%	0,51%	15,32%	19,2%	19,3%	43,2%				
BATIMENTS (années 1950 - 1970)	1-Pf _[2110]	99,99%	99,5%	84,7%	80,8%	80,7%	56,8%				
(B.A Classe C 16/20)	Nb Sim	20 000	20 000	20 000	20 000	20 000	20 000				
BT9_RDCH	Pfgang	0,2%	2,7%	28,1%	45,5%						
BATIMENTS (années 1970 - 1990)	1-Pf _[2110]	99,9%	97,3%	71,9%	54,5%						
Maçonnerie (Blocs de béton)	Nb Sim	20 000	20 000	20 000	20 000						
BT12_R+1	Pf _{izinij}	0,01%	0,0%	13%	0,0%	0,0%					
BATIMENTS (années 1990 - 2000)	1-Pf _[2110]	99,99%	100%	98,7%	100,0%	100,0%					
(B.A Classe C 25/30)	Nb Sim	20 000	20 000	20 000	20 000	20 000					

METHODE DE CALCUL PAR COMPTAGE DIRECT + TIRAGES CONDITIONNES

METHODE DE CALCUL PAR COMPTAGE DIRECT • TIRAGES CONDITIONNES RESISTANCE AU CISAILLEMENT

			RESIS	TANCE	AU CIS	AILLE	<u> MENT</u>
				NOMBR	EETAG	E .	
	-Résistance	1	3	5	7	9	12
BT3_RDCH	Pfgang	31,4%	80,7%	86,7%	٠	٠	•
BATIMENTS (antérieur 1900)	1-Pf _{izroni}	68,6%	19,3%	13,3%		٠	.
Maçonnerie (Pierres naturelles)	Nb Sim	20 000	20 000	20 000			
BT11_R+1	Pfjannj	63,3%	69,4%	64,2%	73,8%	٠	•
BATIMENTS (années 1950 - 1970)	1-Pf _{izroni}	36,7%	30,6%	35,8%	26,3%	٠	.
Maçonnerie (Blocs de terre cuite)	Nb Sim	20 000	20 000	20 000	20 000		
BT11_R+1	Pfjannj	0,00%	0,00%	18,40%	17,7%	36,5%	36,5%
BATIMENTS (années 1950 - 1970)	1-Pf _{izroni}	100,00%	100,0%	81,6%	82,3%	63,5%	63,5%
(B.A Classe C 16/20)	Nb Sim	20 000	20 000	20 000	20 000	20 000	20 000
BT9_RDCH	Pfjannj	1,3%	2,2%	27.8%	41,8%	-	•
BATIMENTS (années 1970 - 1990)	1-Pf _{izroni}	98,8%	97,8%	72.2%	58,2%	٠	.
Maçonnerie (Blocs de béton)	Nb Sim	20 000	20 000	20 000	20 000		
BT12_R+1	Pfjannj	0,0%	0,0%	0,1%	0,0%	0,00%	•
BATIMENTS (années 1990 - 2000)	1-Pf _{izroni}	100,0%	100%	99,9%	100,0%	100,0%	.
(B.A Classe C 25/30)	Nb Sim	20 000	20 000	20 000	20 000	20 000	

				NOMB	RE ETA	\GE	
	Défaillance - Résistance	1	3	5	7	9	12
BT3_RDCH	Pfgrug	76,4%	80,4%	83,9%	٠	٠	
BATIMENTS (antérieur 1900)	1-Pf _{izrmi}	23,6%	19,6%	16,2%			.
Maçonnerie (Pierres naturelles)	Nb Sim	20 000	20 000	20 000			
BT11_R+1	Pfgm	58,5%	74,0%	66,5%	69,9%		
BATIMENTS (années 1950 - 1970)	1-Pf _{izroni}	41,5%	26,0%	33,5%	30,1%		.
Maçonnerie (Blocs de terre cuite)	Nb Sim	20 000	20 000	20 000	20 000		
BT11_R+1	Pfgring	0,00%	0,00%	13,16%	17,4%	18,2%	43,1%
BATIMENTS (années 1950 - 1970)	1-Pf _{Rimi}	100,00%	100,0%	86,8%	82,6%	81,8%	56,9%
(B.A Classe C 16/20)	Nb Sim	20 000	20 000	20 000	20 000	20 000	20 000
BT9_RDCH	Pfgran	1,0%	2,5%	27,8%	45,4%		
BATIMENTS (années 1970 - 1990)	1-Pf _{pring}	99,0%	97,5%	72,2%	54,6%		.
Maçonnerie (Blocs de béton)	Nb Sim	20 000	20 000	20 000	20 000		
BT12_R+1	Pfgang	0,0%	0,0%	0,1%	0,0%	0,00%	
BATIMENTS (années 1990 - 2000)	1-Pf _{pring}	100,0%	100%	99,9%	100,0%	100,0%	.
(B.A Classe C 25/30)	Nb Sim	20 000	20 000	20 000	20 000	20 000	

ANNEXE – CHAPITRE 6

		MULHO	OUSE : Ré	partition	du bâti	
Classes de sol	1 à 2 étages	3 étages	5 étages	7 étages	9 étages	> 9 étages
Sol de classe B	OUI	OUI	OUI	OUI	OUI	OUI
	OUI	OUI	OUI	OUI	OUI	OUI
	NON	NON	NON	NON	OUI	OUI
	NON	NON	NON	OUI	OUI	OUI
	NON	NON	NON	NON	NON	NON
Sol de classe C	OUI	OUI	OUI	OUI	OUI	OUI
	OUI	OUI	OUI	OUI	OUI	OUI
	NON	NON	OUI	OUI	OUI	OUI
	NON	NON	OUI	OUI	OUI	OUI
	NON	NON	NON	NON	NON	NON

OUI : Le bâti s'effondre au séisme de référence préconisé par l'Eurocode NON : Le bâti ne s'effondre pas au séisme de référence préconisé par l'Eurocode

Tableau n° A 12 : Bâtiments qui s'effondrent identifiés à partir du modèle d'évaluation de la vul-

nérabilité du bâti établi au chapitre n° 5

Source : [Modèle d'évaluation de la vulnérabilité du bâti établi au chapitre n° 5]

CAS DU CENTRE - VILLE DE MULHOUSE

	Résulta	ts quantitatifs réels	-	Résultats antitatifs normalis Indices cation de la figure		Niveaux Qualitatifs
Aléa	Accélération de sol	= 1,485 m/s ²	I _A =	1,485 – 1,100	= 0,438	Niveau Modéré
Vulnérabilité (Population)	Densité de Population	= 14215 hab/Km²	I _{Vh} =	14 215 – 5 942 30 729 – 5 942	= 0,346	Niveau Faible
Vulnérabilité (Bâti)	Densité du bâti	= 19,10 %	I _{Vb} =	0,191 - 0,000 0,430 - 0,000	= 0,443	Niveau Modéré
Risque (Population)	Risque	= \frac{1,485 * 14215}{10 000} = 2,111	I _{RH} =	2,111 – 0,906 6,768 – 0,906	= 0,206	Niveau Faible
Risque (Bâti)	Risque	= 1,485 * 0,191 = 0,283	I _{Rb} =	0,191 – 0,000 0,430 – 0,000	= 0,374	Niveau Faible

Aléa:

Ymin = $1,10 \text{ m/s}^2$ Ymax = $1,980 \text{ m/s}^2$

Vulnérabilité (Population) : Vulnérabilité (Bâti) :

Ymin = 5 942 hab/Km² (Population) Ymin = 0,00% (de bâtiment qui s'effondre)
Ymax = 30 729 hab/Km² (Population) Ymax = 43,0% (de bâtiment qui s'effondre)

Risque (Population): Risque (Bâti):

Ymin = 0,906 (Indice de Population)

Ymin = 0,000 (Indice de bâtiment qui s'effondre)

Ymax = 2,111 (Indice de Population)

Ymax = 0,430 (Indice de bâtiment qui s'effondre)

Tableau n° A 13 : Détail de calcul de la mise en application du modèle d'évaluation à la cartographie du risque sismique

Jean Lemaire

RESULTATS QUANTITATIFS NORMALISES – RESULTATS QUALITATIFS

MULHOUSE	ALE	A SISMIQUE		VULNERAE	BILITE SISN	MIQUE	RISQUE SISMIQUE			
	Indic	lice aléa Indice pertes en vie humaines Indice effondrement du bâti				drement du bâti	Indice perte	s en vie humaines	Indice effondrement du bâti	
Secteurs	I _A	Niveau	l _{vh}	Niveau	l _{vb}	Niveau	I _{Rh}	Niveau	I _{rb}	Niveau
Centre ville	0,438	3 : MODERE	0,483	3 : MODERE	0,443	3 : MODERE	0,491	3 : MODERE	0,453	2 : FAIBLE
1: Nord	0,438	3: MODERE	0,188	1:TRES FAIBLE	0,184	1: TRES FAIBLE	0,154	1: TRES FAIBLE	0,168	1 : TRES FAIBLE
2 : Est	0,438	3: MODERE	0,621	4:MOYEN	0,368	2:FAIBLE	0,649	4 : MOYEN	0,371	2:FAIBLE
3 : Sud	0,625	4 : MOYEN	0,025	1:TRES FAIBLE	0,061	1: TRES FAIBLE	0,002	1: TRES FAIBLE	0,040	1 : TRES FAIBLE
4: Sud-ouest	0,625	4: MOYEN	0,477	3: MODERE	0,998	5:FORT	0,576	3: MODERE	1,186	5 : FORT
5 : Ouest	0,438	3: MODERE	0,495	3: MODERE	0,184	1:TRES FAIBLE	0,505	3: MODERE	0,168	1 : TRES FAIBLE

I_A: Indice d'aléa; I_V: Indice de vulnérabilité; I_{Rh}: Indice de risque de perte en vie humaine dû à l'effondrement du bâti; I_{Rb}: Indice de risque d'effondrement du bâti

BÂLE	AL	EA SISMIQUE		VULNERA	BILITE SISN	1IQUE		R	ISQUE SISI	MIQUE
	Indic	ce aléa	Indice perte	s en vie humaines	Indice effond	drement du bâti	Indice perte	s en vie humaines	Indice effond	lrement du bâti
Secteurs	I _A	Niveau	l _{vh}	Niveau	l _{vb}	Niveau	I _{Rh}	Niveau	I _{rb}	Niveau
Centre ville	0,625	4 : MOYEN	0,460	3 : MODERE	0,634	4 : MOYEN	0,555	3 : MODERE	0,453	4 : MOYEN
1: Nord	0,438	3: MODERE	2,029	5:FORT	0,184	1:TRES FAIBLE	2,257	5:FORT	0,168	1 : TRES FAIBLE
2 : Est	0,438	3: MODERE	0,554	3: MODERE	0,368	1:TRES FAIBLE	0,573	3: MODERE	0,371	1 : TRES FAIBLE
3:Sud	0,625	4 : MOYEN	0,578	3: MODERE	0,061	2: FAIBLE	0,705	4 : MOYEN	0,040	2:FAIBLE
4 : Sud-ouest	0,625	4 : MOYEN	0,557	3: MODERE	0,998	3: MODERE	0,679	4 : MOYEN	1,186	3 : MODERE
5 : Ouest	0,625	4 : MOYEN	1,286	5:FORT	0,184	3: MODERE	1,604	5 : FORT	0,168	3: MODERE

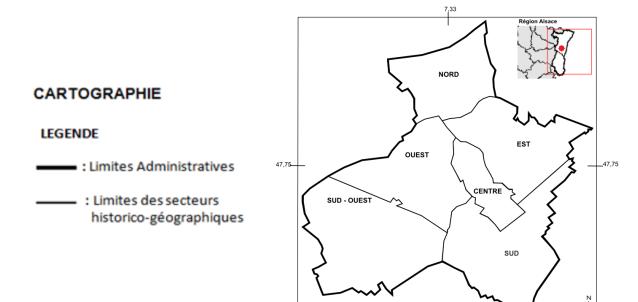

I_A: Indice d'aléa; I_V: Indice de vulnérabilité; I_{Rh}: Indice de risque de perte en vie humaine dû à l'effondrement du bâti; I_{Rb}: Indice de risque d'effondrement du bâti

Tableau n° A 14 : Indices de l'aléa, de la vulnérabilité et du risque sismique à l'échelle des territoires mulhousien et Bâlois

Source : [BD Carto, IGN, Carte géologique de France à 1/50 000 – BRGM 2001- Autorisation n° 2004/039 ; ROULLÉ A., BITRI A., MATHIEU F., RICHALET G., 2007 ; E. BECK, 2006 ; WITTMANN O. et al., 1969 ; Eurocode 8.1 – Article

3.2.2.2]

MULHOUSE: Risque d'effondrement du bâti (RESULTATS QUANTITATIFS)

SECTEURS	(*)	Effondrement	Quantité moyenne des bâtiments effondrés
TERRITOIRE	90,4%	OUI	
GLOBAL	9,6%	NON	
CENTRE VILLE	19,1%	OUI	
	1,6%	NON	
1: NORD	7,9%	OUI	
	0,9%	NON	
2 : EST	15,8%	OUI	15,1%
	0,9%	NON	Quantité moyenne des bâtiments
3 : SUD	2,4%	OUI	Effondrés tous secteurs confondus
	0,4%	NON	
4 : SUD-OUEST	37,3%	OUI	
	1,6%	NON	
5 : OUEST	7,9%	OUI	
	0,2%	NON	

LEGENDE

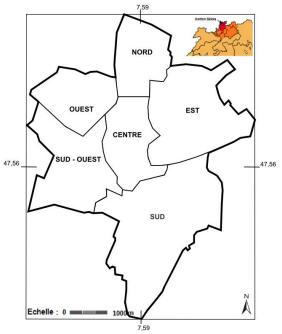
(*) : Quantité de bâtiments effondrés ou non effondrés par secteur par rapport au nombre total de bâtiments contenus dans le territoire

: Limites Administratives ——: Limites des secteurs historico-géographiques

Figure n° A 10 : Risque d'effondrement du bâti à l'échelle du territoire mulhousien selon les critères de l'âge, des matériaux et de la hauteur des constructions

ics chieres de rage, des materiaux et de la madieur des

Source : Données collectées sur le terrain


BÂLE: Risque d'effondrement du bâti (RESULTATS QUANTITATIFS)

CARTOGRAPHIE

LEGENDE

: Limites Administratives

 Limites des secteurs historico-géographiques

SECTEURS	(*)	Effondrement	Quantité moyenne des bâtiments effondrés
TERRITOIRE GLOBAL	75,1%	OUI	
	24,9%	NON	
CENTRE VILLE	22,9%	OUI	
	5,8%	NON	
1: NORD	3,4%	OUI	
	2,0%	NON	
2 : EST	2,0%	OUI	12,5%
	3,5%	NON	Quantité moyenne des bâtiments
3:SUD	11,7%	OUI	Effondrés tous secteurs confondus
	4,3%	NON	
4 : SUD-OUEST	18,9%	OUI	
	4,7%	NON	
5 : OUEST	16,3%	OUI	
	4,6%	NON	

LEGENDE

(*) : Quantité de bâtiments effondrés ou non effondrés par secteur par rapport au nombre total de bâtiments contenus dans le territoire

: Limites Administratives — : Limites des secteurs historico-géographiques Figure n° A 11 : Risque d'effondrement du bâti à l'échelle du territoire bâlois selon les cri-

tères de l'âge, des matériaux et de la hauteur des constructions

Source : Données collectées sur le terrain

CAS D'INTERVENTION DE REDUCTION DE RISQUE DE PERTE EN VIE HUMAINE ET DE RISQUE D'EFFONDREMENT DU BATI

POPULATION	Centre	e-ville	No	rd	E:	st	Sı	nd	Sud-ouest		Ou	est
	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti
Centre-ville	R=3	R=2	-	-	-	-	-	-	-	-	-	-
Nord	-	-	R=1	R=1	-	-	-	-	-	-	-	-
Est	-	-	-	-	R=4	R=2	-	-	-	-	-	-
Sud	-	-	-	-	-	-	R=1	R=1	-	-	-	-
Sud-ouest	-	-	-	-	-	-	-	-	R=3	R=5	-	-
Ouest	-	-	-	-	-	-	-	-	-	-	R=3	R=1
A:Aléa V:Vu	Inérabilité	R : Ris	que Pop	: Populat	ion	_						
: Cas n°	: Cas n° 1 ——: Cas n° 2 ———: Cas n° 3											

Tableau n° A 15 : Matrice des niveaux de risque de perte en vie humaine et de niveaux de risque d'effondrement du bâti à l'échelle du territoire Mulhousien

J. Lemaire

CAS D'INTERVENTION DE REDUCTION DE RISQUE DE PERTE EN VIE HUMAINE ET DE RISQUE D'EFFONDREMENT DU BATI

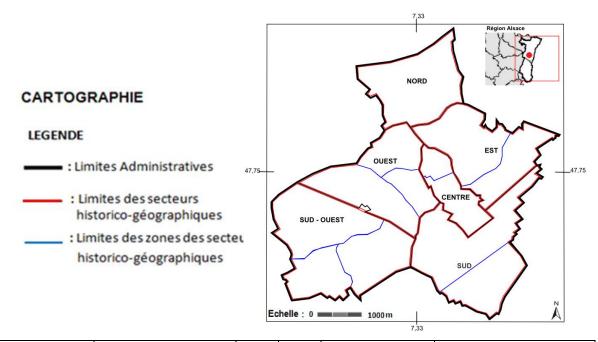
Bâti	Centre	e-ville	No	rd	E	st	Sı	ıd	Sud-o	ouest	Ou	est
	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti
Centre-ville	R=3	R=4	-	-	-	-	-	-	-	-	-	-
Nord	-	-	R=5	R=1	-	-	-	-	-	-	-	-
Est	-	-	-	-	R=3	R=1	-	-	-	-	-	-
Sud	-	-	-	-	-	-	R=4	R=2	-	-	-	-
Sud-ouest	-	-	-	-	-	-	-	-	R=4	R=3	-	-
Ouest	-	-	-	-	-	-	-	-	-	-	R=5	R=3
A:Aléa V:Vι	ılnérabilité	R : Ris	que Pop	: Popula	tion		•	•	•			•
: Cas n° 1 ——: Cas n° 2 ——: Cas n° 3												

Tableau n° A 16 : Matrice des niveaux de risque de perte en vie humaine et de niveaux de risque d'effondrement du bâti à l'échelle du territoire bâlois

RESULTATS QUANTITATIFS NORMALISES – RESULTATS QUALITATIFS

MULHOU	JSE	А	LEA SISMIQUE		VULNERABI	LITE SISN	1IQUE		RIS	QUE SISI	VIQUE
		ıl	ndice aléa	Indice pert	es en vie humaines	Indice effo	ndrement du bâti	Indice pert	es en vie humaines	Indice effo	ndrement du bâti
Secteurs	S Quartiers	I _A	Niveau	I _{vh}	Niveau	I _{vb}	Niveau	I _{Rh}	Niveau	I_{rb}	Niveau
Centre ville	e Au Nord du secteur										
		0,438	3: MODERE	0,370	2 : FAIBLE	0,338	2 : FAIBLE	0,362	2 : FAIBLE	0,628	4 : MOYEN
	Au Sud du secteur	0,625	4 : MOYEN	0,523	3: MODERE	0,433	3: MODERE	0,635	4 : MOYEN	0,893	5 : FORT
1: Nord	Dans l'ensemble du										
	secteur	0,438	3: MODERE	0,175	1:TRES FAIBLE	0,317	2 : FAIBLE	0,139	1 : TRES FAIBLE	0,588	2 : FAIBLE
2 : Est	Au Nord du secteur	0,438	3: MODERE	0,675	4 : MOYEN	0,202	2 : FAIBLE	0,710	4 : MOYEN	0,375	2 : FAIBLE
	Au Sud du secteur	0,625	4 : MOYEN	0,561	3: MODERE	0,437	3: MODERE	0,683	4 : MOYEN	0,901	5 : FORT
3 : Sud	Au Nord du secteur	0,625	4 : MOYEN	0,176	1:TRES FAIBLE	0,104	4 : MOYEN	0,194	1 : TRES FAIBLE	0,215	2 : FAIBLE
4 : Sud-	Au Nord du secteur										
ouest		0,625	4: MOYEN	0,157	1:TRES FAIBLE	0,661	4: MOYEN	0,170	1 : TRES FAIBLE	1,363	5 : FORT
	Au Sud-ouest du										
	secteur	0,625	4: MOYEN	0,221	2 : FAIBLE	0,180	1: TRES FAIBLE	0,251	2 : FAIBLE	0,371	2 : FAIBLE
	Au Sud-est du secteur	0,625	4: MOYEN	2,825	5 : FORT	0,876	5 : FORT	3,557	5 : FORT	1,807	5 : FORT
5 : Ouest	Au Nord du secteur	0,438	3: MODERE	0,487	3: MODERE	0,073	1: TRES FAIBLE	0,496	3 : MODERE	0,135	1 : TRES FAIBLE
	Au Sud-ouest du										
	secteur	0,438	3: MODERE	0,971	5 : FORT	0,010	1: TRES FAIBLE	1,049	5 : FORT	0,019	1: TRES FAIBLE
	Au Sud-est du secteur	0,438	3: MODERE	0,101	1:TRES FAIBLE	0,233	2 : FAIBLE	0,055	1 : TRES FAIBLE	0,433	3 : MODERE

IA: Indice d'aléa; Iv: Indice de vulnérabilité; Inh: Indice de risque de perte en vie humaine dû à l'effondrement du bâti; Inh: Indice de risque d'effondrement du bâti


BÂLE		A	LEA SISMIQUE		VULNERABI	LITE SISM	1IQUE	RISQUE SISMIQUE				
		lr	ndice aléa	Indice pert	es en vie humaines	ndrement du bâti	Indice pertes en vie humaines Indice effondrement du bâti					
Secteurs	Quartiers	I_A	Niveau	l _{vh}	Niveau	$I_{\rm vb}$	Niveau	I _{Rh}	Niveau	I_{rb}	Niveau	
Centre ville Au Nord-est du secteur												
		0,438	3: MODERE	1,596	5 : FORT	0,141	1:TRES FAIBLE	1,762	5 : FORT	0,262	2 : FAIBLE	
	Au Sud-ouest du sec	0,625	4 : MOYEN	0,460	3: MODERE	0,875	5 : FORT	0,555	3 : MODERE	1,805	5 : FORT	
1 : Nord	Au Nord-est du secteur	0,438	3: MODERE	2,376	5 : FORT	0,096	1:TRES FAIBLE	2,654	5 : FORT	0,177	1 : TRES FAIBLE	
	Au Sud-ouest du											
	secteur	0,438	3: MODERE	2,153	5 : FORT	0,021	1:TRES FAIBLE	2,398	5 : FORT	0,039	1 : TRES FAIBLE	
2 : Est	Au Nord-est du secteur	0,438	3: MODERE	0,476	3 : MODERE	0,059	1:TRES FAIBLE	0,483	3 : MODERE	0,110	1 : TRES FAIBLE	
	Au Sud-ouest du											
	secteur	0,438	3: MODERE	1,047	5 : FORT	0,041	1:TRES FAIBLE	1,136	5 : FORT	0,076	1 : TRES FAIBLE	
3 : Sud	Au Nord-est du secteur	0,438	3: MODERE	1,128	5 : FORT	0,382	2 : FAIBLE	1,228	5 : FORT	0,709	4 : MOYEN	
	Au Sud-ouest du											
	secteur	0,625	4: MOYEN	0,068	1:TRES FAIBLE	0,082	1:TRES FAIBLE	0,057	1 : TRES FAIBLE	0,168	1 : TRES FAIBLE	
4 : Sud-	Au Nord du secteur											
ouest		0,536	4: MOYEN	0,536	3: MODERE	0,502	3: MODERE	0,651	4 : MOYEN	1,036	5 : FORT	
	Au Sud du secteur	0,577	4: MOYEN	0,577	3: MODERE	0,388	2 : FAIBLE	0,704	4 : MOYEN	0,800	5 : FORT	
5 : Ouest	Dans l'ensemble du											
	secteur	1,029	4 : MOYEN	1,029	5 : FORT	0,790	4 : MOYEN	1,277	5 : FORT	1,629	5 : FORT	

I_A: Indice d'aléa; I_V: Indice de vulnérabilité; I_{Rh}: Indice de risque de perte en vie humaine dû à l'effondrement du bâti; I_{Rh}: Indice de risque d'effondrement du bâti

Tableau n° A 17 : Indices de l'aléa, de la vulnérabilité et du risque sismique à l'échelle des secteurs historico-géographiques mulhousien et Bâlois

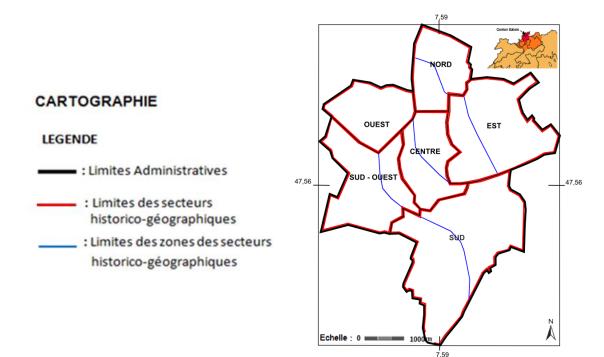
Source : [BD Carto, IGN, Carte géologique de France à 1/50 000 – BRGM 2001- Autorisation n° 2004/039 ; ROULLÉ A., BITRI A., MATHIEU F., RICHALET G., 2007, E. BECK, 2006 ; WITTMANN O. et al., 1969 ; Eurocode 8.1 – Article 3.2.2.2]

MULHOUSE: Risque d'effondrement du bâti (RESULTATS QUANTITATIFS)

SECTEURS	ZONES DES SECTEURS	(1)	(2)	Effondrement		Quantité moyenne de bâtiments effondrés
CENTRE VILLE	Au Nord du centre-ville	8,5%	1,0%	OUI	NON	
	Au Sud du centre-ville	10,6%	0,6%	OUI	NON	
1: NORD	Ensemble du secteur	7,9"%	0,9%	OUI	NON	
2 : EST	Au Nord du secteur	5,0%	0,5%	OUI	NON	7,5%
	Au Sud du secteur	10,9%	0,4%	OUI	NON	Quantité moyenne des
3 : SUD	Au Nord du secteur	2,4%	0,4%	OUI	NON	bâtiments effondrés
	Au Sud du secteur	-	-	OUI	NON	tous secteurs
4 : SUD-OUEST	Au Nord du secteur	16,2%	0,3%	OUI	NON	confondus
	Au Sud-ouest du secteur	0,0%	4,5%	OUI	NON	
	Au Sud-est du secteur	21,1%	0,8%	OUI	NON	
5 : OUEST	Au Nord du secteur	1,8%	0,0%	OUI	NON	
	Au Sud-ouest du secteur	0,3%	0,0%	OUI	NON	
	Au Sud-est du secteur	5,8%	0,2%	OUI	NON	

LEGENDE

(1) : Quantité de bâtiments effondrés par zone de chacun des secteurs historico-géographiques


(2) : Quantité de bâtiments non effondrés par zone de chacun des secteurs historico-géographiques

: Limites Administratives ----: Limites des secteurs historico-géographiques

Figure n° A 12 : Risque d'effondrement du bâti à l'échelle des secteurs historicogéographiques du territoire mulhousien selon les critères de l'âge, des matériaux et de la hauteur des constructions

Source : Données collectées sur le terrain

BÂLE: Risque d'effondrement du bâti (RESULTATS QUANTITATIFS)

SECTEURS	ZONES DES SECTEURS	(*)		Effondrement		Quantité moyenne de bâtiments effondrés
CENTRE VILLE	Au Nord-est du centre-ville	3,7%	1,8%	OUI	NON	
	Au Sud-ouest du centre-ville	19,2%	4,0%	OUI	NON	
1: NORD	Au Nord-est du secteur	2,4%	0,5%	OUI	NON	
	Au Sud-ouest du secteur	1,0%	1,5%	OUI	NON	6,8%
2 : EST	Au Nord-est du secteur	1,5%	2,6%	OUI	NON	Quantité moyenne des
	Au Sud-ouest du secteur	0,5%	1,0%	OUI	NON	bâtiments effondrés
3 : SUD	Au Nord-est du secteur	9,7%	3,9%	OUI	NON	tous secteurs
	Au Sud-ouest du secteur	1,9%	0,4%	OUI	NON	confondus
4 : SUD-OUEST	Au Nord-est du secteur	10,0%	3,4%	OUI	NON	
	Au Sud-ouest du secteur	8,9%	1,3%	OUI	NON	
5 : OUEST	Ensemble du secteur	16,3%	1,6%	OUI	NON	

LEGENDE

(1) : Quantité de bâtiments effondrés par zone de chacun des secteurs historico-géographiques

(2) : Quantité de bâtiments non effondrés par zone de chacun des secteurs historico-géographiques

: Limites Administratives —: Limites des secteurs historico-géographiques

Figure n° A 13 : Risque d'effondrement du bâti à l'échelle des secteurs historicogéographiques du territoire bâlois selon les critères de l'âge, des matériaux et de la hauteur des constructions sien selon les critères de l'âge, des matériaux et de la hauteur des constructions

Source : Données collectées sur le terrain

CAS D'INTERVENTION DE REDUCTION DE RISQUE DE PERTE EN VIE HUMAINE ET DE RISQUE D'EFFONDREMENT DU BATI

POPULATION	Centro	Centre-ville		rd	E:	st	Sı	bı	Sud-ouest		Ouest	
	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti
Centre-ville												
(Zone Nord)	R=2	R=4	-	-	-	-	-	-	-	-	-	-
Centre-ville												
(Zone Sud)	R=4	R=5	-	-	-	-	-	-	-	-	-	-
Nord												
(Ensemble	-	-	R=1	R=2	-	-	-	-	-	-	-	-
secteur)												
Est												
(Zone Nord)	-	-	-	-	R=4	R=1	-	-	-	-	-	-
Est												
(Zone Sud)	-	-	-	-	R=4	R=5	-	-	-	-	-	-
Sud												
(Zone Nord)	-	-	-	-	-	-	R=1	R=2	-	-	-	-
Sud												
(Zone Sud)	-	-	-	-	-	-	R=1	R=2	-	-	-	-
Sud-ouest												
(Zone Nord)	-	-	-	-	-	-	-	-	R=1	R=5	-	-
Sud-ouest												
(Zone S-O)	-	-	-	-	-	-	-	-	R=2	R=2	-	-
Sud-ouest												
(Zone S-E)	-	-	-	-	-	-	-	-	R=5	R=5	-	-
Ouest												
(Zone Nord)	-	-	-	-	-	-	-	-	-	-	R=2	R=1
Ouest												
(Zone S-O)	-	-	-	-	-	-	-	-	-	-	R=3	R=1
Ouest												
(Zone S-E)	-	-	-	-	-	-	-	-	-	-	R=1	R=3
R : Niveau qualit					ı	ı	ı	ı	1	ı	1	ı
: Cas n° 1: Cas n° 2												

Tableau n° A 18 : Matrice des niveaux de risque de perte en vie humaine et de niveaux de risque d'effondrement du bâti à l'échelle des secteurs historicogéographiques mulhousien

CAS D'INTERVENTION DE REDUCTION DE RISQUE DE PERTE EN VIE HUMAINE ET DE RISQUE D'EFFONDREMENT DU BATI

POPULATION	Centre	e-ville	No	rd	E:	st	Sı	ıd	Sud-c	uest	Ouest	
	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti	Pop.	Bâti
Centre-ville												
(Zone N-E)	R=5	R=2	-	-	-	-		-	-	-	-	-
Centre-ville												
(Zone S-O)	R=3	R=5	-	-	-	-	-	-	-	-	-	-
Nord												
(Zone N-E)	-	-	R=5	R=1	-	-	-	-	-	-	-	- !
Nord												
(Zone S-O)	-	-	R=5	R=1	-	-	-	-	-	-	-	-
Est												
(Zone N-E)	-	-	-	-	R=3	R=1	-	-	-	-	-	-
Est												
(Zone S-O)	-	-	-	-	R=5	R=1	-	-	-	-	-	-
Sud												
(Zone N-E)	-	-	-	-	-	-	R=5	R=4	-	-	-	-
Sud												
(Zone S-O)	-	-	-	-	-	-	R=1	R=1	-	-	-	-
Sud-ouest												
(Zone Nord)	-	-	-	-	-	-	-	-	R=4	R=5	-	-
Sud-ouest												
(Zone Sud)	-	-	-	-	-	-	-	-	R=4	R=5	-	-
Ouest												
(Ensemble	-	-	-	-	-	-	-	-	-	-	R=5	R=5
secteur)												
R : Niveau qualita					ı	1	ı	1	ı	ı	·	1
: Cas n° 1 ——: Cas n° 2 ———: Cas n° 3												

Tableau n° A 19 : Matrice des niveaux de risque de perte en vie humaine et de niveaux de risque d'effondrement du bâti à l'échelle des secteurs historicogéographiques bâlois

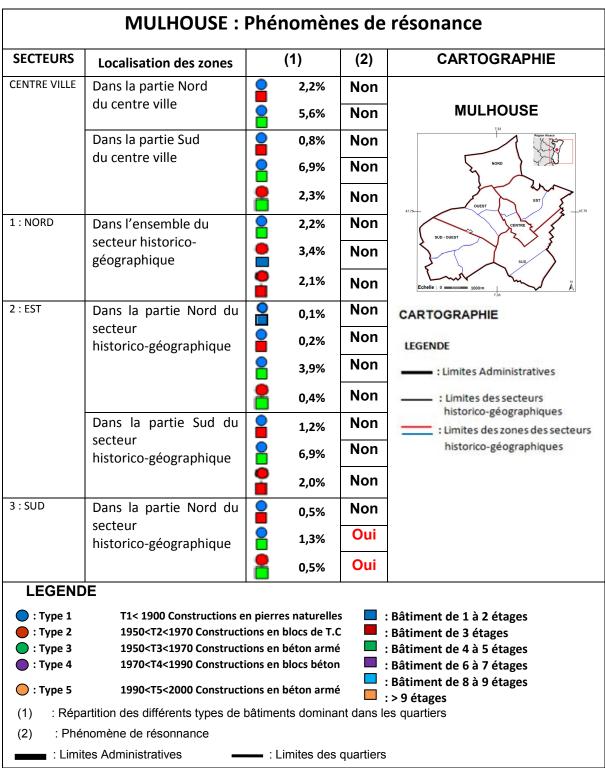


Tableau n° A 20 : Identification du bâti et localisation des zones susceptibles de phénomènes de résonance à l'échelle des secteurs historico-géographiques mulhousiens

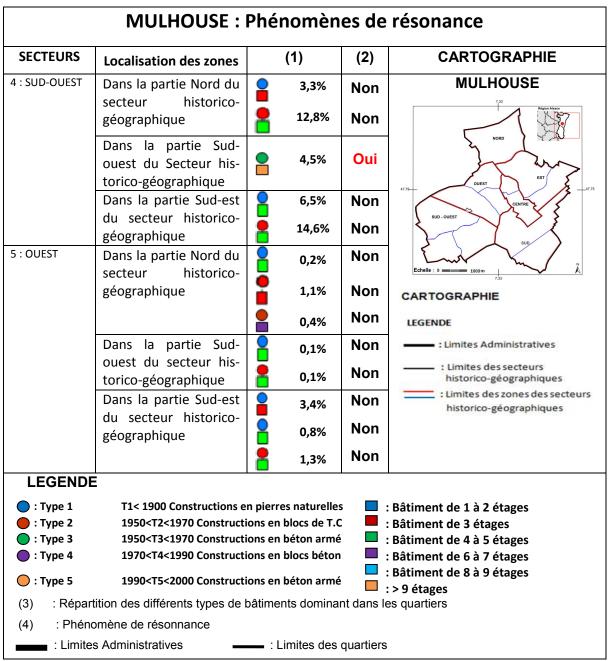


Tableau n° A 20 : Identification du bâti et localisation des zones susceptibles de phénomènes de résonance à l'échelle des secteurs historico-géographiques mulhousiens

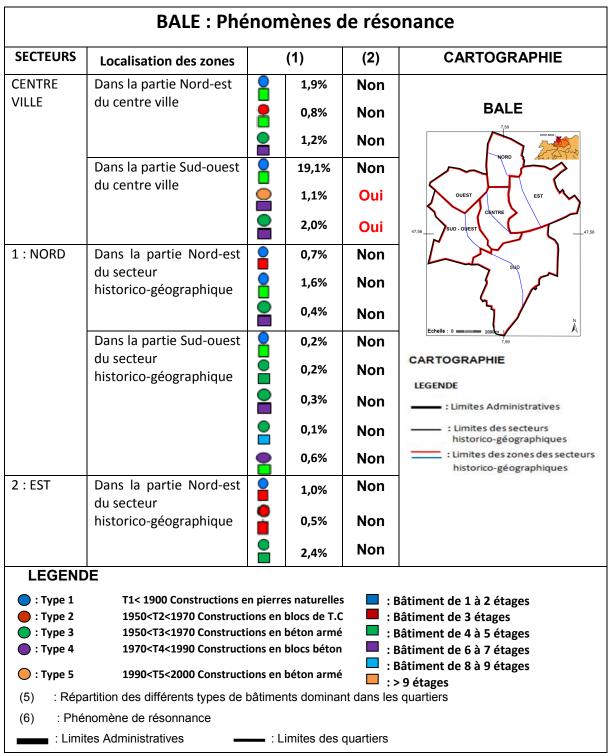


Tableau n° A 21 : Identification du bâti et localisation des zones susceptibles de phénomènes de résonance à l'échelle des secteurs historico-géographiques bâlois

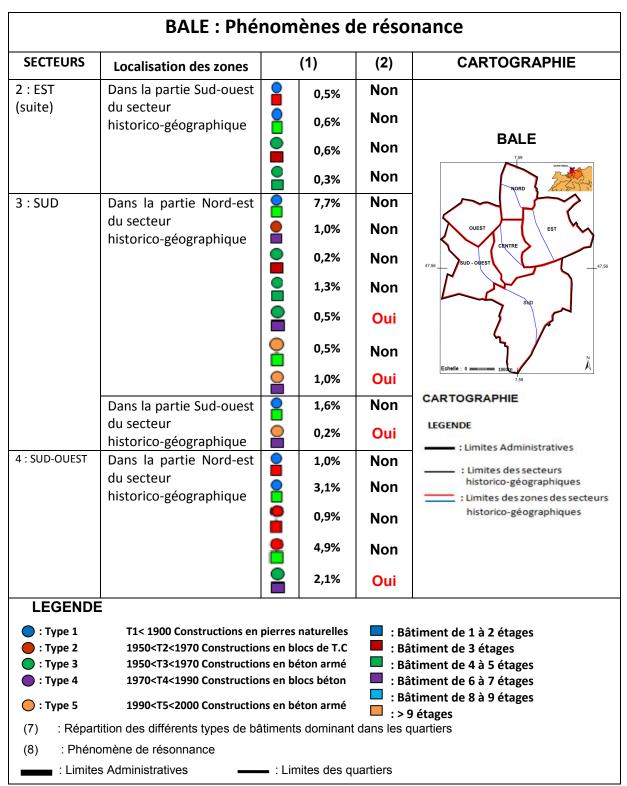


Tableau n° A 21 : Identification du bâti et localisation des zones susceptibles de phénomènes de résonance à l'échelle des secteurs historico-géographiques bâlois

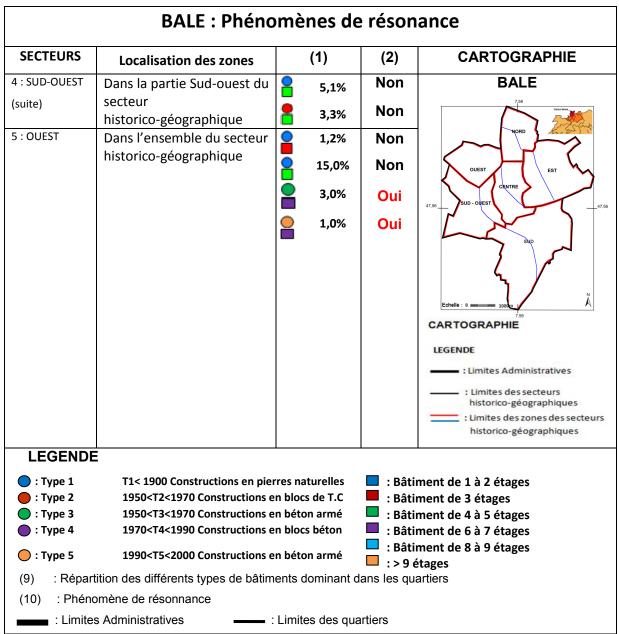


Tableau n° A 21 : Identification du bâti et localisation des zones susceptibles de phénomènes de résonance à l'échelle des secteurs historico-géographiques bâlois