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Abstract

In the �eld of Markov chain theory, β-null recurrent Markov chains represent a

class of stochastic processes that exhibit challenging and peculiar properties. These

nonstationary chains possess in�nite invariant measures, making the estimation

problems associated with them particularly intricate.

This thesis delves into several estimation problems in the context of β-null re-

current Markov chains, providing new insights and methodologies to tackle these

challenges. Our �rst contribution is the proposal of a tail index estimator for gen-

eralized discrete Pareto distributions, which is then used to estimate the parameter

β in atomic β-null recurrent Markov chains. The second contribution involves the

adaptation and validation of the Regeneration-based bootstrap and Regenerative

Block bootstrap methods for these types of chains. Lastly, we develop an estimator

for monotone functions in nonlinear cointegrated models, where the underlying

process is a Harris recurrent Markov chain (positive or β-null recurrent).

Keywords: Markov chains, Harris recurrence, null recurrence, tail-index esti-

mation, regenerative bootstrap, monotone regression, dependent data, nonstation-

ary data, nonlinear cointegration
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Résumé

Parmi chaînes de Markov, les chaînes de Markov β-nulles récurrentes représentent

une classe de processus stochastiques aux propriétés complexes et particulières.

Ces chaînes non stationnaires possèdent des mesures invariantes in�nies, rendant

les problèmes d’estimation associés particulièrement délicats.

Cette thèse aborde plusieurs problèmes d’estimation dans le contexte des chaînes

de Markov β-nulles récurrentes, en apportant de nouvelles perspectives pour relever

ces dé�s. Notre première contribution est la proposition d’un estimateur d’indice

de queue pour les distributions de Pareto discrètes généralisées, qui est ensuite

utilisé pour estimer le paramètre β des chaînes de Markov β-nulles récurrentes

atomiques. La deuxième contribution concerne l’adaptation et la validation des

méthodes de bootstrap basées sur la régénération et le bootstrap par blocs régénératifs

pour ces types de chaînes. En�n, nous développons un estimateur pour les fonc-

tions monotones dans les modèles de cointégration non linéaires, où le processus

sous-jacent est une chaîne de Markov récurrente de Harris (récurrente positive ou

β-nulle).

Mots-clés : chaînes de Markov, récurrence de Harris, récurrence nulle, esti-

mation de l’indice de queue, bootstrap régénératif, régression monotone, données

dépendantes, données non stationnaires, cointégration non linéaire.
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Introduction et résumé (en Français)

En 1898, Pavel Nekrasov, alors vice-président de la Société Mathématique de

Moscou, écrivit un article intitulé “Propriétés générales de nombreux événements

indépendants en relation avec le calcul approximatif des fonctions de très grands

nombres”. Il y prétendait que l’indépendance est une condition nécessaire pour la

loi des grands nombres. Cette a�rmation provoqua la colère d’Andrey Markov, qui

était convaincu que ce n’était pas le cas.

Pour prouver que Nekrasov a tort, Markov commence d’étudier certains types

de variables aléatoires dépendantes a�n de relâcher l’hypothèse d’indépendance.

Plus précisément, il étudie des variables X0, X1, . . . , Xn dont la dépendance les

unes avec les autres diminue rapidement à mesure que leur distance mutuelle dans

le temps augmente. Cette construction le conduit à développer un nouveau modèle

mathématique, qu’il appele une “chaîne” - la désormais célèbre chaîne de Markov.

Selon les propres mots de Markov, les chaînes de Markov
1

est

une séquence in�nieX0, X1, . . . , Xn, Xn`1, . . . de variables liées de telle

manière queXn`1 pour n’importe queln est indépendant deX0, . . . , Xn´1,

dans le cas où Xn est connu[84]

Il dé�nit une chaîne homogène lorsque les distributions conditionnelles deXn`1

1
Le terme chaîne de Markov a été inventé par Bernstein dans son article de 1927 “Sur l’extension

du théorème limite du calcul des probabilités aux sommes de quantités dépendantes”[13]. Pour une

histoire détaillée des premiers développements des chaînes de Markov, voir [11].
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étant donné Xn sont indépendantes de n. Il considére également des chaînes plus

complexes dans lesquelles “chaque nombre est directement lié non pas à un seul mais

à plusieurs nombres précédents” [11].

Le première application d’une chaîne de Markov a été faite par Markov lui-

même lorsqu’il l’utilise pour analyser la séquence des voyelles et des consonnes

dans le poème "Eugene Onegin" d’Alexandre Pouchkine. Depuis, les chaînes de

Markov ont rencontré de nombreuses applications en sciences et en ingénénie,

telles que la modélisation des phénomènes naturels ou génétiques, la simulation

des systèmes complexes, la génération de données aléatoires, l’optimisation des

algorithmes et l’analyse des réseaux.

Une chaîne de Markov homogène X “ tXjujě0, dé�nie dans un espace proba-

bilisé pE, E ,Pq est déterminée de manière unique par une mesure initiale λ et un

noyau P , au sens où

P pXn P Aq “ λP n
pAq @A P E , n ě 1.

Une chaîne de Markov homogène est irréductible s’il existe une mesure σ-�nie

φ sur pE, Eq telle que pour tout x P E et tout A P E avec φpAq ą 0 nous

avons P npx,Aq ą 0 pour un certain n ě 1. Dans ce cas, il existe une mesure

d’irréductibilité maximale ψ (toutes les autres mesures d’irréductibilité sont absol-

ument continues par rapport à ψ). Dans la suite, toutes les chaînes de Markov sont

supposées être irréductibles avec une mesure d’irréductibilité maximale ψ.

Lorsqu’une mesure π véri�e πP “ π, on dit qu’elle est invariante pour la

chaîne de Markov. Lorsque la mesure invariante est �nie (et peut donc être nor-

malisée en une probabilité), la chaîne est dite récurrente positive, lorsqu’elle est

seulement σ-�nie, elle est dite récurrente nulle. Si la mesure initiale d’une chaîne



de Markov récurrente positive coïncide avec la probabilité invariante, la chaîne est

dite stationnaire puisque les marginales de chaîne changent pas.

Les chaînes de Markov irréductibles ont de nombreuses propriétés et peuvent

être subdivisées en plusieurs groupes (que nous décrirons en détail au chapitre

2), parmi ceux-ci, on trouve les chaînes de Markov récurrentes
2

et les chaînes

de Markov récurrentes de Harris
3
. En termes simples, une chaîne de Markov est

récurrente si le nombre attendu de visites à tout état accessible, quel que soit le

point de départ, est in�ni. La récurrence de Harris est une forme renforcée de

récurrence où le nombre de fois où la chaîne visite tout état accessible est in�ni

avec probabilité 1.

Une chaîne de Markov est atomique s’il existe un ensemble accessible
4 α tel que

P px,Aq “ P py, Aq pour tous x, y P α, A P E . En termes plus simples, un atome

est un ensemble sur lequel toutes les probabilités de transition sont identiques.

Ainsi, chaque fois que la chaîne de Markov atteint α, elle ignore son historique

précédent et recommence (elle se régénère). Les chaînes atomiques récurrentes

ont de nombreuses propriétés remarquables (voir section 2.2.7), les deux plus im-

portantes étant l’existence d’une mesure invariante (unique à une constante mul-

tiplicative près) et la décomposition en blocs
5
, qui permet de diviser la chaîne en

une série de blocs i.i.d. Le théorème de Kac
6

indique qu’une chaîne atomique est

récurrente positive si et seulement si Eατα ă `8, où τα désigne le temps de re-

tour à l’atome. Le manque de moments pour les chaînes récurrentes nulles est la

plus grande source de problèmes lors de leur manipulation (voir le théorème 4.8 et

l’explication qui suit).

2
Section 2.2.5

3
Section 2.2.9

4
Un ensemble A est accessible si ψ pAq ą 0.

5
Voir Théorème 2.2.17

6
Théorème 2.2.16.



Une chaîne de Markov véri�e la condition de minorisation M pm0, s, νq si il

existe un entier m0 ě 1, une fonction 0 ď s pxq ď 1 et une mesure ν telle que

Pm0 px,Aq ě s pxq ν pAq pour tout x P E et A P E . Lorsqu’une chaîne de Markov

véri�e cette condition de minorisation, la fonction s et la mesure ν sont appelées

petite fonction et petite mesure respectivement.

Dans un article fondateur, Nummelin [89] a développé une technique d’extension

(dite de "spliting") qui permet, pour toute chaîne de Markov qui véri�e la condition

de minorisation M pm0, s, νq, d’étendre l’espace des probabilités de telle manière

que l’extension de X dans le nouvel espace soit atomique. En utilisant cette exten-

sion, il a pu démontrer que chaque chaîne de Markov récurrente de Harris admet

une mesure invariante unique (à une constante multiplicative près). Cela implique

que chaque chaîne récurrente de Harris est soit récurrente positive, soit récurrente

nulle.

La grande majorité des résultats dans la littérature se concentrent sur les chaînes

récurrentes positives et traitent de l’estimation du noyau de transition ou de la

distribution stationnaire, du test de stationnarité ou de l’ordre de la chaîne de

Markov. Cependant, seuls quelques articles (essentiellement de Tjøstheim et ses

coauteurs) traitent des problèmes d’estimation et de tests d’hypothèses dans les

cas où la chaîne est récurrente nulle [49, 65, 67, 88, 112].

Dans cette thèse, nous nous concentrons sur les chaînes récurrentes nulles,

en particulier sur celles qui sont β-nulles récurrentes
7
, c’est-à-dire les chaînes de

Markov récurrentes de Harris telles qu’il existe une petite fonction h, une mesure

initiale λ, une constante β P p0, 1q et une fonction à variation lente Lh telle que

Eλ

«

n
ÿ

t“0

h pXtq

ff

„
1

Γ p1` βq
nβLh pnq

7
Voir la section 2.2.10



lorsque n tend vers `8.

LorsqueX est atomique, alorsX est β-nulle récurrente si et seulement s’il existe

une constante β P p0, 1q et une fonction à variation lente L telle que le temps de

retour dans l’atome ait une queue de type Pareto

P pτα ą nq „
1

nβL pnq
.

Cette caractérisation implique que β “ sup tp ě 0 : Eα rτ
p
αs ă 8u.

Parmi les exemples les plus connus de chaînes de Markov β-nulles récurrentes,

on trouve les marches aléatoires dans R, qui sont 1{2-nulles récurrentes [64], les

marches aléatoires de Bessel [3], [36] et certains types de processus autorégressifs

à seuil (TAR) [49] et de processus autorégressifs vectoriels (VAR) [88].

0.1 Résultats principaux

Dans la section suivante, nous décrivons les motivations de nos travaux et les

principaux résultats obtenus dans chaque chapitre. Sauf indication contraire, nous

supposons que X est une chaîne de Markov récurrente de Harris de mesure invari-

ante π.

0.1.1 Théorie générale des chaînes de Markov

Dans le Chapitre 2, nous donnons un aperçu de la théorie des chaînes de Markov

qui sera utilisée tout au long de la thèse. Nous mettons un accent particulier sur

les propriétés des chaînes de Markov récurrentes β-nulles.

Bien que le chapitre soit principalement une récapitulation de la théorie actuelle,

nous y considérons également trois nouvelles extensions : ce sont les Théorèmes



2.2.36, 2.2.38 et 2.2.40. Le plus intéressant est le Théorème 2.2.40, qui est une généralisation

fonctionnelle du Théorème 2.3 de [28]. Nous le reproduisons ci-dessous.

Theorem 0.1.1 (page 73). Supposons que X soit une chaîne de Markov récurrente

β-nulle qui satisfait la condition de minorisation M p1, s, νq et soit λ une mesure

initiale, si f P L1 pE, πq et π pfq ‰ 0, alors si on pose Sn,f ptq “
řtntu
j“0 fpXjq

πpfqnβLspnq
, on a

Sn,f
Dr0,`8q
ÝÝÝÝÑMβ,

oùMβ est un processus de Mittag-Le�er de paramètre β.

0.1.2 Estimation de l’indice de queue

Motivé par le besoin d’estimer le paramètre β pour une chaîne de Markov

β-récurrente nulle, dans le Chapitre 3, nous abordons le problème d’estimation

de l’indice de queue pour une distribution de Pareto discrète généralisée. Plus

précisément, nous considérons la distribution d’une variable aléatoire S prenant

des valeurs dans N˚, et dont la fonction de survie est la suivante :

P pS ą nq “ n´βL pnq pour tout n ě 1, (1)

où L : R` Ñ R est une fonction à variation lente. L’inférence statistique pour

les distributions discrètes à queue lourde n’a pas reçu beaucoup d’attention dans

la littérature. La plupart des quelques méthodes dédiées dans la litérature traitent

soit de cas très spéci�ques comme dans e.g. [51], [85] ou [31], soit consistent à ap-

pliquer des techniques initialement conçues pour les distributions à queue lourde

continues aux données discrètes après une addition préliminaire d’un bruit uni-

forme indépendant, voir e.g. [116]. La grande majorité des estimateurs d’indice de



variation régulière proposés dans la littérature, en particulier les estimateurs de

Hill ou Pickand (cf [56], [100]), sont basés sur les statistiques d’ordre, ce qui pose

des di�cultés évidentes dans le cas discret en raison de la possible occurrence de

nombreuses répétitions dans l’échantillon.

En revanche, l’estimateur que nous étudions dans le Chapitre 3 est basé sur

l’analyse de la probabilité des événements de queue séparés exponentiellement. Il

repose sur le fait que lnppkq ´ lnppk`1q “ β ` lnpLpekq{Lpek`1qq, où pl “ PpS ą

elq pour tout l P N, et que Lpek`1q{Lpekq est censé être très proche de 1 pour k

su�samment grand. Une technique d’inférence naturelle (plug-in) peut alors être

conçue en remplaçant les probabilités de queue pl par leurs versions empiriques

pp
pnq
l “ p1{nq

řn
i“1 ItSi ą elu pour l P N.

pβn pkq “ ln
´

pp
pnq
k

¯

´ ln
´

pp
pnq
k`1

¯

. (2)

Nous démontrons que pour un choix approprié de l’hyperparamètre k “ kn (typ-

iquement choisi de l’ordre de lnn) l’estimateur (2) est fortement consistant (Théorème

3.2.2) et asymptotiquement normal (Théorème 3.2.3) lorsque nÑ `8. Des bornes

de con�ance supérieures non asymptotiques pour les écarts absolus entre
pβn pkq

et β sont également établies (Proposition 3.2.1).

Pour une chaîne de Markov β-récurrente nulle atomique, soit T pnq`1 le nom-

bre de fois où la chaîne visite l’atome jusqu’au temps n et soit τ1, . . . , τT pnq`1 les

instants de ces visites. Dans le Théorème 3.3.2, nous montrons que l’estimateur
pβ

reste fortement consistant lorsque nous considérons Si “ τi`1 ´ τi et où T pnq



joue le rôle de n. Pour kn “ lnn, cet estimateur prend la forme

pβT pnq plnT pnqq “ ln

¨

˚

˚

˚

˝

T pnq
ř

i“1

I tSi ą T pnqu

T pnq
ř

i“1

I tSi ą eT pnqu

˛

‹

‹

‹

‚

. (3)

0.1.3 Bootstrap régénératif

Depuis son introduction par Efron dans [43] pour des données i.i.d., les méthodes

de bootstrap ont connu d’importants développements, donnant naissance à divers

schémas de bootstrap adaptés aux contextes i.i.d. et dépendants [71, 77]. Cela a

conduit à leur utilisation extensive dans une multitude d’applications statistiques.

Dans de nombreux cas, les techniques de bootstrap fournissent des approximations

plus précises des distributions statistiques, des probabilités de couverture des in-

tervalles de con�ance et des probabilités de rejet des tests d’hypothèses par rapport

à la théorie des distributions asymptotiques de premier ordre (pour une discussion

détaillée, voir [57]).

Dans le cas markovien, de nombreuses approches ont été proposées et développées.

Une idée originale est d’estimer la distribution marginale et la fonction de proba-

bilité de transition en utilisant des techniques d’estimation de fonctions non paramétriques,

puis de rééchantillonner à partir de ces estimations. Cette idée a été développée et

étendue, entre autres, dans [6, 57, 75, 94, 97, 105]. Pour une explication détaillée de

cette idée, voir la section 4 de [71].

Dans [6], une approche distincte de ce problème a été proposée. Au lieu d’utiliser

des probabilités de transition estimées, les auteurs ont exploité les propriétés de

régénération d’une chaîne de Markov lorsqu’un atome accessible est visité in�ni-

ment souvent. L’idée fondamentale de cette méthode est de diviser la chaîne en un



nombre aléatoire de blocs de régénération i.i.d. puis de rééchantillonner un nom-

bre équivalent de blocs de régénération. Cette technique, connue sous le nom de

Bootstrap basé sur la régénération, a été démontrée comme étant valide pour les

chaînes atomiques à états �nis dans [6] et a été étendue aux chaînes de Markov

atomiques récurrentes positives générales dans [34].

En s’appuyant sur le concept d’exploitation des propriétés régénératives des

chaînes de Markov, le Bootstrap par Blocs Régénératifs (RBB) a été introduit dans

[15]. Cette méthode simule la structure de renouvellement de la chaîne en échan-

tillonnant des blocs de données de régénération jusqu’à ce que la longueur de la

série de bootstrap réassemblée dépasse la longueur de la série de données origi-

nale n (notez le contraste avec le Bootstrap basé sur la régénération, où le nombre

de blocs échantillonnés est égal au nombre de blocs de régénération dans la chaîne

d’origine).

Il a été démontré dans [15] que pour les chaînes de Markov atomiques récurrentes

positives, le RBB pour l’estimation de l’intégrale d’une fonction par rapport à la

probabilité invariante présente une vitesse de convergence uniforme de la distri-

bution de l’ordre OP pn
´1q, qui est la même que celle dans le cas i.i.d.

Dans le Chapitre 4, nous adaptons à la fois le Bootstrap basé sur la régénération

et le Bootstrap par Blocs Régénératifs pour les chaînes de Markov β-récurrentes

nulles et montrons que les deux sont asymptotiquement valides (Théorèmes 4.3.1

et 4.4.1) pour l’estimation des intégrales par rapport à la mesure invariante lorsque

la chaîne β-récurrente nulle possède un atome accessible.

Sous-produit important de nos recherches, dans le Lemme 4.2.1, nous présentons

une généralisation du Théorème Central Limite pour des séquences indexées aléatoirement

où nous remplaçons l’exigence usuelle du contrôle en probabilité de la séquence

d’indexation par l’existence d’une limite de la séquence vers un processus stochas-



tique. Ce résultat a été essentiel dans la preuve du Théorème 4.3.1 qui valide l’utilisation

des techniques de regénération après standadisation aléatoire adéquate.

0.1.4 Modèles cointégrés non linéaires monotones

Dans le Chapitre 5, nous étudions les modèles cointégrés non linéaires tels que

Zt “ f0pXtq `Wt, (4)

où f0 est une fonction non linéaire, Xt est une chaîne de Markov récurrente de

Harris et Wt est un processus inobservé avec EpWt|Xtq “ 0.

Le problème d’estimation de f0 sous l’hypothèse markovienne sur Xt a été

étudié en utilisant l’estimateur de Nadaraya-Watson dans [23, 65], des estimateurs

linéaires de type M dans [24, 80] et en utilisant des concepts avancés tels que le

temps local et les transformations non linéaires de processus de type mouvement

brownien dans [117, 118, 119]. Un résumé complet sur les dernières avancées sur

ce problème se trouve dans [112].

À notre connaissance, l’estimation de f0, lorsqu’elle est soumise à des con-

traintes de forme, n’a pas été étudiée dans un cadre markovien. Dans un cadre

i.i.d. ces estimateurs sont fortement non linéaires et présentent des dé�s théoriques

considérables. Ils s’adaptent mal au cadre dépendant car ils font intervenir une no-

tion d’ordre. Dans le contexte d’observations indépendantes, des contraintes telles

que la convexité, la concavité et la log-concavité sont connues pour être encore

plus complexes que les contraintes de monotonie (voir [54, 109] et les références

correspondantes). Dans le Chapitre 5, nous nous concentrons sur le cas monotone

mais il seraient intéressant de considérer ultérieurement des extensions.

La construction de notre estimateur est la suivante:



Soit C un ensemble dont l’intérieur contient notre point d’intérêt x0. Ayant

observé tpXt, Ztqu
n
t“0 nous notons par TnpCq le nombre de fois que X a visité C

jusqu’au temps n et par σC piq le temps de la i-ième visite. Notre estimateur
pfn est

alors l’estimateur non paramétrique dé�ni comme le minimiseur de

f ÞÑ

TnpCq
ÿ

i“1

`

ZσCpiq ´ f
`

XσCpiq

˘˘2
(5)

sur l’ensemble des fonctions décroissantes. Cet estimateur peut être calculé à l’aide

de simples algorithmes comme discuté dans [10]. De plus, contrairement aux esti-

mateurs à noyau avec paramètre de lissage, C ne dépend pas de n et la vitesse de

convergence de l’estimateur ne dépend pas de C .

Dans le Théorème 5.3.1, nous montrons que sous des hypothèses très générales,

pfn px0q est un estimateur fortement consistant de f px0q, et avec des hypothèses

légèrement plus restrictives, nous montrons dans le Théorème 5.4.1 que la vitesse

de convergence de
pfn est u pnq´1{3

, où u pnq “ n si X est récurrente positive et

u pnq “ nβL pnq si elle est récurrente nulle. Remarquons que dans le cas récurrent

positif, nous obtenons le même taux, n´1{3
, que dans le cas i.i.d. [53, Chapitre 2].

L’utilisation d’un estimateur localisé est due au fait que nous devons contrôler

le comportement de la chaîne autour de x0, et, pour ce faire, nous devons estimer

la "distribution" asymptotique de X dans un voisinage de x0. Pour les chaînes de

Markov récurrentes de Harris, le comportement à long terme de la chaîne est donné

par sa mesure invariante. Dans le cas récurrent positif, la mesure invariante est

�nie et peut être estimée en considérant simplement la fonction de répartition

empirique des Xt, cependant, dans le cas récurrent nul, la mesure invariante est

seulement σ-�nie, d’où la nécessité de localiser notre analyse dans un ensemble

su�samment grand pour que la chaîne le visite in�niment souvent, mais su�sam-



ment petit pour que la restriction de la mesure invariante à cet ensemble soit �nie.

À cet égard, deux résultats de type Glivenko-Cantelli (Lemmes 5.5.1 et 5.5.3) ont

été obtenus pour les chaînes de Markov récurrentes de Harris localisées. Nous

obtenons également un résultat (Lemme 5.5.2) qui permet de contrôler le nombre

de recouvrements d’une classe de fonctions dé�nies sur des blocs localisés à partir

du nombre de recouvrements de la classe de départ, ce qui constitue en soit un

résultat nouveau et intéressant. .

0.2 Organisation de la thèse

La thèse est organisé comme suit :

• Chapitre 2 : Nous donnons une vue d’emsemble de la théorie des chaînes de

Markov, en mettant un accent particulier sur les propriétés et les particu-

larités des chaînes de Markov β-récurrentes nulles.

• Chapitre 3 : Il est basé sur l’article [17]. Il se concentre sur l’estimation de

l’indice de queue d’une distribution de Pareto discrète généralisée. Nous

montrons que l”estimateur proposé est fortement consistant et asympto-

tiquement normal dans le cas i.i.d. Dans le cas des chaînes atomiques β-

récurrentes nulles, notre estimateur de β sur lequel il est basé est démontré

être fortement consistant.

• Chapitre 4 : Il est basé sur l’article [47]. Il traite du bootstrap régénératif sur

les chaînes de Markov β-récurrentes nulles. Le bootstrap basé sur la régénération

et le bootstrap de blocs régénératifs sont démontrés être valides pour estimer

l’intégrale par rapport à la mesure invariante dans le cas atomique.



• Chapitre 5 : Il est basé sur [41]. Il aborde le problème de l’estimation d’une

fonction monotone dans un modèle cointégré non linéaire, où Xt est une

chaîne de Markov récurrente de Harris. L’estimateur est démontré être forte-

ment consistant et nous obtenons sa vitesse de convergence dans les cas

récurrent positif et nul.

Après lecture du Chapitre 2, les chapitres suivants peuvent être lus dans n’importe

quel ordre, car sans dépendances de notation entre eux. Nous nous excusons par

avance pour les légères redondances entre les chapitres.
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Chapter 1
Introduction

In 1898, Pavel Nekrasov, then vice president of the Moscow Mathematical So-

ciety, wrote a paper named “General properties of numerous independent events

in connection with approximate calculation of functions of very large numbers”.

There, he claimed that independence is a necessary condition for the law of large

numbers. This claim infuriated Andrey Markov, who was convinced that it was

not the case.

To prove Nekrasov wrong, Markov started studying certain types of depen-

dent random variables in order to relax the independence assumption. Speci�cally,

he studied variables X0, X1, . . . , Xn whose dependence on one another quickly

lessens as their mutual distance increases. This observation led him to develop

a novel mathematical model, which he called a “chain” - the now well-known

Markov chain.

In Markov’s own words, a Markov chain
1

an in�nite sequenceX0, X1, . . . , Xn, Xn`1, . . . of variables connected in

such a way thatXn`1 for any n is independent ofX0, . . . , Xn´1, in case
1
The termMarkov chainwas coined by Bernstein in his 1927 paper “Sur l’extension du théorème

limite du calcul des probabilités aux sommes de quantités dépendantes”[13]. For a detailed history

of the early developments of Markov chains see [11].

1



Xn is known[84]

He called a chain homogeneous if the conditional distributions of Xn`1 given

Xn were independent of n. He also considered complex chains in which “every

number is directly connected not with a single but with several preceding numbers”

[11].

The initial application of a Markov chain was done by Markov himself when

he used it to analyze the sequence of vowels and consonants in the poem "Eugene

Onegin" by Alexander Pushkin. After that, Markov chains have been encountered

many applications in science and engineering, such as modeling natural phenom-

ena, simulating complex systems, generating random data, optimizing algorithms

and analyzing networks.

Every homogeneous Markov chainX “ tXjujě0, de�ned in a probability space

pE, E ,Pq is uniquely determined by an initial measure λ and a kernel P , in the

sense that

P pXn P Aq “ λP n
pAq @A P E , n ě 1.

An homogeneous Markov chain is irreducible if there exists a σ-�nite mea-

sure φ on pE, Eq such that for all x P E and all A P E with φpAq ą 0 we have

P npx,Aq ą 0 for some n ě 1. In this case, there exists a maximal irreducibil-

ity measure ψ (all other irreducibility measures are absolutely continuous with

respect to ψ). In the following, all Markov chains are supposed to be irreducible

with maximal irreducibility measure ψ.

When a measure π satis�es πP “ π, we say that it is invariant for the Markov

chain. When the invariant measure is �nite (and hence can be normalized into

a probability), the chain is called positive recurrent, when is only σ-�nite is called

null-recurrent. If the initial measure of a positive recurrent Markov chain coincides

2
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with the invariant probability, the chain is called stationary.

Irreducible Markov chains have many properties and can be subdivided into

many groups (which we will describe in detail in Chapter 2), among those, we �nd

the recurrent
2

Markov chains and Harris recurrent Markov chains
3
. Loosely speak-

ing a Markov chain is recurrent if the expected number of visits to any accessible

state, no matter the starting point, is in�nite. Harris recurrence if a strengthened

form of recurrence where the number of times the chain visits any accessible state

is in�nite with probability 1.

A Markov chain is atomic if there exists an accessible set
4 α such thatP px,Aq “

P py, Aq for all x, y P α,A P E . In simpler terms, an atom is a set where all the tran-

sition probabilities are identical. Hence, whenever the Markov chain reaches α, it

disregards its previous history and starts anew (regenerates). Recurrent atomic

chains have many remarkable properties (see Section 2.2.7), the two most impor-

tant being, the existence of an invariant measure (unique up to some multiplica-

tive constant) and the block decomposition
5
, which allows splitting the chain into

a series of i.i.d. blocks. Kac’s theorem
6

indicates that an atomic chain is positive

recurrent if and only Eατα ă `8, where τα denotes the time of �rst return to

the atom. This lack of moments for null recurrent chains is the biggest source of

problems when working with these chains (see Theorem 4.8 and the explanation

afterward).

A Markov chain satis�es the minorization condition M pm0, s, νq if there ex-

ists an integer m0 ě 1, a function 0 ď s pxq ď 1 and a measure ν such that

Pm0 px,Aq ě s pxq ν pAq for all x P E and A P E . When a Markov chain satis-

2
Section 2.2.5

3
Section 2.2.9

4
A set A is accessible if ψ pAq ą 0.

5
See Theorem 2.2.17

6
Theorem 2.2.16.

3



�es this minorization condition, the function s and the measure ν are called small

function and small measure respectively.

In a seminal paper, Nummelin [89] developed a splitting technique that allows,

for any Markov chain that satis�es the minorization conditionM pm0, s, νq, to ex-

tend the probability space in such a way that the extension of X into the new space

is atomic. Using this extension, he was able to show that every Harris recurrent

Markov chain admits a unique (up to some multiplicative constant) invariant mea-

sure. This implies that every Harris recurrent chain is either positive recurrent or

null recurrent.

The vast majority of results in the literature focus on positive recurrent chains,

and deal with the estimation of the transition kernel or the stationary distribution

or testing stationarity or the order of the Markov chain. However, only a few arti-

cles (essentially by Tjøsheim and his coauthors) deal with estimation and hypoth-

esis testing issues in cases where the chain is null recurrent[49, 65, 67, 88, 112].

In this thesis, we put our focus on null recurrent chains, speci�cally in β-null

recurrent ones
7
, that is, Harris recurrent Markov chains such that there exists a

small function h, an initial measure λ, a constant β P p0, 1q and a slowly varying

function Lh such that

Eλ

«

n
ÿ

t“0

h pXtq

ff

„
1

Γ p1` βq
nβLh pnq

as n goes to `8.

When X is atomic, then X is β-null recurrent if and only if there is a constant

7
See section 2.2.10
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β P p0, 1q and a slowly varying function L such that

P pτα ą nq „
1

nβL pnq
.

This characterization implies that β “ sup tp ě 0 : Eα rτ
p
αs ă 8u.

Some of the most well-known examples of β-null recurrent Markov chain are

the random walks inR, which are 1{2-null recurrent [64], the Bessel random walks

[3], [36] and some types of threshold autoregressive (TAR) [49] and vector autore-

gressive processes (VAR) [88].

1.1 Main results

In this section, we describe the motivation and main results of each chapter.

Unless stated otherwise, we assume that X is a Harris recurrent Markov chain with

invariant measure π.

1.1.1 General Markov chain theory

In Chapter 2 we provide an overview of the Markov chain theory that will be

used throughout the thesis. We make special emphasis on the properties of β-null

recurrent Markov chains.

Although the chapter is mostly a recapitulation of the current theory, we have

added three new contributions: those are Theorems 2.2.36, 2.2.38 and 2.2.40. The

most interesting being Theorem 2.2.40 which is a functional generalization of The-

orem 2.3 in [28], we reproduce it below.

Theorem 1.1.1 (page 73). Assume X is a β-null recurrent Markov chain that sat-

is�es the minorization conditionM p1, s, νq and let λ be any initial measure, if f P

5
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L1 pE, πq and π pfq ‰ 0, then

Sn,f
Dr0,`8q
ÝÝÝÝÑMβ,

where Sn,f ptq “
řtntu
j“0 fpXjq

πpfqnβLspnq
, andMβ is a Mittag-Le�er process with parameter β.

1.1.2 Tail index estimation

Motivated by the need to estimate the parameter β for a β-null recurrent Markov

chain, in Chapter 3, we address the problem of estimating the tail index for a gen-

eralized discrete Pareto distribution. Speci�cally, we consider the distribution of a

random variable S taking values in N˚, and whose survival function is as follows:

P pS ą nq “ n´βL pnq for all n ě 1, (1.1)

where L : R` Ñ R is a slowly varying function.

Statistical inference for discrete heavy-tailed distributions has not received

much attention in the literature. Most of the very few dedicated methods doc-

umented either deal with very speci�c cases as in e.g. [51], [85] or [31] or else

consists in applying techniques originally designed for continuous heavy-tailed

distributions to the discrete data after a preliminary addition of an independent

uniform noise, see e.g. [116]. The vast majority of the regular variation index es-

timators proposed in the literature, Hill’s or Pickand’s estimators in particular (cf

[56], [100]), are based on order statistics, which causes obvious di�culties in the

discrete case because of the possible occurrence of many ties.

In contrast, the estimator that we study in Chapter 3 is based on the analysis

of the probability of exponentially separated tail events. It relies on the fact that

6
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lnppkq ´ lnppk`1q “ β ` lnpLpekq{Lpek`1qq, where pl “ PpS ą elq for all l P N,

and that Lpek`1q{Lpekq is expected to be very close to 1 for k su�ciently large.

A natural (plug-in) inference technique can be then devised by replacing the tail

probabilities pl with their empirical versions pp
pnq
l “ p1{nq

řn
i“1 ItSi ą elu for

l P N. This yields the estimator

pβn pkq “ ln
´

pp
pnq
k

¯

´ ln
´

pp
pnq
k`1

¯

. (1.2)

We prove that for an appropriate choice of the hyperparameter k “ kn (typ-

ically chosen of order lnpnq), the estimator (1.2) is strongly consistent (Theorem

3.2.2) and asymptotically normal (Theorem 3.2.3) as nÑ `8. Nonasymptotic up-

per con�dence bounds for the absolute deviations between
pβn pkq and β are also

established (Proposition 3.2.1).

For an atomic β-null recurrent Markov chain, let T pnq ` 1 be the number of

times the chain visits the atom and denote by τ1, . . . , τT pnq`1 the times of those

visits. In Theorem 3.3.2, we show that the estimator
pβ remains strongly consistent

when we consider Si “ τi`1´ τi and take n as T pnq. For kn “ lnn, this estimator

takes the form

pβT pnq plnT pnqq “ ln

¨

˚

˚

˚

˝

T pnq
ř

i“1

I tSi ą T pnqu

T pnq
ř

i“1

I tSi ą eT pnqu

˛

‹

‹

‹

‚

. (1.3)

1.1.3 Regenerative bootstrap

Since its inception by Efron in [43] for i.i.d. data, bootstrap methods have ad-

vanced, giving rise to various bootstrap schemes tailored for both i.i.d. and depen-

dent contexts [71, 77]. This has led to their extensive use in a multitude of statistical

7
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applications. In many cases, bootstrap techniques deliver more accurate approxi-

mations of statistical distributions, con�dence interval coverage probabilities, and

hypothesis test rejection probabilities when compared to �rst-order asymptotic

distribution theory (for a detailed discussion, see [57]).

In the Markovian case, numerous approaches have been developed and exam-

ined. The original idea was to estimate the marginal distribution and the transition

probability function using nonparametric function estimation techniques and then

resample from those estimates. This idea was developed and expanded, among oth-

ers, in [6, 57, 75, 94, 97, 105]. For a detailed explanation of this idea, refer to Section

4 in [71].

In [6], a distinct approach to this problem was proposed. Instead of employ-

ing estimated transition probabilities, the authors made use of the regeneration

properties of a Markov chain when an accessible atom is visited in�nitely often.

The fundamental idea of this method is to split the chain into a random number of

i.i.d. regeneration blocks and then resample an equivalent number of regeneration

blocks. This technique, known as the Regeneration based bootstrap, was demon-

strated to be valid for �nite state atomic chains in [6] and was further extended to

general atomic positive recurrent Markov chains in [34].

Building on the concept of exploiting the regenerative properties of Markov

chains, the Regenerative Block bootstrap (RBB) was introduced in [15]. This method

simulates the renewal structure of the chain by sampling regeneration data blocks

until the length of the reassembled bootstrap series surpasses the original data

series length n (note the contrast with the Regeneration based bootstrap, where

the number of sampled blocks is equal to the number of regeneration blocks in

the original chain). It was demonstrated in [15] that for atomic positive recurrent

Markov chains, the RBB for estimating the integral of a function with respect to

8



CHAPTER 1. INTRODUCTION

the invariant probability exhibits a uniform rate of convergence of orderOP pn
´1q,

which is the same as in the i.i.d. case.

In Chapter 4, we adapt both Regeneration based-bootstrap and Regenerative

Block bootstrap for β-null recurrent Markov chains and show that both are valid

(Theorems 4.3.1 and 4.4.1) for the estimation of integrals with respect to the in-

variant measure when the β-null recurrent chain possesses an accessible atom.

As a byproduct of our research, in Lemma 4.2.1 we present a generalization of

the Central Limit Theorem for randomly indexed sequences where we replace the

requirement of the control in probability of the indexing sequence by the existence

of the limit of a stochastic process de�ned in terms of the said sequence. This result

was instrumental in the proof of Theorem 4.3.1.

1.1.4 Nonlinear monotone cointegrated models

In Chapter 5, we study nonlinear cointegrated models such that

Zt “ f0pXtq `Wt, (1.4)

where f0 is a nonlinear function, Xt is a Harris recurrent Markov chain and Wt is

an unobserved process with EpWt|Xtq “ 0.

The problem of estimating f0 under the Markovian assumption onXt has been

studied using Nadaraya-Watson estimator in [23, 65], linear M-type estimators in

[24, 80] and using advanced concepts like local time and nonlinear transformations

of Brownian motion-like processes in [117, 118, 119]. A comprehensive survey of

the latest advances in this problem can be found in [112].

To our knowledge, the estimation of f0, when it is subject to shape constraints

has not been explored under Markovian assumptions. These estimators are non-

9
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linear and present considerable theoretical challenges. In the context of indepen-

dent observations, constraints such as convexity, concavity, and log-concavity are

known to be even more intricate than monotonicity constraints (refer to [54, 109]

and the citations therein). Consequently, in Chapter 5 we focus on the monotone

case.

The construction of our estimator is as follows:

LetC be a set whose interior contains our point of interest x0. Having observed

tpXt, Ztqu
n
t“0, we denote by TnpCq the number of times that X visitedC up to time

n and by σC piq the time of the i-th visit. Our estimator
pfn is then the nonparametric

LSE de�ned as the minimizer of

f ÞÑ

TnpCq
ÿ

i“1

`

ZσCpiq ´ f
`

XσCpiq

˘˘2
(1.5)

over the set of non-increasing functions. This estimator can be computed using

simple algorithms as discussed in [10]. Moreover, contrary to the bandwidth in

kernel type estimators, C does not depend on n, and the rate of convergence of

the estimator does not depend on C .

In Theorem 5.3.1 we show that under very general assumptions,
pfn px0q is a

strongly consistent estimator f px0q, and with slightly more restrictive hypotheses,

we show in Theorem 5.4.1 that the rate of convergence of
pfn is u pnq´1{3

, where

u pnq “ n if X is positive recurrent and u pnq “ nβL pnq if is null-recurrent. Notice

that in the positive recurrent, we obtain the same rate, n´1{3
, as in the i.i.d. case

[53, Chapter 2].

The use of a localized estimator is due to the fact that we need to control the

behavior of the chain around x0, and, to do this, we need to estimate the asymp-

totic “distribution” of X in a vicinity of x0. For Harris recurrent Markov chains,

10



CHAPTER 1. INTRODUCTION

the long-term behavior of the chain is given by its invariant measure. In the posi-

tive recurrent case, the invariant measure is �nite and it can be estimated by sim-

ply considering the empirical distribution function of the Xt, however, in the null

recurrent case, the invariant measure is only σ-�nite, hence, we need to local-

ize our analysis in a set big enough that the chain visits it in�nitely often, but

small enough that the restriction of the invariant measure to it is �nite. In this

regard, two Glivenko-Cantelli type results (Lemmas 5.5.1 and 5.5.3) were obtained

for localized Harris recurrent Markov chains, as well as a result (Lemma 5.5.2) that

allows controlling the covering number of a class of functions de�ned over the

localized blocks.

1.2 Outline

The rest of the thesis is organized as follows:

• Chapter 2: We provide a recapitulation of Markov chain theory, making spe-

cial emphasis on the properties and peculiarities of β-null recurrent Markov

chains.

• Chapter 3: Is based on [17]. It focuses on the estimation of the tail index of

a generalized discrete Pareto distribution. The proposed estimator is shown

to be strongly consistent and asymptotically normal in the i.i.d. case. In the

case of atomic β-null recurrent chains, it is shown to be strongly consistent.

• Chapter 4: Is based on [47]. Deals with the regenerative bootstrap on β-null

recurrent Markov chains. The Regeneration-based bootstrap and the Regen-

erative Block bootstrap are shown to be valid for estimating the integral with

respect to the invariant measure in the atomic case.

11
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• Chapter 5: Is based on [41]. It tackles the problem of estimating a monotone

function in a nonlinear cointegrated model, where Xt is a Harris recurrent

Markov chain. The estimator is shown to be consistent and its rate of con-

vergence is obtained.

Upon completing Chapter 2, the remaining chapters can be read in any order,

as they function independently, with no notation dependencies between them. We

apologize in advance for the slight redundancies across chapters.

12



Chapter 2
Markov chains

In this chapter, we introduce the basic concepts that will be used throughout

the thesis. We will make special emphasis on the properties of Markov chains,

especially in null-recurrent ones.

Most of the de�nitions and results of this chapter are classic and can be found

in [5, 38, 87, 90, 108]. However, in subsection 2.2.10 we have added a few new

contributions in theorems 2.2.36, 2.2.38 and 2.2.40.

2.1 Kernels

Through this chapter pE, Eq denotes a measurable space where the σ-algebra

E is countably generated
12

. The points of E are called states and pE, Eq is called

the state space. With a slight abuse of notation, by E we will also denote the set

of measurable functions from pE, Eq to

`

R,B
`

R
˘˘

, and we will use E` for the

1
A σ-algebra E is countably generated if there exists a countable collection of subsets

tAnu
`8

n“1 Ď E such that E “ σ
´

tAnu
`8

n“1

¯

.

2
This assumption is used in almost all literature about Markov chain theory because it removes

the possibility of extremely pathological examples known as “anormal” chains [37]. For a detailed

overview of the matter, see [37, 61] and pp. 91 in [107]. An example of an “anormal” chain is

provided in [22]. Furthermore, this assumption does not result in a signi�cant loss of generality,

given that most of the time, E “ B
`

Rd
˘

, which is countably generated.

13



2.1. KERNELS

collection of measurable functions from pE, Eq to

`

R`,B
`

R`
˘˘

.

De�nition 2.1.1 (Kernel on pE, Eq). Function K : pE, Eq Ñ r0,`8s such that

i) For every x, the mapping AÑ Kpx,Aq is a measure on E .

ii) For every A P E , the mapping x Ñ Kpx,Aq is a measurable function from

pE, Eq to
`

R`,B
`

R`
˘˘

.

A kernel is said to be σ-�nite if there exists a EbE-measurable function f that

is almost everywhere positive and such that

ş

E

f px, yqK px, dyq ă `8 @x P E;

it is bounded if sup
xPE

K px,Eq ă `8; substochastic if K px,Eq ď 1 for all x in E

and stochastic (or markovian) if K px,Eq “ 1 for all x in E.

Example 2.1.1 (Integral kernel). If λ is a σ-�nite measure on pE, Eq and k is a

non-negative E b E measurable function, then, the function

K px,Aq “

ż

A

k px, yq dλ pyq

is a non-negative kernel. This kernel is often called an integral kernel with basis k

and density λ.

The following example allows us to interpret any σ-�nite measure λ on pE, Eq

as a kernel over the same state space.

Example 2.1.2 (Measures seen as kernels). Taking kpx, yq ” 1 in Example 2.1.1

we get that

K px,Aq “ λ pAq @x P E,A P E

is a kernel on pE, Eq. This kernel is stochastic if and only if λ is a probability measure.

14



CHAPTER 2. MARKOV CHAINS

Example 2.1.3 (Tensor product). If f is a non-negative E-measurable function, and

λ is a σ-�nite measure on pE, Eq, we can de�ne their tensor product f b λ as f b

λ px,Aq “ f pxqλ pAq. Taking k px, yq “ f pxq in 2.1.1 shows that f b λ is a kernel

on pE, Eq.

Another interesting application of Example 2.1.1 is when E is a countable set,

and E “ P pEq is the σ-algebra of all the subsets of E.

Example 2.1.4 (Kernels on countable sets). If we take λ as the counting measure

on E we obtain that every kernel K de�ned on pE,P pEqq satis�es,

K px,Aq “
ÿ

yPA

K px, tyuq.

This shows that every kernel K on pE,P pEqq can be identi�ed with the matrix

k px, yq “ K px, tyuq @x, y P E.

2.1.1 Operations with Kernels

Given a kernel K on pE, Eq and a function f P E` we can de�ne the function

Kf : E Ñ R` as follows:

Kf pxq “

ż

E

f pyqK px, dyq. (2.1)

Notice that if K is stochastic, then }Kf}
8
ď }f}

8
.

The following result shows that a Kf is an additive operator on the space of

non-negative integrable functions over E .

Theorem 2.1.1. 3 LetK be a kernel on pE, Eq and de�ne K : E` Ñ E` as K pfq “

Kf where Kf is as in (2.1). Then
3
Proposition 1.2.5 in [38].
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2.1. KERNELS

i) The function K is an additive and positive homogeneous operator over E`.

ii) If tfnunPN Ă E` is an increasing sequence of functions, then lim
n
Ò K pfnq “

K
´

lim
n
Ò fn

¯

.

The following result establishes a converse

Theorem 2.1.2. 4 Let N : E` Ñ E` be an additive and positively homogeneous

operator such that lim
n
Ò N pfnq “ N

´

lim
n
Ò fn

¯

for every increasing sequence

tfnunPN Ă E`. Then,

i) The function N px,Aq “ N pIAq pxq , x P E,A P E` is a kernel on pE, Eq.

ii) Nf “ N pfq for all f P E`.

A kernel can also de�ne an operator over the set of non-negative measures

MpX q
`

as it is shown in the following result.

Theorem 2.1.3. 5 For every non-negative measure λ P M pEq
`
and every kernelK

on pE, Eq, the function λK : E Ñ R` de�ned as

λK pAq “

ż

E

K px,Aq dλ pxq,

is a measure on pE, Eq.

IfK1 andK2 are kernels on pE, Eqwe de�ne their sum and the multiplications

by positive scalars in the typical way. We de�ne their product (or convolution)

K1K2 as follows

K1K2 px,Aq “

ż

E

K2 py, AqK1 px, dyq @x P E,A P E . (2.2)

4
Proposition 1.2.6 in [38]

5
Proposition 1.2.7 in [38].
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The following result shows that K1K2 is indeed a kernel on pE, Eq

Theorem 2.1.4. 6[Product of kernels] If K1 and K2 are kernels on pE, Eq, then, the

function K1K2 de�ned in (2.2) is a kernel on pE, Eq. Furthermore, this product is

associative and for every function f P E` we have K1K2 pfq “ K1 pK2fq .

Example 2.1.5 (Identity kernel). The kernel I , de�ned as

I px,Aq “ IA pxq “

$

’

&

’

%

0, x R A

1, x P A

satis�es that, for every kernel K on pE, Eq, f P E` and λ PM pEq

IK px,Aq “

ż

E

K py, Aq dδx pyq “ K px,Aq @x P E,A P E ,

KI px,Aq “

ż

E

I py, AqK px, dyq “ K px,Aq @x P E,A P E ,

If pxq “

ż

E

f pyq dδx pyq “ f pxq @x P E,

λI pAq “

ż

E

IA pxq dλ pxq “ λ pAq @A P E .

Therefore, IK “ KI “ K , If “ f and λI “ λ. This explains why I is called the

identity kernel.

The iterates Kn
of a kernel K are de�ned by setting K0 “ I , and iteratively,

Kn “ KKn´1
. Henceforth, we’ll assume that all iterates of K are σ-�nite. Notice

that if K is substochastic, all the iterates are substochastic.

An immediate consequence of the associativity of the product of kernels is the

celebrated Chapman-Kolmogorov equation.

6
Proposition 1.2.8 in [38]
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Theorem 2.1.5 (Chapman-Kolmogorov equation). LetK be a kernel on pE, Eq. For

anym with 0 ď m ď n, we have

Kn`m
px,Aq “

ż

E

Kn
px, dyqKm

py, Aq (2.3)

De�nition 2.1.2 (Potential kernel). If K is a kernel on pE, Eq, the potential kernel

of K is de�ned as G “
`8
ř

n“0

Kn. The n-partial sum of the potential is denoted by

Gpnq “
řn
j“0K

j .

It can happen that G is not σ-�nite, since is possible that G only admits the

values 0 and `8. For example, this happens if we take K “ I .

The following result resumes the main properties of the potential kernel.

Theorem 2.1.6. Let K be a kernel, then, for any n ě 1

G “
n´1
ÿ

j“0

Kj
`KnG “

n´1
ÿ

j“0

Kj
`GKn,

and for any f P E`

lim
n
Ó KnGf pxq “ 0, @x P ty P E : Gf pyq ă 8u .

Proof. This is Proposition 2.1 in [90].

Closely related to the potential kernel, in the markovian scenario, are the Pε-

resolvent kernels.

De�nition 2.1.3. [Pε-resolvent of K] Given a markovian kernel P , for every ε P

p0, 1q, the Pε-resolvent kernel is de�ned as

Pε px,Aq “ p1´ εq
8
ÿ

i“0

εiP i
px,Aq, x P E,A P E .

18
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The existence of a kernel K on pE, Eq allows us to establish a communication

relation in E ˆ E as follows:

xÑ Aô Dn ě 1 : Kn
px,Aq ą 0. (2.4)

When x Ñ A, we say that A is accessible from the point x. If B is a set and

xÑ A for every x P B, then we say thatA is accessible fromB. WhenB “ E, we

say that is accessible. In the following two sections, we study the structure induced

by this relation.

2.1.2 Closed sets for a Kernel

A closed set will be de�ned as a set whose complement is not accessible from

any point in A.

De�nition 2.1.4 (Closed set). Non-empty setA P E such thatK px,Acq “ 0 for all

x P A.

We say that a set A is absorbing if K px,Aq “ K px,Eq “ 1 for all x P E.

Lemma 2.1.1. If K is a kernel de�ned in pE, Eq, then

i) A set A is closed for K if and only if x Ñ Ac for all x P E.

ii) An absorbing set is always closed.

De�nition 2.1.5 (Indecomposable set). Set A P E such that are not two disjoint

closed sets B1, B2 Ď A.

WhenB P E is closed, we denote byK|B the restriction ofK to pB X E, E XBq.

Not surprisingly, K|B is itself a kernel which is called the restriction of K to the
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closed set B. The following Lemma contains the main results concerning the re-

striction of kernels.

Lemma 2.1.2. Let K be a kernel in pE, Eq and B P E a closed set for K , then

i) K|B is a kernel in pB X E, E XBq.

ii) pK|Bq
n
“ pKn|Bq for all n.

iii) If B is absorbing, the kernel K|B is markovian.

iv) K|Bc is a kernel in pBc X E, E XBcq and pK|Bcq
n
“ pKn|Bcq for all n.

2.1.3 Irreducibility

Irreducibility is the idea that all big enough parts of the space can be reached,

no matter the starting point. In this section, we formalize this concept.

Let ϕ be a σ-�nite measure on pE, Eq. We say that a set A P E is ϕ-positive if

ϕ pAq ą 0. Lastly, for any setB, de�neB` “ BYtx P E : xÑ Bu “ tGIB ą 0u.

De�nition 2.1.6 (ϕ-communicating set for K). Set B such that every ϕ-positive

subset A Ď B is accessible from B.

A kernel is ϕ-irreducible if the whole space is ϕ-communicating. In this case,

the measureϕ is called an irreduciblemeasure forK . Notice that, ifK isϕ-irreducible,

then A` “ E for all A P E such that ϕ pAq ą 0.

Lemma 2.1.3. 7 Let K be a kernel and B a measurable set

i) The set B` is either closed of empty.

ii) Every ϕ-communicating set is indecomposable.

7
Proposition 2.3 and pp. 12-13 in [90].

20



CHAPTER 2. MARKOV CHAINS

iii) If B is ϕ-communicating then K|B` is ϕIB-irreducible.

iv) Any measure ψ which is absolutely continuous with respect to an irreducibility

measure is itself an irreducibility measure.

Theϕ-irreducibility assumption eliminates several forms of reducible behavior.

The de�nition ensures that the chain will reach "big" sets (as de�ned by ϕ) with

positive probability from any starting point, preventing the chain from dividing

into separate parts. However, to achieve certain objectives, it’s necessary to know

that "negligible" sets (B, where ϕpBq “ 0) are avoided with certainty from most

starting points.

De�nition 2.1.7 (Maximal irreducibility measure forK). Irreducibility measure ψ

such that all other irreducibility measures ofK are absolutely continuous with respect

to ψ.

Notice that, by de�nition, if a maximal irreducibility measure exists for a kernel

K , it is unique up to the equivalence of measures. The following result shows that,

for every ϕ-irreducible kernel, there exists a maximal irreducible measure ψ and

that accessible sets are precisely the ψ-positive sets.

Theorem 2.1.7. 8 Suppose that K is ϕ irreducible

i) There exists a maximal irreducibility measure for K.

ii) If ψ is a maximal irreducibility measure and ψ pBq “ 0, then ψ pB`q “ 0.

When K is irreducible with maximal irreducibility measure ψ, we will de-

note by E` the subset of all non-negative measurable functions in E` that are

ψ-positives, i.e. E` “ tf P E` : ψ pfq ą 0u where ψ pfq “
ş

E
f pxq dψ pxq.

8
Proposition 2.4 in [90].
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2.1.4 Small functions and small sets

Let K be a kernel with maximal irreducibility measure ψ. We say that K satis-

�es the minorization conditionM pm0, β, s, νq if there existsm0 P N, β ą 0, s P E`

and a positive non-trivial measure ν such that Km0 px,Aq ě βs pxq ν pAq for all

x P E and A P E , or, using the tensor product de�ned in Example 2.1.3,

Km0 ě βsb ν. (2.5)

Example 2.1.6. 9 Let f : R Ñ R be an integrable function with respect to the

Lebesgue measure inR, such that f is bounded on every compact set. Let g : RÑ R`

be a density function such that 0 ă infxPC g pxq on every compact set C . Consider

the markovian kernel P de�ned as,

P px,Aq “

ż

A

g
`

y ´ f pxq
˘

dy x P R, A P B pRq

Fix a compact set C , de�ne the function ρ pyq “ infxPC g
`

y ´ f pxq
˘

, then

P px,Aq ě IC pxq
ż

A

ρ pyq dy, @x P C,A P B pRq .

Hence, the kernel P satis�es the minorization conditionM p1, 1, IC , µqwhere µ is the

measure de�ned by µ pAq “
ş

A

ρ pyq dy.

A function s P E` is called a small (for the kernel K), if there exist m0, β and

ν such that the kernel K satis�es M pm0, β, s, νq. We will denote by S `
be the

class of all small functions for K . A closely related concept is the following:

9
Example 3.1 in [67]
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De�nition 2.1.8 (Small set). Positive set C P E such that its indicator function, IC ,

is small.

A small function remains small if multiplied by a constant, hence, there is no

loss of generality in assuming β “ 1. Moreover, if K is a markovian kernel that

satis�es M pm0, β, s, νq, then ν is a �nite measure and
1

βνpEq
ě s pxq ě 0, there-

fore, K satis�es the condition M
´

m0, 1, βν pEq s,
ν

νpEq

¯

. This means that, in the

markovian case, the minorization condition (2.5) is equivalent to the existence of

m0 P N such that

Km0 ě sb ν, (2.6)

where 0 ď s pxq ď 1 and ν is a probability measure. In these cases, we will say

that the markovian kernel P satis�es the minorization condition M pm0, s, νq and

if m0 “ 1, we will call the pair ps, νq an atom for the kernel K . This condition will

be crucial in section 2.2.8.

Remark 2.1.1. In Example 2.1.6, we have that ps, νq is an atom for the kernel P ,

where spxq “ KIC and ν “ µ
K
with K “

ş

E

ρ pyq dy.

Notice that if a markovian kernelP satis�es the minorization conditionM pm0, s, νq,

then, for all ε P p0, 1q , x P E and A P E we have

Pε px,Aq ě p1´ εq ε
m0Pm0 px,Aq ě p1´ εq εm0s pxq ν pAq ,

from where the next result follows immediately.

Theorem 2.1.8. Suppose a markovian kernel P satis�es the minorization condition

M pm0, s, νq, then for any ε P p0, 1q, the pair
`

p1´ εq εm0s, ν
˘

is an atom for the

Pε-resolvent.
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From its de�nition, it is not evident that small functions exist. However, the

following theorem shows not only that they exist for any irreducible kernel, but

also that there are plenty of them.

Theorem 2.1.9. 10[Existence of small functions and sets] IfK is an irreducible kernel

with maximal irreducibility measure ψ, then

i) S ` ‰ H.

ii) For everyA P E such that ψ pAq ą 0, there exists C Ď A, such that C is small.

Corollary 2.1.1. If P is an irreducible markovian kernel, then, every Pε-resolvent

satis�es the minorization conditionM p1, sε, νq, where ν does not depend on ε.

2.1.5 Invariant measures

By Theorem 2.1.3, a kernel K de�nes an operator in M pEq
`

. The �xed points

for this operator, if they exist, are called invariant measures.

De�nition 2.1.9 (Invariant measure for kernel K). σ-�nite measure π P M pEq
`

such that πK “ π.

The following result shows that the sets of invariant measures for a markovian

kernel coincide with the set of invariant measures of any of its ε-resolvents.

Theorem 2.1.10. 11 Let P be a markovian kernel. For every ε P p0, 1q a measure π

is invariant for P if and only if it is invariant for the resolvent Pε.

10
Part i is Theorem 2.1 in [90], part ii is Proposition 2.6 of the same book.

11
Theorem 10.4.3 in [87]
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2.2 Markov chains

This section is devoted to giving a general overview of the theory of Markov

chains that will be used in this thesis. It is organized as follows: we will start with

the concept of stochastic process, which will allow us to de�ne a homogeneous

Markov chain in subsection 2.2.2 and we will see some examples in subsection

2.2.3. In subsections 2.2.4 through 2.2.6, we will study the concepts of stopping

times, recurrence, transience and aperiodicity of Markov chains and in 2.2.7 we

will see the main properties of atomic chains. Subsection 2.2.8 is dedicated to the

construction of the split chain, while in subsection 2.2.9 we will study the Har-

ris recurrent Markov chains. Finally, in subsection 2.2.10 we introduce the β-null

recurrent Markov chains.

2.2.1 Stochastic process

Let pΩ,F ,Pq be a probability space, pE, Eq a measurable space and T a set.

A collection of E-valued random variables indexed by a totally ordered set T is

called a E-valued stochastic process.

If X is an E-valued random variable, we’ll denote by L pXq its probability

distribution (or its law), de�ned as the probability measure induced byX in pE, Eq

i.e. L pXq pAq “ P pX P Aq for all A P E .

A collection of σ-algebras Ft of F such that Fs Ď Ft for s ď t is called a

�ltration. A �ltered probability space, denoted by pΩ,F , tFtutPT ,Pq, is a probability

space equipped with a �ltration.

De�nition 2.2.1 (Stochastic process adapted to the �ltrationF ). Stochastic process

tXtutPT such that Xt is Ft-measurable for each t P T . The notation tXt,FtutPT

indicates that the stochastic process tXtutPT is adapted to the �ltration tFtutPT .
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The σ-�eld Ft can be interpreted as the information available at time t. When

a process is adapted, it means that the probability of events related to Xt can be

computed using solely the information available at time t.

Every stochastic process tXtutPT is trivially adapted to the �ltration

 

FX
t

(

tPT
,

where FX
t “ σ pXs, s ď tq. This �ltration is named the internal history.

Remark 2.2.1. When T is countable, an adapted stochastic process tXt,FtutPT

can be viewed as an element of ΨE “
ś

tPT E, measurable with respect to G “

σ p
Ť

tPT Ftq.

2.2.2 Homogeneous Markov chains

Loosely speaking, a Markov Chain is a stochastic process that it is forgetful of

all but its most immediate past. The formal de�nition is as follows:

De�nition 2.2.2 (Markov Chain). Let pΩ,F , tFnunPN ,Pq be a �ltered probability

space. An adapted Stochastic process tXn,FnunPN is a Markov Chain if for all n P N

and all A P E

P pXn`1 P A|Fnq “ P pXn`1 P A|Xnq P´ a.s. (2.7)

The distribution L pX0q of X0 is called the initial distribution of the chain.

A Markov Chain is said to be homogeneous if the transition probabilities in (2.7)

can be expressed with a Markovian kernel.

De�nition 2.2.3 (Homogeneous Markov Chain). Let pΩ,F , tFnunPN ,Pq be a �l-

tered probability space. A Markov Chain tXn,FnunPN is called homogeneous with

kernel P and initial measure µ if there exists a Markovian kernel P and a probability
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measure µ, both de�ned on pE, Eq such that for all n P N and all A P E

P pXn`1 P A|Fnq “ P pXn, Aq P´ a.s. (2.8)

L pX0q “ µ. (2.9)

Remark 2.2.2. If tXn,FnunPN is a homogeneousMarkov Chain, then,
 

Xn,FX
n

(

nPN

is a homogeneous Markov Chain as well. From now on, we will always consider ho-

mogeneous Markov Chains adapted to its internal history, and we will writeX instead

of
 

Xn,FX
n

(

nPN to ease the notation.

If the kernel of a homogeneous Markov chain is ϕ-irreducible we will say that

the chain X is ϕ-irreducible and that ϕ is an irreducibility measure for X. When

we do not need to specify the irreducibility measure, we will just say that X is

irreducible. Similarly, we will say that a set A P E is accessible from B if A is ac-

cessible fromB given the communication relation induced by the kernel (see (2.4)),

and we will say that A is accessible if is accessible from E. When X is irreducible

with maximal irreducibility measure ψ, accessible sets are precisely the setsA P E

such that ψ pAq ą 0.

From the de�nition of a homogeneous Markov Chain, two questions arise: is

a homogeneous Markov Chain uniquely determined by its initial distribution and

its Kernel? and, given an initial probability measure and a Kernel, does there ex-

ist a homogeneous Markov Chain such that (2.8) and (2.9) holds? The answer to

both questions is Yes and it is resumed in the following theorem, which combines

Theorem 3.4.1 in [87] and Theorem 1.3.4 in [38].

Theorem 2.2.1. Given a Markovian kernel P and a probability measure µ, both

de�ned on pE, Eq, a E-valued stochastic process tXnu is a homogeneous Markov
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Chain with kernel P and initial measure µ if and only if,

P pX0 P A0, X1 P A1, . . . , Xn P Anq

“

ż

A0

µ pdx0q

ż

A1

P px0, dx1q . . .

ż

An

P pxn´1, dxnq. (2.10)

for all n ě 0, A0, . . . , An P E . Moreover, for every µ and P there exists a probability

space containing a homogeneous Markov Chain with kernel P and initial measure µ.

If we take Ai “ E, i “ 1, . . . , n´ 1 in (2.10), we obtain,

P pXn P Aq “

ż

E

µ pdx0q

ż

E

P px0, dx1q . . .

ż

E

P pxn´2, dxn´1q

ż

A

P pxn´1, dxnq

“

ż

E

µ pdx0qP
n
px0, Aq

“ µP n
pAq, (2.11)

for any A P E , therefore, L pXnq “ µP n
. Similarly, taking µ “ δx in (2.10) for a

�xed x P E, we get that

P pXn P A|X0 “ xq “ P n
px,Aq @n ě 1, A P E , x P E. (2.12)

Conditioning onX0 “ x, we will writePxpXn P Aq instead ofP pXn P A|X0 “ xq,

and for a measurable function f , we will writeExf pXnq instead ofE rf pXnq |X0 “ xs.

The equality (2.10), known as the Markov property12
, has the following equiv-

alent in terms of expectations.

Theorem 2.2.2. 13[Markov property for expectations] IfX is a homogeneous Markov

Chain with initial measure µ and f : ΨE Ñ R is a bounded andmeasurable function,

12
See pp 62 in [87].

13
This is Proposition 3.4.3 in [87].
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then

E rf pXn`1, Xn`2, . . .q |X0, X1, . . . , Xn;Xn “ xs “ Ex rf pX1, X2, . . .qs (2.13)

Applying Chapman Kolmogorov equation to (2.12) we get, for any m with 0 ď

m ď n,

Px pXn P Aq “

ż

E

Pm
px, dyqP n´m

py, Aq

“

ż

E

Px pXm P dyqPy pXn´m P Aq.

This can be understood as follows: as X transitions from x to A in n steps, at

any intermediate step m it must take a value y P E. As a Markov chain, it forgets

its past at that time m and continues the remaining n ´ m steps based on the

appropriate law starting at y.

The m-step kernel is a transition kernel by itself, therefore it describes the

Markov Chain Xm “ tXnmu with transition laws Px pXnm P Aq “ P nm px,Aq.

This chain Xm
has a special name.

De�nition 2.2.4 (m-skeleton of the chain X). Given a Markov Chain X with ini-

tial distribution µ and kernel P , itsm-skeleton is the Markov Chain Xm with initial

distribution µ and kernel Pm.

Recall from De�nition 2.1.3 that, for every ε P p0, 1q, the Pε-resolvent of P is

the kernel

Pε px,Aq “ p1´ εq
8
ÿ

i“0

εiP i
px,Aq, x P E,A P E . (2.14)

A Markov chain with the same initial distribution as X and with kernel Pε is

called the Pε-chain of X. The following example shows how to extract a subchain
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of X with kernel Pε.

Example 2.2.1. [Pε-chain] Let X be a Markov chain with kernel P and ε P p0, 1q

arbitrary but �xed. De�ne an i.i.d. sequence tαkukě1 of Bernoulli random variables,

independent ofX, such that P pα1 “ 1q “ 1´ε. Lastly, consider the renewal sequence

tγpkqukě0 de�ned as:

γ p0q “ 0 , γ pkq “ inf tm ą γ pk ´ 1q : αm “ 1u for k ě 1. (2.15)

The sequence tγ pkq ´ γ pk ´ 1qukě1 is i.i.d. with geometric distribution given by

P pγ p1q “ kq “ p1´ εq εk. By equation (5.9) in [35] (and pp.19 in [28]) the random

sequence
 

Xγpnq

(

ně0
is a Markov chain with kernel Pε.

As stated in Remark 2.2.1, an adapted Markov Chain can be viewed as an ele-

ment in the space ΨE “
ś

ně0E, measurable with respect to G “ σ
`
Ť

ně0 Fn

˘

.

The shift operator θ : ΨE Ñ ΨE is de�ned as

θ ptx0, x1, . . . , xn, . . .uq “ tx1, x2, . . . , xn, . . .u

and its iterations are de�ned inductively by

θ1
“ θ, θk`1

“ θ ˝ θk, k ě 1.

When H is a random variable in pΨE, G,Pq, θk acts over H as

`

θkH
˘

pwq “ H ˝ θk pwq ,

therefore, Xn ˝ θ
k pwq “ Xn`k. Then, if H “ h pX0, X1, . . .q, where h is a measur-

able function on ΨE , we have θkH “ h pXk, Xk`1, . . .q. Because ExH is a measur-
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able function on E, it follows that EXnH is a random variable on pΨE, G,Pq for

any initial distribution. Then, the Markov property (2.13) can be written succinctly

as

Eµ
“

θnH|FX
n

‰

“ EXn rHs Pµ a.s. (2.16)

for any bounded and measurable function h and �xed n.

2.2.3 Examples

In this section, we give some examples of time-homogeneous Markov Chains.

Example 2.2.2 (Countable space Markov Chain). 14 Suppose that the space E is

discrete and E is the σ-algebra of all the subsets ofE. LetX be a homogeneous Markov

Chain with initial distribution µ and kernel P .

The initial probability µ satis�es µ pAq “
ř

xPA µ ptxuq and the kernel P can be

identi�ed with the transition matrixM

M px, yq
def
“ P pXn`1 “ y|Xn “ xq “ P px, tyuq x, y P E, n ě 0,

and satisfyingMn px, yq “ P n px, tyuq, whereMn is the usual power of matrices.

From (2.11) and (2.12) we obtain, for all x, y P E, n ě 0

P pXn “ y|X0 “ xq “Mn
px, yq ,

P pXn “ yq “
ÿ

xPE

µ pxqMn
px, yq.

For our next example, consider a scenario where a person plays a series of

rounds of a game in a gambling house. On each round, a game is played and an

amount is won or lost, with the successive totals of the amounts representing the

14
Example 1.2 in [90]
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�uctuations in the gambler’s fortune. It is reasonable to assume, that if the same

game is played each time, then the winnings Zn at each time n are i.i.d. In this

context, the total winnings or losings at time n can be represented by Xn where

Xn`1 “ Xn ` Zn`1 n ě 1.

This stochastic process is called a random walk and is, perhaps, the most well-

known instance of a Markov chain. In the following example, we give its formal

de�nition and the form of its kernel.

Example 2.2.3. [Random walk in R]15 Let tZnunPN be a sequence of i.i.d. random

variables with common distribution Z and X0 is a random variable, independent of

tZnunPN such that L pX0q “ µ. The process X “ tXnuně0 de�ned by

Xn`1 “ Xn ` Zn`1 n ě 1,

is a Markov chain in pR,B pRqq with initial measure λ “ L pX0q and kernel P given

by,

P px,Aq “ P pZ ` x P Aq @x P R, A P B pRq .

Example 2.2.4 (Simple symmetric random walk). Random walks can also be de-

�ned over Z. A well-known example in this scenario is the simple symmetric random

walk. De�ned as in Example 2.2.3, but with

P pZ1 “ 1q “
1

2
, P pZ1 “ ´1q “

1

2
.

This random walk and its variation has been widely studied. See [107] for an excellent

15
Example 2.1.1, pp. 28 in [38]
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compendium of the theory.

In a queuing system, let sn be the time of service of the n-th customer and

take tn as the arrival epoch of the n-th customer. The waiting time, Xn of the n-th

customer before service is then,

X1 “ 0

Xn`1 “ max pXn ` sn ´ ptn`1 ´ tnq , 0q n ą 1.

If we assume that s1, . . . are i.i.d. and t1, t2 ´ t1, . . . are also i.i.d. and indepen-

dent of tsnuně0, then, the sequence of random variables tsn´1 ´ ptn ´ tn´1quně1

is i.i.d. and the process Xn is a Markov chain as the following example shows.

Example 2.2.5 (Random walk on a half line). 16 Let X0 and tZnunPN be as in Ex-

ample 2.2.3, de�ne Xn iteratively as follows

Xn`1 “ max pXn ` Zn`1, 0q n ě 1.

In section 3.5.1 of [87], it is shown that this process is a Markov chain in pR`,B pR`qq.

Its kernel P is de�ned as follows: For any A P B pR`q such that A Ď p0,`8q

P px,Aq “ P pZ ` x P Aq @x ě 0,

whilst,

P px, t0uq “ P pZ ď ´xq .

The chain X follows the path of a random walk but is restricted to stay at zero when-
16

Example RWHL1 in [87]. Also, example 1.2 d) in [90].
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ever the underlying random walk drops below zero. It leaves 0 only when the next

positive value in the sequence tZnu is encountered.

For our last example, suppose we are interested in modeling the exchange rate

Xn between two currencies. This can be represented as a function of its past several

values Xn´1, ..., Xn´p, modi�ed by the volatility of the market which is incorpo-

rated as a disturbance term Zn (see pp.4 in [87]). The auto-regressive model shown

below describes the essential behavior of such a system.

Example 2.2.6 (Auto-regressive process: ARppq). 17 Let α “ α1, . . . , αp be real

numbers, tZnunPN a sequence of i.i.d. real-valued random variables with �nite vari-

ance andX0, X´1, . . . , X´p`1 random variables independent of tZnunPN. For n ą 0,

de�ne Xn as

Xn “ α1Xn´1 ` α2Xn´2 ` ¨ ¨ ¨ ` αpXn´p ` Zn.

Assume that the roots of the polynomial 1´α1x´α2x
2´ ¨ ¨ ¨ ´αpx

p are all outside

the unit circle. Then, the vector process X “
 

pXn, Xn´1, . . . , Xn´p`1q
t
(

ně0
, known

as a causal ARppq process, is a Markov chain in pRp,B pRpqq. This process can be

written in matrix form as

Xn “ αXn´1 `BZn,

where

α “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

α1 α2 . . . αp

1 0 . . . 0

...
. . .

...

0 . . . 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

0

...

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

17
Example 2.1.2 in [38]
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The kernel of this process is

P px, Aq “ P pαx`BZ0 P Aq x P Rp, A P B pRp
q .

2.2.4 Hitting, stopping times and the strong Markov prop-

erty

De�nition 2.2.5 (Occupation time). Number of visits by X to the set A.

T pAq “
8
ÿ

n“0

I tXn P Au. (2.17)

We will write Tn pAq for number of visits to A up to time n. This sequence is

called the occupation time sequence.

De�nition 2.2.6 (Hitting times and return times). For A P E , the time of �rst visit

σA and the time of �rst return τA by the Markov Chain X to the set A are de�ned by

σA “ inf tn ě 0 : Xn P Au . (2.18)

τA “ inf tn ě 1 : Xn P Au . (2.19)

where we use the convention that infH “ `8. The subsequent return times τA pkq,

k ě 1 are de�ned inductively as follows

τA p1q “ τA

τA pkq “ min tn ą τA pk ´ 1q : Xn P Au (2.20)

For any set A P E , T pAq, τA and σA are measurable functions from Ω to Z`.
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Let Upx,Aq “ ExT pAq and denote by GP the potential kernel of P , by Theo-

rem 2.1.6, we obtain,

Upx,Aq “ ExT pAq “
`8
ÿ

n“1

P n
px,Aq “ GPP px,Aq .

An analysis of the number of visits to a given set often requires consideration

of the behavior after the �rst visit to the set, rather than the behavior after �xed

times. Markov chain theory is noteworthy for its "forgetfulness" properties holding

for stopping times, which are random interruptions, as well as for �xed times n.

De�nition 2.2.7 (Stopping time). A function ζ : Ω Ñ Z` is a stopping time for

the Markov Chain X, if for any initial distribution µ, the event tζ “ nu P FX
n for all

n ě 0.

Notice that

tσA “ nu “
n´1
č

i“0

tXy R Au
ď

tXn P Au ,

and tτ “ nu “
Şn´1
i“1 tXy R Au

Ť

tXn P Au, therefore, for any A P E , both σA

and τA are stopping times for X.

The following result expresses the distribution of τA and σA conditioned to the

starting point in terms of the kernel P .

Theorem 2.2.3. For all x P E, A P E ,

Px pτA “ kq “ pP IAcqk´1 P px,Aq , (2.21)

Px pσA “ 0q “ IA pxq .

Moreover, if x P Ac

Px pσA “ nq “ Px pτA “ nq .
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From (2.21) we obtain that the probability that the chain ever returns to a A

starting from the state x is

Px pX ever visits Aq “

8
ÿ

k“1

pP IAcqk´1 P px,Aq.

The Markov Property holds for any bounded, measurable function and any

�xed time n, the strong Markov Property allows us to extend it to random stopping

times. Before stating this fundamental property, we need some de�nitions.

Let ζ be a stopping time. Then X´1
ζ pAq “

Ť8

n“0

!

tX´1
n pAqu X tζ “ nu

)

for

any A P E , hence, Xζ is a random variable.

De�neFX
ζ “

 

A P F : tζ “ nu X A P FX
n @n ě 0

(

, which represents the his-

tory of the chain until the stopping time ζ . Finally, if H “ h pX0, X1, . . .q is a ran-

dom variable, de�ne the shift θζ as θζH “ h pXζ , Xζ`1, . . .q on the set tζ ă 8u.

Then,

Theorem 2.2.4 (Strong Markov property). 18 Let X be a Markov chain. For any

initial distribution µ, any real-valued bounded measurable function h on ΨE and

any stopping time ζ , it holds that

Eµ
“

θζH|FX
ζ

‰

“ EXζ rHs Pµ a.s. (2.22)

on the set tζ ă 8u.

The strong Markov property tells us that the process tXζ`ku, restricted to

tζ ă 8u, is a Markov chain with the same kernel as the original chain and in-

dependent of the chain’s history up to τ .

18
Proposition 3.4.6 in [87].
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2.2.5 Recurrence and transience

In this section, we will delve into the fundamental concepts of recurrence and

transience in the context of Markov chains, which are very important in order to

understand the long-term behavior of a Markov chain.

De�nition 2.2.8 (Recurrence). A set A P E is said to be recurrent if U px,Aq “

8 for all x P A. A Markov chain is recurrent if its kernel is irreducible and every

accessible set is recurrent.

Closely related to this is the concept of transience.

De�nition 2.2.9 (Uniformly transient set). Set A P E such that supxPA U px,Aq ă

8

De�nition 2.2.10 (Transient set). Set A P E such that A “
Ť8

n“1An where An is

uniformly transient for all n.

De�nition 2.2.11 (Transient Markov chain). Irreducible Markov chain X such that

E is transient.

The next result shows that irreducible chains are either recurrent or transient

and this property is inherited by its Pε chains.

Theorem 2.2.5. If X is an irreducible Markov chain, then X is recurrent or tran-

sient. Moreover, X is recurrent (transient) if and only if each Pε-chain is recurrent

(transient).

In Theorem 2.2.26 we will see that if a chain is irreducible and recurrent it

admits an invariant measure. Then, we will subdivide the class of recurrent irre-

ducible Markov chains into two classes: the ones that admit an invariant probabil-

ity and the ones that do not.
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De�nition 2.2.12 (Positive Markov chain). Recurrent and irreducible Markov chain

that admits and invariant probability measure π.

De�nition 2.2.13 (Null recurrent Markov chains). Recurrent and irreducibleMarkov

chain that does not admit an invariant probability measure.

2.2.6 Aperiodicity

A key concept in Markov chains is aperiodicity, which refers to the property of

a state having a �nite number of steps before returning to the same state. In other

words, aperiodicity describes the pattern of repeating states in a Markov chain.

This section is formalize this concept.

Let X be a ψ-irreducible Markov chain, by Theorem 2.1.9, there exists a small

set C P E , i.e. there exists m0 P N and a measure ν P M pEq
`

such that ν pCq ą 0

and

Pm0 px,Aq ě ν pAq @x P C, A P E .

Then, if the chain starts in C , there is a non-zero probability that the chain will

return to C at time m0. De�ne EC as the set of natural numbers m such that P

satis�es the minorization condition M pm, IC , γmνq for some γm P R`, i.e.

EC “ tm P N : Dγm P R` such that Pm
px,Aq ě γmν pAq @x P C A P Eu .

The set EC is closed under addition and the greatest common divisor of the ele-

ments of EC belongs to EC . The following Theorem shows that this greatest com-

mon divisor is a property of the whole chainX, and is independent of the particular

small set chosen.

Theorem2.2.6. SupposeX is an irreducibleMarkov chain withmaximal irreducibil-
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ity measure ψ. Let C P E be a small set and denote by d the greatest common divisor

of the setEC . Then, there exists disjoint setsD1, . . . , Dd´1 P E (called a d-cycle) such

that

i) for x P Di, P px,Di`1q “ 1, i “ 0, . . . , d´ 1 p mod dq.

ii) the set N “

´

Ťd´1
i“0 Di

¯c

is ψ-null.

Moreover, the d-cycle ismaximal in the sense that for any other collection
 

D10, . . . , D
1
d1´1

(

satisfying iq and iiq, we have that d1 divides d, and if d “ d1, then, by reordering the

indexes if necessary, Di “ D1i ψ ´ a.e.

From this, we can de�ne the period of a ψ-irreducible Markov chain as the size

of the largest d-cycle.

De�nition 2.2.14 (Aperiodic Markov chain). Irreducible Markov chain whose pe-

riod is 1.

Most of the results that we obtain in this thesis assume that the chain is aperi-

odic. In practice this is not greatly restrictive, since

Theorem 2.2.7. Let X be a ψ-irreducible Markov chain with period d and d-cycle

tD1, . . . , Ddu. Then, each of the setsDi is an absorbingψ-irreducible set for the chain

Xd corresponding to the transition kernel P d. Xd on each Di is aperiodic.

Notice that if for a small set C there exist β ą 0 and a measure ν P M pEq
`

such that the minorization condition M p1, βIC , νq is satis�ed, then the chain is

automatically aperiodic. These types of chains are called strongly aperiodic.

Theorem2.2.8. 19 IfX is an irreducibleMarkov chain, then everyPε-chain is strongly

aperiodic for all 0 ă ε ă 1.
19

This is part ii) of Proposition 5.4.5 in [87]
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The �nal result of this section, which is a direct consequence of Theorem 2.1.9,

shows that if a chain is aperiodic we can �nd a m-skeleton that is strongly aperi-

odic.

Theorem 2.2.9. Suppose that X is ψ-irreducible, aperiodic chain, then, every skele-

ton of X is ψ-irreducible and aperiodic and there existsm such that them-skeleton is

strongly aperiodic.

2.2.7 Atoms

De�nition 2.2.15 (Atom for X). Set α P E such that

P px,Aq “ ν pAq , x P α,

for some measure ν on E. If X is ϕ-irreducible, and ϕ pαq ą 0 then α is called an

accessible atom. A Markov chain with an accessible atom is named an atomic chain.

If α is an atom for X, with a slight abuse of notation we will write P pα, ‚q to

represent the measure ν.

A simple consequence of the existence of atoms is the irreducibility of the chain

under mild conditions. In e�ect, by (2.3), for any x P E, A P E and n ě 1, we have

P n`1
px,Aq ě

ż

α

P n
px, dyqP py, Aq “

ż

α

P n
px, dyqP pα, Aq

ě P n
px,αqP pα, Aq ,

then, U px,Aq ě ν pAqU px,αq. Hence, if U px,αq ą 0 for all x P X , any set A

such that ν pAq ą 0 will be accessible, which shows that X is ν-irreducible.

Theorem 2.2.10. Suppose there is an atom α in X such that U px,αq ą 0 for all
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x P E. Then X is ν-irreducible, with ν “ P pα, ‚q and α is an accessible atom.

Remark 2.2.3. In section 2.1.8 we de�ned an atom for a kernelP as a pair ps, νq,where

s P E` and ν is a probability measure, that satis�esP ě sbν. Notice that ifX has an

accessible atom α, then, P satis�es the minorization condition M p1, Iα, P pα, ‚qq,

therefore, the pair pIα, P pα, ‚qq is an atom for the kernel P and α is a small set.

Moreover,

pP ´ Iα b P pα, ‚qq px,Aq “ Iαc pxqP px,Aq @x P E,A P E .

Theorem 2.2.11. 20[Atomic maximum principle] If the Markov chain X has an ac-

cessible atom α, then,

U px,αq “ Px pσα ă 8qU pα,αq @x P E.

An important property of an accessible atom is that it can be used to charac-

terize accessible sets. Essentially, a measurable set is accessible if and only if it can

be accessed from the atom, in a �nite time, with non-zero probability.

Theorem 2.2.12. 21Let X be an atomic Markov chain with accessible atom α and

A P E , then

i) A is accessible if and only if Pα pτA ă 8q ą 0.

ii) If A is not accessible, then Ac is accessible.

The following result indicates that atoms are either recurrent or transient. Fur-

thermore, it shows that, in any atomic chain, accessible atoms are either all recur-

rent or all transient.

20
Lemma 6.1.3 in [38]

21
Lemma 6.1.4 in [38]
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Theorem 2.2.13. 22Let X be a Markov chain with an atom α.

i) α is recurrent if any of the following equivalent properties is satis�ed

(a) Pα pτα ă 8q “ 1,

(b) PαpT pαq “ 8q “ 1,

(c) U pα,αq “ 8

ii) α is transient if any of the following equivalent properties is satis�ed

(a) Pα pτα ă 8q ă 1,

(b) PαpT pαq ă 8q “ 1,

(c) U pα,αq ă 8

iii) If α is accessible and recurrent, any atom β satisfying Pα pτβ ă 8q ą 0 is

accessible and recurrent and Pα pT pβq “ 8q “ Pβ pT pαq “ 8q “ 1.

iv) If α is recurrent and there exists an accessible atom β, then α is accessible.

From parts iii and iv of Theorem 2.2.13, we have that accessible atoms are ei-

ther all recurrent or all transient. The next result shows that, in the atomic chain

scenario, the recurrence or transience of an accessible atom characterizes the re-

currence or transience of the chain.

Theorem 2.2.14. 23 Suppose X is an atomic Markov chain with accessible atom α.

Then it holds:

i) X is recurrent if and only α is recurrent.

ii) X is transient if and only α is transient.
22

Theorem 6.2.2 and Proposition 6.2.4 in [38].

23
Theorem 6.2.7 in [38]
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For an atom α in X, de�ne a measure πα as follows:

πα pAq “ Eα

˜

τα
ÿ

k“1

IA tXku

¸

. (2.23)

The following theorem shows that α is recurrent if and only if πα is invariant

for the kernel.

Theorem 2.2.15. 24[Existence of an invariant measure] Let X be an atomic Markov

chain with kernel P possessing and accessible atom α. Then,

i) If α is recurrent, then πα is invariant for P .

ii) If πα is invariant for P , then α is recurrent.

iii) If α is recurrent, then every other invariant measure π is proportional to πα,

satis�es π pαq ă 8 and π pBq “ π pαq πα pBq @B P E .

Part iii) of the previous result tells us that an atomic Markov chain has a unique,

up to a multiplicative constant, invariant measure. The celebrated Kac’s theorem

uses this to characterize the positivity of irreducible atomic chains.

Theorem2.2.16. [Kac’s Theorem]25Suppose thatα is a recurrent atom for the atomic

Markov chainXwith kernel P . Then,X is positive recurrent if and only ifEατα ă 8;

and if π is the invariant probability measure for X, then π “ πα
Eατα

.

The following construction, presented in [88], allows us to construct, given a

random variable Z , an atomic Markov chain where L pταq “ L ptZuq.

Example 2.2.7. Let Zn be a sequence of i.i.d. random variables. De�ne Xn as

24
Theorem 6.4.2 in [38].

25
Theorem 10.2.2 in [87]
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Xn “

$

’

&

’

%

Xn´1 ´ 1, if Xn´1 ą 1,

Zn, if Xn´1 P r0, 1s .

Then, Xn is an irreducible Markov Chain and the interval r0, 1s is an atom for

the chain. Moreover, Px
`

τr0,1s ą n
˘

“ P ptZ1u ą nq.

We have saved for last what is perhaps the most important property of atomic

chains: the Block decomposition. This property enables us to partition an atomic

chain into independent blocks, which facilitates the study of this type of Markov

chain, making it comparable to the i.i.d. case.

Theorem 2.2.17 (Block decomposition). 26 Let X be an atomic Markov chain with

an accessible atomα. Then, for any initialmeasureλ P M pEq
`
such thatPλ pτα ă 8q “

1 the following random blocks

B0 “
`

X0, X1, . . . , Xταp1q

˘

B1 “
`

Xταp1q`1, . . . , Xταp2q

˘

. . .

Bn “
`

Xταpnq`1, . . . , Xταpn`1q

˘

. . .

are independent, and among them, tBnuně1 are i.i.d. with common lawLPα

`

X0, X1, . . . , Xταp1q

˘

.

As an application of Theorem 2.2.17 we will show how it can be used to study

the sums of the values of a function over X.

Let f be a function de�ned over E and de�ne the random variables f pB0q “

26
Corollary 2.3 in [29].
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řτα
j“0 f pXjq and for n ě 1,

f pBnq “
ταpn`1q
ÿ

j“ταpnq`1

f pXjq.

The next result is an immediate consequence of Theorem 2.2.17.

Theorem 2.2.18 (Independence of the excursions). If X is an atomic Markov chain

with a recurrent atomα, then, under Pα, the sequence tf pBnqunPZ` is i.i.d. Moreover,

for every initial measure λ P M pEq
`
such that Pλ pτα ă 8q “ 1, the random

variables f pBnq , n P Z` are independent and for n ě 1 they are i.i.d.

For any measurable function f de�ned on E we will denote by Sn pfq the par-

tial sums of f over the chain, that is

Sn pfq “
n
ÿ

k“0

f pXkq. (2.24)

For a �xed atom, Theorem 2.2.18 allow us to express Sn pfq as a sum of inde-

pendent random variables as follows:

Sn pfq “ f pB0q `

T pnq
ÿ

j“1

f pBjq `
n
ÿ

i“ταpT pnq`1q`1

f pXiq, (2.25)

where T pnq “ Tn pαq ´ 1 counts the number of i.i.d. blocks up to time n. This

term is called number of regenerations up to time n.

The following random Law of Large Numbers follows from (2.25), Theorem 6.8.1

in [55] and the fact that E rf pBiqs “ πα pfq for i ě 1.

Theorem 2.2.19. 27 Let X be an atomic Markov chain with an accessible atom α

and let f be a πα-integrable function. Then, for every initial distribution µ such that
27

Lemma 6.6.1 in [38]
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Pµ pτα ă 8q “ 1,
Sn pfq

T pnq
Ñ πα pfq Pµ ´ a.s.

This random Law of Large Numbers suggests that if we standardize by the

number of complete blocks, we can derive a version of the Central Limit Theorem.

In the positive recurrent scenario, the following result con�rms the validity of this

approach. In the null recurrent case, it is also true provided that the time of return

to the atom does not have an excessively heavy tail. Before stating the theorem,

we need a de�nition.

De�nition 2.2.16 (Slowly varying functions). Measurable and positive function L,

de�ned in ra,`8q for some a ě 0, that satis�es

lim
xÑ`8

L pxtq

L pxq
“ 1 @t ě a.

Two slowly varying functions are said to be equivalent if limxÑ`8
Lpxq
L1pxq

“ 1. A

fundamental result in the theory of slowly varying functions
28

indicates that ifL is

a slowly varying function then, for every α ą 0, there exists an equivalent version

Lα of L such that xαLα pxq is strictly increasing and continuous in rxα,`8s for

some xα ě 0. These Lα are called normalizations of L.

Remark 2.2.4. Throughout this thesis, all slowly varying functions are unique up-to

equivalence and, without loss of generality, we always use normalized versions.

Theorem 2.2.20. [CLT with random number of terms] Suppose X is an atomic, pos-

itive recurrent Markov chain with an accessible atomα. Let f P L1 pE, παq such that

28
Proposition 1.3.4 and Theorem 1.5.5 in [21]
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Varα rf pB1qs is �nite, then,

a

T pnq

˜

řT pnq
i“1 f pBiq
T pnq

´ πα pfq

¸

d
ÝÑ N p0,Var rf pB1qsq . (2.26)

and
a

T pnq

ˆ

Sn pfq

T pnq
´ πα pfq

˙

d
ÝÑ N p0,Var rf pB1qsq . (2.27)

Moreover, if X is null recurrent and satis�es

P pτα ą nq „
1

nβL pnq
(2.28)

where 0 ă β ă 1 and L is slowly varying, then (2.26) holds, and, if in addition

E
“

p|f | pB1qq
2
‰

ă `8 then (2.27) also holds.

The proof of Theorem 2.2.20 relies on being able to control the behavior of

T pnq in such a way that the convergence in distribution of

?
n
´

řn
i“1 fpBiq
n

´ πα pfq
¯

does not change when we replace n by T pnq.

For positive recurrent chains, this is achieved thanks to Anscombe’s Theo-

rem,
29

using the fact that
n

T pnq

a.s.
ÝÝÑ Eατα. The details of the proof can be found in

section 6.7 of [38].
30

In the null recurrent case, Anscombe’s Theorem approach does not work be-

cause, even with the tail condition (2.28), T pnq can only be controlled in distribu-

tion. Hence, in this scenario, the proof is based on the functional convergence of the

stochastic processes

?
n

ˆ

řtntu
i“1 fpBiq

n
´ πα pfq

˙

and
T ptntuq
nβLpnq

(see Theorem 2.2.39),

and a deep result by [68] that implies the functional convergence of the joint pro-

29
The original theorem appeared in [4]. See Theorem E.4.5 in [38] for a more modern formula-

tion.

30
Equation (2.26) appears as an intermediate result in the proof of their Theorem 6.7.1 and (2.27)

is a direct consequence of their equation (6.7.6).
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cess. The full proof can be found in [9].
31

In the positive recurrent case, Theorem 2.2.20 can be improved to have a for-

mulation very similar to the CLT for i.i.d. data. In e�ect, assume that X is positive

recurrent with invariant probability measure π and f satis�es the conditions of

Theorem 2.2.20. De�ne the function
rf “ f ´ π pfq, then

πα

´

rf
¯

“ πα pf ´ π pfqq “ πα pfq ´ πα pEq π pfq

which equals 0 by Kac’s theorem. Applying (2.27) to
rf and using Slutsky’s Theo-

rem
32

to replace T pnq by n, we get the following result:

Theorem 2.2.21. 33[CLT for atomic positive recurrent Markov chains] If X is an

atomic, positive recurrent Markov chain with an accessible atom α and invariant

probability measure π and f P L1 pE, παq is such that Varα rf pB1qs is �nite, then,

n´
1
2

n
ÿ

k“1

´

f pXkq ´ π pfq
¯

d
ÝÑ N

¨

˝0,
Var

”

rf pB1q

ı

Eατα

˛

‚, (2.29)

where

Var
”

rf pB1q

ı

“ Eα

»

–

˜

τα
ÿ

k“1

´

f pXkq ´ π pfq
¯

¸2
fi

fl .

Observe that the only dissimilarity between (2.29) and the CLT for i.i.d. data

lies in the form of the variance.

Remark 2.2.5. In the null-recurrent case, due to the fact that π is σ-�nite but not

�nite, if f is such that π pfq ‰ 0, then there is no deterministic recentering.

Atomic chains are not rare, for example, when E is countable (Example 2.2.2)

31
See page 1140 for (2.26) and their equation (6) for (2.27).

32
Theorem 5.11.4, pp 248 in [55].

33
Theorem 6.7.1 in [38].
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every singleton (set with only one element) is an atom, and if the chain is irre-

ducible, then every singleton is an accessible atom. In the case of the Random

Walk on a half line, as described in Example 2.2.3, the set t0u is an accessible atom

if PpZ ă 0q ą 034
. However, the reason for studying atoms is not just because

of the existence of accessible singletons in some models, but rather the ability to

arti�cially construct sets with an atomic structure by extending the probabilistic

structure of the chain in the irreducible case. This permits the application of de-

composition of the chain into separate, identical parts (via Theorem 2.2.17) which

serve as building blocks in subsequent analysis.

2.2.8 Splitting

In this section, we will show how to "construct" atomic chains from irreducible

chains. The idea is to construct a split chain X̌ in a split space Ě “ E0YE1 where

Ei are "copies", in a speci�c sense, of the original space E, in such a way that:

i) The original chain X is a marginal chain of X̌, in the sense that for all initial

distribution λ, A P E and n ě 0 we have λP n pAq “ λ̌P̌ n
`

Ǎ
˘

, where P̌ , λ̌

and Ǎ are respectively a kernel, an initial probability and a measurable set

de�ned in the split space.

ii) E1 is an accessible atom for X̌.

Let us assume, for the moment, that X is a ϕ-irreducible Markov chain and

its kernel P satis�es the minorization condition M p1, s, νq, that is, there exist a

small function s, taking values in the interval r0, 1s, and a non-trivial probability

measure ν such that

P ě sb ν. (2.30)

34
See Example 6.1.2 in [38] for a proof of this result
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The minorization condition (2.30) allows us to de�ne the following sub-stochastic

kernel in pE, Eq,

Q px,Aq “

$

’

’

&

’

’

%

p1´ s pxqq´1
rP px,Aq ´ s pxq ν pAqs , s pxq ă 1

IA pxq , s pxq “ 1.

(2.31)

By using Q, we can break down P into two parts:

P px,Aq “ s pxq ν pAq ` r1´ s pxqsQ px,Aq . (2.32)

Remark 2.2.6. Consider the set C “ tx P E : s pxq “ 1u. If ϕ pCq ą 0, then C is a

small set35, therefore, P px,Aq ě ν pAq for all x P C and A P E , which implies that

C is an accessible atom for X and P px,Aq “ ν pAq @x P C,A P E36.

The decomposition (2.32) indicates that a transition starting from any state x in

E can be thought of as happening in two steps. First, a coin is �ipped with the prob-

ability of landing on "head" equal to s pxq. If "head" comes up, the Markov chain

moves based on the probability law of ν, otherwise, it moves based on Q px, ‚q.

The most important aspect here is that getting "head" results in a transition law

that is independent of the state x.

To properly formalize this heuristic, we will work on the space

`

Ě, Ě
˘

de�ned

as the product of the measurable spaces pE, Eq and pt0, 1u ,P pt0, 1uqq. We will

use the term split space to refer to both the set Ě and the measurable space

`

Ě, Ě
˘

.

For all x P E, A P E we denote

x0 “ px, 0q , x1 “ px, 1q ;

35
Remark 2.1-iv, pp. 16 of [90]

36
See pp. 191 of [38].
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Ǎ0 “ Aˆ t0u , Ǎ1 “ Aˆ t1u , Ǎ “ Aˆ t0, 1u .

In the following, we identify each setA P E with its corresponding set Ǎ P Ě , as

de�ned in the previous paragraph. Thus, the σ-algebra E can be viewed as a subset

of Ě . For any measure λ P M pEq
`

, we can de�ne its extension λ̌ to M
`

Ě
˘

`
by

setting its values on the sets Ǎi (where A P E and i “ 0, 1) as follows:

λ̌
`

Ǎ0

˘

“

ż

A

`

1´ s pxq
˘

dλ pxq , λ̌
`

Ǎ1

˘

“

ż

A

s pxq dλ pxq.

A E-measurable function f , is extended to a Ě-measurable function by setting

f̌ px0q “ f̌ px1q “ f pxq. With these de�nitions, for every E-measurable function

f and every measure λ P M pEq
`

we have

ş

E

f pxq dλ pxq “
ş

Ě

f̌ pzq dλ̌ pzq.

Now the �nal and most subtle step in the construction of the split chain is to

build a kernel P̌ in

`

Ě, Ě
˘

that expresses the heuristic we described before. For

x P E and Ǎ P Ě de�ne the following kernel
37

on the split space

P̌
`

x0, Ǎ
˘

“

$

’

’

&

’

’

%

ν̌
`

Ǎ
˘

, x P ts pxq “ 1u ,

Q̌
`

x, Ǎ
˘

, x P ts pxq ă 1u ;

P̌
`

x1, Ǎ
˘

“ ν̌
`

Ǎ
˘

,

where Q̌ px, ‚q is de�ned as the extension to

`

Ě, Ě
˘

of the measure Q px, ‚q.

Let X̌ “
 `

X̌n, Y̌n
˘(

ně0
be a Markov chain (de�ned in the split space) with

initial measure λ̌ and kernel P̌ . It was shown in pp.61 of [90] that, for any x P

37
See pp.311 in [89].
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E,A P E the random variables X̌n and Y̌n satisfy

P
`

X̌n`1 P A|X̌n “ x
˘

“ P px,Aq ,

P
`

Y̌n “ 1|X̌n “ x
˘

“ s pxq ,

P
`

X̌n`1 P A|Y̌n “ 1
˘

“ ν pAq ,

P
`

X̌n`1 P A|Y̌n “ 0, X̌n “ x
˘

“ Q px,Aq .

The following theorem shows that the bivariate process X̌ is an atomic Markov

chain and the distribution of its �rst component is identical to the distribution of

our original chain.

Theorem 2.2.22. 38 The split chain X̌ is an atomic Markov chain and the set Ě1 “

E ˆ t1u is an accessible atom. Moreover, for any probability measure λ on pE, Eq,

the marginal distribution of the �rst component
 

X̌n

(

of the split chain X̌ and the

distribution of the original chain X are identical. In particular,

λ̌P̌ n
`

Ǎ
˘

“ λP n
pAq @A P E .

In the following, we will identify the original chain with X̌n and we will write

Xn instead of X̌n. We will denote by α̌ the atom Ě1 and we will write Pα̌ for

the probability measure de�ned on σ
´

YnPNF X̌
n

¯

and corresponding to the initial

state Y0 “ 1, i.e. Pα̌ “ L
`

Xn, Y̌n, n ě 1|Y0 “ 1
˘

. Similarly, for any x P E, we will

denote by Px the probability measure corresponding to the initial state X0 “ x.

Theorem 2.2.23. 39The split kernel P̌ satis�es

i) P̌ n pα̌, Aq “ Pα̌ pXn P Aq “ νP n´1 pAq @A P E , n ě 1.

38
This result appears as Theorems 1 and 2 in [89] and as Theorem 4.2 in [90].

39
Equation (4.19) in [90]
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ii) P̌ px, α̌q “ Px
`

Y̌n “ 1
˘

“ Ex rs pXnqs “ P ns pxq @x P E, n ě 0.

Theorem 2.2.24. 40Let σα̌ and τα̌ be the hitting and return times of the atom α̌ in

the split chain, then

i) Pα̌ pτα̌ “ nq “ ν pP ´ sb νqn´1 s for n ě 1.

ii) Px pσα̌ “ nq “ pP ´ sb νqn s pxq for x P E and n ě 0.

iii) Pα̌ pXn`1 P AX τα̌ ě n` 1q “ ν pP ´ sb νqn pAq for all A P E .

Remark 2.2.7. IfX has an atomα, remark 2.2.3 shows that it satis�es the minoriza-

tion conditionM p1, Iα, P pα, ‚qq and P ´ Iα b P pα, ‚q “ IαcP . In this case, the

auxiliary process Y is de�ned as Yn “ Iα pXnq and all the results in this subsection

hold.

At the beginning of this section, we assumed that the kernel P satis�ed the

minorization condition M p1, s, νq. This assumption is not too strict, because, by

Corollary 2.1.1 and Theorem 2.1.9, we have that if X is ϕ-irreducible with kernel

P , then the Pε-chains are strongly aperiodic and there exists m such that the mi-

norization condition M p1, s, νq is satis�ed for Pm
. Therefore, we can apply The-

orem 2.2.22 to the Pε-chains (and to some m-skeleton chain) and construct a split

chain. A typical proof of a property P for X using this technique is as follows:

Step 1 Prove P for atomic chains.

Step 2 Apply Theorem 2.2.22 to construct the split chain X̌. Show that if P holds

for X̌ it also holds for X. Then, by step 1, P holds for chains that satisfy the

minorization condition with m0 “ 1.

40
Equations (4.20), (4.21) and (4.22) in [90].
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Step 3 Show that if P holds for the Pε-chains (or for somem-skeleton) then it holds

for the original chain. Hence, the result follows by applying step 2 to the Pε-

chains (or to the m-skeleton that satisfy the minorization condition with

m0 “ 1).

As a demonstration, we use this technique to prove the following result, which,

as a direct corollary shows that every irreducible Markov chain admits a unique

(up to a multiplicative constant) invariant measure.

Theorem 2.2.25. 41If X is irreducible, aperiodic and satis�es the minorization con-

ditionM pm0, s, νq, then, the measure π de�ned as

π pAq “ ν
`8
ÿ

n“0

pPm0 ´ sb νqn pAq A P E , (2.33)

is an invariant measure for the chain X.

Proof. As promised, the proof will be divided in three steps:

Step 1 If X is atomic, the existence of the invariant measure πα and its representa-

tion is given by (2.23). By Fubini’s Theorem,

πα pAq “
`8
ÿ

n“1

PαpXn P AX τα ě nq

By part iii of Proposition 4.4 in [90], PαpXn P AX τα ě nq “ ν pIαcP qn´1

where IαcP is the kernel de�ned by pIαcP q px,Aq “ Iαc pxqP px,Aq and

ν “ P pα, ‚q. Because X is atomic, remark 2.2.3 shows that it satis�es the

minorization condition M p1, Iα, P pα, ‚qq and P ´ Iα b P pα, ‚q “ IαcP .

Hence, the theorem holds for atomic chains.

41
Corollary 5.2 in [90]
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Step 2 Now assume that X satis�es the minorization conditionM p1, s, νq. By The-

orem 2.2.22, we can construct the split chain X̌ with an accessible atom α̌.

By Step 1, this chain admits an invariant measure πα̌ and the form of this

measure is given by (2.23).

When restricted to X, this measure is invariant for X, as was shown in (5.7)

of [90]. A simple application of Fubini’s Theorem and part iii of Theorem

2.2.24 shows that, for A P E

π pAq “ Eα̌

˜

τα̌
ÿ

k“1

IA tXku

¸

“ ν
`8
ÿ

n“0

pP ´ sb νqn pAq “ νGs,ν pAq ,

whereGs,ν “
ř`8

n“0 pP ´ sb νq
n
. Therefore, the result holds for chains that

satisfy the minorization condition M p1, s, νq.

Step 3 Given thatX satis�es the minorization conditionM pm0, s, νq, them0-skeleton

chain, satis�es the same condition but with m “ 1, therefore, by step 2 π

is an invariant measure for the m0-skeleton. By Theorem 10.4.5 in [87], π is

also invariant for X, which completes the proof.

The following result is an extension of Theorem 2.2.25. Its proof is an example

of the technique we described. It can be found as Theorem 10.4.9 in [87].

Theorem 2.2.26. Let X be a ψ-irreducible recurrent chain with transition kernel P .

Then, X admits a non-zero invariant measure π that satis�es

i) π is unique up to a multiplicative constant.

ii) π pCq ă 8 for every small set C .
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iii) For any accesible set A and B P E ,

π pBq “

ż

A

Ey

˜

τA
ÿ

k“1

I tXk P Bu

¸

dπ pyq .

iv) π is equivalent to ψ.

The splitting technique shown in this section is one of the pillars of the modern

Markov chain Theory. It was discovered almost simultaneously, but by slightly dif-

ferent methods, by Nummelin [89, 90] and Athreya and Ney [7]. The construction

presented in this thesis follows the approach introduced by Nummelin, which is

the most widely used in the literature.

2.2.9 Harris recurrent Markov chain

For atomic chains, we have seen in part b of Theorem 2.2.13, that recurrence

of an atom is equivalent to the property that the number of visits to the atom is

almost surely in�nite when starting from the atom. In the general case, this no

longer holds, as the following example shows.

Example 2.2.8. 42 De�ne a Markov chain X in N, such that if Xn “ k, then, the

chain moves to k`1 with probability e´
1
n2 or jumps back to zero where it is absorbed.

The kernel is as follows:

P p0, 0q “ 1 , P pk, k ` 1q “ e´
1
k2 , P pk, 0q “ 1´ e´

1
k2 , k ě 1.

The Markov chain in question is irreducible and contains an absorbing set comprising

only the state 0. As a consequence, δ0 is a maximal irreducibility measure and every

42
Example 10.2.3 in [38]
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accessible set must necessarily include the absorbing state 0. For k ě 1, the Markov

property implies that

Pk pτ0 “ `8q “ exp

˜

´

`8
ÿ

j“k

1

j2

¸

ă 1,

therefore, 0 ă Pk pτ0 “ `8q ă 1. Consider an accessible set A, such that k ě 1 is

inA. Then,Pk pT pAq “ `8q ě Pk pτ0 “ `8q, which implies thatEkT pAq “ `8,

and hence the recurrence of the chain. On the other hand, ifA is �nite,Pk pT pAq “ `8q

equals Pk pτ0 “ `8q ă 1 hence, the probability of returning to A in�nitely often is

not 1.

In order to handle situations like the one described in the previous example,

we need to de�ne a stronger type of recurrence.

De�nition 2.2.17 (Harris recurrence). An irreducible Markov Chain X with max-

imal irreducibility measure ψ is said to be Harris recurrent if for all x P E and all

A P E such that ψ pAq ą 0 we have Px pX visits A in�nitely oftenq “ 1.

In other words, X is Harris recurrent if Px pT pAq “ 8q “ 1 for all x P E and

all ψ-positive sets A. The following result shows that Harris recurrence can be

analyzed by looking at the Pε-chains.

Theorem 2.2.27. 43 X is Harris recurrent if and only if for some ε (and then for all)

the Pε-chain is Harris recurrent.

Recall from (2.24) that if f is a function de�ned onE, thenSn pfq “
řn
k“0 f pXkq.

The next theorem shows that, under Harris recurrence, the order of Sn pfq is the

same for every measurable function f such that

ş

fdπ ‰ 0, where π is an invariant

43
Proposition 8.2.13 in [40]
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measure for X. Moreover, it shows that this property characterizes Harris recur-

rence.

Theorem 2.2.28. 44 The following propositions are equivalent when a σ-�nite in-

variant measure π exists for X

1. For every f, g P L1 pπq with
ş

gdπ ‰ 0

lim
nÑ8

Sn pfq

Sn pgq
“
π pfq

π pgq
. (2.34)

2. The invariant σ-�eld Σ is Px trivial for all x P E.

3. X is Harris recurrent.

The following result provides a similar ratio limit result as (2.34) but for expec-

tations. It is important to notice that in the null recurrent case, it only applies to

small functions.

Theorem 2.2.29. 45IfX is Harris recurrent with invariant measure π, then, for every

initial measures λ, µ P M pEq
`
and small functions s, h such that π phq ‰ 0, we have

lim
nÑ`8

Eλ r
řn
t“0 s pXtqs

Eµ r
řn
t“0 h pXtqs

“ lim
nÑ`8

λGpnqs

µGpnqh
“
π psq

π phq
, (2.35)

whereGpnq is the n-partial sum of the potential kernel ofP 46. IfX is positive recurrent,

then h, s can be taken as elements of L1 pπq.

Equation (2.34), known as the Ratio Limit Theorem, allows us to obtain strong

convergence results for Sn pfq.

44
Theorem 17.3.2 in [87]

45
Both statements appear in pp. 130 of [90]. It is worth pointing out that a small function is a

special function.

46
See De�nition 2.1.2

59



2.2. MARKOV CHAINS

Theorem 2.2.30. Let X be a Harris recurrent Markov chain with invariant measure

π and initial probability λ. Let f be a �nite π integrable function.

i) If X is positive recurrent and π is the unique invariant probability measure,

then
Sn pfq

n
Ñ π pfq Pµ a.s. (2.36)

ii) If X is null recurrent, then

Sn pfq

n
Ñ 0 Pµ a.s. (2.37)

From the previous theorem, we see that when X is positive recurrent the be-

havior of Sn pfq is similar to the i.i.d. case, however, (2.37) indicates that the null

recurrent scenario is a whole di�erent story. In order to properly study this case,

we need a few new tools.

Let D be a small set and λ an initial measure. De�ne a ptq

a ptq “ π pDq´1
ttu
ÿ

k“1

λP k
pDq “ π pDq´1 λGttu

pIDq (2.38)

Remark 2.2.8. This non-negative and increasing function is called the truncated

Green function. By (2.35) the asymptotic order of a ptq (when tÑ `8) depends only

on the transition kernel of the Markov chain.

Example 2.2.9. 47[Truncated Green function for random walks in R] Consider a

random walk as the ones de�ned in example 2.2.3, with EZ1 “ 0 and EZ2
1 ă `8. It

47
See Section 6 in [28].
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was shown in [28] that the truncated Green function of this chain satis�es

a ptq „

d

2t

πE pZ2
1q
.

as t goes to `8.

The following two results, presented in [28], show that the behavior of Sn pfq

when n goes to `8 is closely related with a pnq.

Theorem2.2.31. 48LetX be aHarris recurrentMarkov chainwith invariantmeasure

π. Then, for every nonnegative function f P L1 pE, πq with π pfq ą 0 and every

initial distribution λ both the sequences

"

Sn pfq

a pnq

*

ně1

and

#

ˆ

Sn pfq

a pnq

˙´1
+

ně1

are bounded in probability, where the random variables in the second term are allowed

to take the value8.

Theorem 2.2.32. 49Under the same hypothesis of Theorem 2.2.31, there exists a pos-

itive constant K such that

lim sup
nÑ8

Sn pfq

a
´

n
Hpapnqq

¯

H pa pnqq
“ K

ż

f pxq dπ pxq a.s.

where H pxq “ log log pmax tx, eeuq.

In [30], a version of Theorem 2.2.32 is given for the case que when π pfq “ 0

Theorem 2.2.33. 50 Let X be a Harris recurrent Markov chain with invariant mea-

sure π and kernel P and f be a measurable function satisfying:
48

Theorem 2.1 in [28]

49
Theorem 2.2 in [28]

50
Theorem 1.1 in [30]
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i)
ş

f pxq dπ pxq “ 0 ,
ş

f 2 pxq dπ pxq ă 8;

ii) sup0ăaă1

ş
ˇ

ˇ

ř`8

k“1 a
kf pxqP kf pxq

ˇ

ˇ dπ pxq ă `8,

then, there exists a constant Λf ě 0 such that

lim sup
nÑ8

Sn pfq
c

a
´

n
Hpapnqq

¯

H pa pnqq

“ Λf a.s.

Further, if in addition to i and ii the following two conditions also hold

ii’)
ř`8

k“1 f pxq
`

P kf
˘

pxq P L1 pE, πq,

iii) σf “
ş

f 2 pxq dπ pxq ` 2
ř8

k“1 f pxqP
kf pxq dπ pxq ą 0.

Then Λf ą 0.

2.2.10 β-null recurrent Markov chains

With the objective of �nding the exact limit distribution of
Snpfq
apnq

in the null

recurrent case, the concept of regularly varying Markov chain was introduced in

[28]. Before stating this concept, we need a few de�nitions.

A positive and measurable function g, de�ned in ra,`8q, where a ě 0, is

regularly varying at in�nity if limxÑ`8
gpxtq
gpxq

exists for all t ą a. Theorem 1.4.1.

in [21] shows that g is regularly varying at in�nity if and only if there exists a

real constant β and a slowly varying function L such that g ptq “ tβL ptq. The

number β is called index of regular variation and it is unique for the function, i.e.

if there exists β, β1 and L, L1 such that g ptq “ tβL ptq “ tβ1L1 ptq then β “ β1

and L “ L1.

We will say that a Markov chain X is regularly varying if its truncated Green

function is regularly varying. Thanks to the uniqueness of the index of regular
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variation β we now introduce the concept of β-regular Markov chain.

De�nition 2.2.18 (β-regular Markov chain). ψ-irreducible, Harris recurrentMarkov

chain X such that its truncated Green function is regularly varying with index β.

Remark 2.2.9. Aswas pointed out in [28], every irreducible, positive recurrentMarkov

chain is 1-regular, and ifX is null recurrent and β-regular, then 0 ď β ă 1. Therefore,

for any β-regular chain, β P r0, 1s.

The notation used in the literature regarding β-regular chains di�ers a little

between papers. In order to use the same notation in all of our results, de�ne

u ptq “

$

’

’

&

’

’

%

a ptq , β P t0, 1u

Γ p1` βq a ptq , 0 ă β ă 1

,

where Γ is the Gamma function.

In Theorem 2.2.31, we saw that under Harris recurrence,
Snpfq
apnq

is bounded

in probability. The following result describes the asymptotic limits assuming β-

regularity.

Theorem 2.2.34. 51Let X be a β-regular Markov chain with kernel P and invariant

measure π. Then, for every non-negative function f P L1 pE, πq, and every initial

distribution λ,the sequence of random variables Snpfq
upnq

converges weakly (for β ă 1).

Moreover, the limit distributions are as follows:

i) When β “ 0, the limit distribution is the exponential distribution with param-

eter
ş

f pxq dπ pxq.

51
Theorem 2.3 in [28]
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ii) If 0 ă β ă 1, the limit distribution is

Mβ p1q

ż

f pxq dπ pxq,

whereMβ p1q is a Mittag-Le�er distribution with parameter β.

iii) When β “ 1,

Sn pfq

u pnq
Ñ

ż

f pxq dπ pxq in probability.

Remark 2.2.10. The Mittag-Le�er distribution with parameter β is a non-negative

continuous distribution, whose moments are given by

E
`

Mm
β p1q

˘

“
m!

Γ p1`mβq
m ě 0.

By (3.39) in [67], its Laplace transform is

E rexp p´sMβ p1qqs “
`8
ÿ

k“0

p´sqk

Γ p1` kβq
s ě 0. (2.39)

Remark 2.2.11. In the original formulation of Theorem 2.2.34 (Theorem 2.3 in [28]),

the normalization sequence is a pnq and the limit distribution when 0 ă β ă 1 is

written as G´ββ
ş

f pxq dπ pxq, where Gβ is a stable random variable with Laplace

transform

E p´tGβq “ exp

ˆ

´
tβ

Γ pβ ` 1q

˙

.

Notice that Gβ “
Y

Γp1`βq
1
β
where Y has Laplace transform exp

`

´sβ
˘

. Let F be the

cumulative distribution function of Y . Then, P
´

G´ββ ď x
¯

“ 1 ´ F

ˆ

Γp1`βq
1
β

x
1
β

˙

.
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By Example b, pp 453 of [46], this implies that the Laplace transform of G´ββ is

`8
ÿ

k“0

`

´Γ p1` βq s
˘k

Γ p1` kβq
s ě 0,

which coincides with the Laplace transform of Γ p1` βqMβ p1q by (2.39).

The equivalent theorem, but for the case when π pfq “ 0 was presented in [30]

and is as follows:

Theorem 2.2.35. Let X be a β-regular Harris recurrent Markov chain. Under con-

ditions i and ii’ of Theorem 2.2.33 we have

Sn pfq
a

u pnq

d
ÝÑ σf

a

DβU (2.40)

where U and Dβ are independent random variables, U „ N p0, 1q, and the distribu-

tion of Dβ depends on β as follows:

i) When β “ 0, D0 is an exponential distribution with parameter 1.

ii) When β “ 1, D1 ” 1.

iii) When 0 ă β ă 1, Dβ “Mβ p1q withMβ p1q de�ned as in Remark 2.2.10.

Similarly to remark 2.2.11, when 0 ă β ă 1, the original formulation of Theo-

rem 2.2.35 (Theorem 2.4 in [30]) uses a pnq instead of u pnq and has that D
´ 1
β

β is a

stable distribution with Laplace transform

E
„

exp

ˆ

´tD
´ 1
β

β

˙

“ exp

ˆ

´
tβ

Γ p1` βq

˙

. (2.41)

By the same argument used in remark 2.2.11 (considering Gβ “ D
´ 1
β

β ), we have

that the distribution of D
´ 1
β

β equals the distribution of Γ p1` βqMβ p1q.
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With the objective of developing a non-parametric estimation theory in null-

recurrent scenario, the concept of β-null recurrent Markov chain was introduced

in [67].

De�nition 2.2.19 (β-null recurrent Markov Chain). Markov chain X such that is

ψ-irreducible and there exists a small function h, an initial measure λ, a constant

β P p0, 1q and a slowly varying function Lh such that

Eλ

«

n
ÿ

t“0

h pXtq

ff

„
1

Γ p1` βq
nβLh pnq . (2.42)

as n goes to `8.

Remark 2.2.12. A condition similar to (2.42) was introduced as Hypothesis (C) in

page 147 of [113], with the objective of �nding a law of the iterated logarithm for ad-

ditive functionals overXwhich are close to square integrable martingales with respect

to the invariant measure of the chain. The main di�erence between both conditions is

that in [113], the function h is not required to be a small function.

The most widely known example of β-null recurrent processes are the random

walks de�ned in Example 2.2.3. In e�ect, if the distribution Z is continuous, cen-

tered, and has a �nite variance, then the random walk is
1
2
-null recurrent (see [64]

and pp.8 of [88] for the form the slowly varying function).

Lemma 3.1 in [67] shows that, ifX satis�es the minorization conditionM p1, s, νq,

and for some β, h, λ condition (2.42) is ful�lled, then it is ful�lled for every small

function, which implies that β does not depend on the small function nor on the

initial measure, and therefore is a global parameter of the chain X. In Theorem

2.2.36 we remove the M p1, s, νq assumption.
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Theorem 2.2.36. Assume X is β-null recurrent, and let π be a �xed invariant mea-

sure. Then we can �nd a slowly varying function L such that condition (2.42) holds

with Lh “ π phqL for every small function h.

Before proving the theorem, we need a few preliminary results that will be

useful in the sequel.

For a measure λ P M pEq
`

and a measurable function h de�ne,

g ph, λ, xq “ λGptxuq
phq “ Eλ

«

txu
ÿ

t“0

h pXtq

ff

. (2.43)

For ε P p0, 1q, let

 

Xγpnq

(

ně0
be the Pε-chain de�ned in example 2.2.1, with

initial measure λ and kernel Pε. De�ne gε ph, λ, xq as in (2.43) but for the Pε-chain.

Lemma 2.2.1. For any measurable function h and any initial measure λ P M pEq
`
,

when x goes to `8:

gε ph, λ, xq „ p1´ εq g

ˆ

h, λ,
x

1´ ε

˙

@ε P p0, 1q . (2.44)

And, if X is β-null recurrent, then

gε ph, λ, xq „ g ph, λ, xq p1´ εqβ´1
@ε P p0, 1q . (2.45)

Proof. Let Xε
be the Pε-chain described in Example 2.2.1. Let n “ txu and F ε

n “

σ
´

tαku
γpnq
k“1 , tγ pjqu

n
j“0

¯

Notice that,

n
ÿ

k“1

h
`

Xγpkq

˘

“

γpnq
ÿ

k“1

αkh pXkq. (2.46)

The expectation of the left hand side of (2.46) is gε ph, λ, nq. For the right-hand
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side, we have

Eλ

«

γpnq
ÿ

k“1

αkh pXkq

ff

“ Eλ

«

Eλ

˜

γpnq
ÿ

k“1

αkh pXkq

ˇ

ˇ

ˇ

ˇ

ˇ

F ε
n

¸ff

“ Eλ

«

γpnq
ÿ

k“1

αkEλh pXkq

ff

,

Using the fact that γ pnq is a stopping time for the sequence tαku and Wald’s equal-

ity
52

, we get

Eλ

«

γpnq
ÿ

k“1

αkEλh pXkq

ff

“ p1´ εqEλ

«

Eλ

˜

γpnq
ÿ

k“1

h pXkq

¸ff

“ p1´ εqEλg ph, λ, γ pnqq.

By the Law of Large Numbers,
γpnq
n

converges to p1´ εq´1
almost surely and in ev-

ery L-norm, then, Eλg ph, λ, γ pnqq „ Eλg
`

h, λ, n
1´ε

˘

, which completes the proof

of (2.44).

When X is β-null recurrent, we have

g

ˆ

h, λ,
n

1´ ε

˙

„
nβ

p1´ εqβ
L
`

n
1´ε

˘

Γ p1` βq
„
g ph, λ, nq

p1´ εqβ
.

where the last equivalence holds due to the slow variation ofL at in�nity. Equation

(2.45) now follows immediately.

Corollary 2.2.1. A Harris recurrent Markov chain is β-null recurrent if and only if

all of its Pε-chains are β-null recurrent.

Proof. If X is β-null recurrent, there is a small function h that satis�es (2.42) for

some β. By Theorem 2.1.8 the function h is small for all the Pε-resolvents, and by

(2.45) it satis�es condition (2.42) for the Pε-chains.

For the converse, suppose that for some ε the Pε-chain is β-null recurrent. Let

h be a small function for the original chain X, by Theorem 2.1.8, h is also small

52
Theorem 14.14.3 in [55].
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for the Pε-chain, hence, gε
`

λ, h, n
1´ε

˘

„
p1´εqβnβLhpnq

Γp1`βq
and the result follows from

(2.44).

For the proof of Theorem 2.2.36 we will follow a similar approach as the one

used to prove 2.2.25, with the detail that we only need to take care of Step 3, because

Steps 1 and 2 were handled by Lemma 3.1 in [67].

Proof of Theorem 2.2.36. Take ε P p0, 1q �xed. Let h and λ satisfy condition (2.42)

for X. By Lemma 2.2.1, h and λ satisfy the condition (2.42) for the Pε-chain, there-

fore, the Pε-chain is β-null recurrent.

By Theorem 2.2.8, the Pε-chain satis�es the minorization conditionM p1, s, νq

for some ps, νq. Let πs be the measure de�ned by (2.33). This measure is invariant

for both X and the Pε-chain by Theorem 2.1.10. These conditions allow us to apply

Lemma 3.1 in [67], obtaining that there exists a slowly varying function Ls such

that, for any small function f , condition (2.42) is satis�ed with Lf “ πs pfqLs,

therefore, g ph, λ, nq „ nβπsphqLspnq
Γp1`βq

. By the uniqueness of the invariant measure,

there exists a constant Ks such that πs “ Ksπ, hence g ph, λ, nq „ nβπphqLpnq
Γp1`βq

where L pnq “ KsLs pnq.

The next result shows under null recurrence, there is no distinction between

β-regular and β-null recurrent

Theorem 2.2.37. If X is null recurrent, the concepts of β-regular and β-null recur-

rent coincide.

Proof. In e�ect, notice that

a ptq “
λGpttuq pIDq
π pDq

and g ph, λ, tq “ Eλ

«

n
ÿ

k“0

h pXkq

ff

“ λGpttuq phq (2.47)

Then, by (2.35), both functions are of the same order.
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Theorem 3.1 in [67] characterizes β-null recurrent chains that satisfy the mi-

norization condition M p1, s, νq in terms of the tail of the time of return to the

pseudo atom. Here, we present a small extension of that result, where we charac-

terize β-null recurrent chains in terms of the time of return to the pseudo-atom of

the Pε-chains. This result is a direct consequence of Corollary 2.2.1 and the afore-

mentioned Theorem 3.1 in [67].

Theorem 2.2.38. Assume X is Harris recurrent and α̌ is an atom for the split chain

of the Pε-chain. Then, X is β-null recurrent if and only if

Pα̌ pτα̌ ą nq “
1

Γ p1´ βqnβL pnq
p1` o p1qq . (2.48)

where L is as in Theorem 2.2.36.

Moreover, if X is β-null recurrent, then β “ sup tp ě 0 : Eα̌ rτ
p
α̌s ă 8u.

When the chain is atomic, (2.48) implies that is equivalent to the condition

(2.28) that we had to impose to null recurrent chains in order to get a Central

Limit Theorem. Incidentally, Theorem 2.2.38 also implies that the atomic X is β-

null recurrent if and only if τα belongs to the domain of attraction of a stable law

with index β53
.

Remark 2.2.13. A strengthened version of (2.48) was used in [32] to obtain a strong

invariance result in the null-recurrent case.

Using this characterization of β-null recurrence and the construction outlined

in Example 2.2.7, it is possible to create β-null recurrent processes for any value of

β in the range of p0, 1q as well as null recurrent processes that are not β-null recur-

rent. Aside from these constructions, there are many examples of β-null recurrent

Markov chains in the literature. Bellow we show a couple of examples.

53
See pp.3 of [28]
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Example 2.2.10 (Bessel random walks). A Bessel random walk is a stochastic pro-

cess de�ned on Z` “ t0, 1, 2, . . .u, re�ecting at 0, with steps˘1 and transition prob-

abilities of the form

P pXn`1 “ x` 1 |Xn “ xq “ px “
1

2

ˆ

1´
δ

2x
` h pxq

˙

x ě 1,

P pXn`1 “ x´ 1 |Xn “ xq “ 1´ px x ě 1,

P pXn`1 “ 1 |Xn “ 0q “ 1,

where h pxq “ o
`

1
x

˘

as xÑ `8.

The parameter δ is named the drift parameter. A Bessel random walk is recurrent

if δ ą ´1, positive recurrent if δ ą 1 and transient if δ “ ´1; for δ “ 1 recurrence

of transience depends on the function hpxq. In the null recurrent case, the chain is β-

regular with β “ 1`δ
2

and P pτ0 ě nq „ n´
1`δ

2 L˚ pnq where L˚ is a slowly varying

function (see Theorem 2.1 in [3]). For δ “ 0 and h ” 0 this process corresponds with

a re�ected random walk with p “ 1
2
.

Bessel random walks are widely used in statistical physics, see for example [3],

[36] and the references therein.

Example 2.2.11 (TAR model). Let

Xn “ α1Xn´1I tXn´1 P Su `Xn´1I
 

Xn´1 P S
C
(

` xn, X0 “ 0

where α1 is a real constant, S is a compact set in R, SC is its complement and xn is

an i.i.d sequence of random variables such that Exn “ 0, Ex4
n ă 8, its distribution

function is absolutely continuous with respect to the Lebesgue measure with density

function f0 such that infxPC0f0 pxq ą 0 for all compact sets C0.

In Section 4.5 of [49], this model is used to study the relationship between the
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logarithm of the British pound/American dollar real exchange rate and the Consumer

Price Index. In that same paper, it was proven that the index of this model is 1
2
. This

shows that having index 1
2
does not characterize random walks.

Assume for the moment that X satis�es the minorization condition M p1, s, νq

and take α̌ as an atom in split chain X̌. De�ne T pnq “ Tn pα̌q ´ 1 as in (2.25) and

let u pnq “ nβLs pnq where Ls is as in (2.48) and let v pnq be its inverse.

De�ne the following stochastic processes:

Tn ptq “
T ptntuq

u pnq
, Cn ptq “

1

v pnq

tntu
ÿ

k“1

´

τα̌ pkq ´ τα̌ pk ´ 1q
¯

. (2.49)

Consider the space of càdlàg functions de�ned on the interval r0,`8q, denoted

by Dr0,`8q. This space consists of the real functions that are right-continuous with

left limits and de�ned over r0,`8q. More precisely, a function g P Dr0,`8q if and

only if g is right-continuous, has left limits at all points t ą 0, and limtÓ0 gptq “

gp0q. The space Dr0,`8q is equipped with the Skorokhod
54

topology, making it a

completely separable metric space. We will use

Dr0,`8q
ÝÝÝÝÑ to denote weak conver-

gence in this space, and
fd

ÝÑ for convergence of �nite-dimensional laws.

It is proven in [68] that Cn
Dr0,`8q
ÝÝÝÝÑ Sβ where Sβ is the one-sided stable Levy

process
55

de�ned by the marginal characteristics

E rexp pisCβ ptqqs “ exp
`

isβt
˘

s P R, t P r0,`8s.

The Mittag-Le�er process with parameter β is de�ned as the inverse of Sβ . It

54
See Chapter 6 of [60] or Chapter 3 in [20] for more details about this space.

55
A Levy process is a stochastic process with stationary, independent increments and sample

paths in Dr0,`8q.
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is an increasing continuous stochastic process de�ned as

Mβ ptq “ tβMβ p1q , E
`

Mm
β p1q

˘

“
m!

Γ p1`mβq
m ě 0.

Theorem 2.2.39. 56 Assume X is a β-null recurrent Markov chain that satis�es the

minorization conditionM p1, s, νq and let λ be any initial measure. Then

Tn
Dr0,`8q
ÝÝÝÝÑMβ

Moreover, if C is a small set, then, the process TC,n ptq “
TtntupCq

πspCqupnq
also converges

weakly toMβ in Dr0,`8q.

Using Theorem 2.2.39 we are able to show the following functional generaliza-

tion of Theorem 2.2.34

Theorem 2.2.40. Under the same assumptions of Theorem 2.2.39, if f P L1 pE, πq

and π pfq ‰ 0, then

Sn,f
Dr0,`8q
ÝÝÝÝÑMβ, (2.50)

where Sn,f ptq “
Stntupfq

πpfqupnq
.

Proof. 57
Let C be a �xed small set. Without loss of generality, let us assume

π pCq “ 1. By Theorem 2.2.39, TC,n converges weakly to the process Mβ , there-

fore, if we show that Dn “ Sf,n´ TC,n converges to the 0 process, then (2.50) will

follow by Lemma 3.31 in [60] and the identity Sf,n “ pSf,n ´ TC,nq ` TC,n.

By Lemma 3.30 in [60], we just need to show that

sup
tďM

|Dn ptq | “ op p1q @M ą 0. (2.51)

56
Theorem 3.2 and Lemma 3.6 in [67]

57
This proof follows the line of the proof of Lemma 3.6 in [67].
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Take 0 ă δ ă 1 and de�ne nδ “ n´p1´δq, then

sup
tďnδ

|Dn ptq| ď
1

u pnq
sup
tďnδ

ˇ

ˇ

ˇ

ˇ

Stntu pfq

π pfq
´ TCtntu

ˇ

ˇ

ˇ

ˇ

ď
1

u pnq

´

ˇ

ˇ

ˇ

ˇ

Snδpfq

π pfq

ˇ

ˇ

ˇ

ˇ

` TC
`

nδ
˘

¯

ď
Stnδup|f |q

u pnq |π pfq|
`
TC

`

nδ
˘

u pnq
.

Notice that,

Stnδup|f |q

u pnq
“
Stnδup|f |q

u pnδq

u
`

nδ
˘

u pnq
“
Stnδup|f |q

u pnδq

L
`

nδ
˘

L pnqnβp1´δq
.

By Theorem 2.2.34,

S
tnδu

p|f |q

upnδq
is bounded in probability. On the other hand,

Lpnδq
Lpnq

is

a slowly varying function, therefore

Lpnδq
Lpnqnβp1´δq

Ñ 0 by Proposition 1.3.6-v in [21].

Hence,

S
tnδu

p|f |q

upnq
“ opp1q. The same argument proves that

TCpnδq
upnq

“ opp1q. Then,

suptďnδ |Dn ptq| “ opp1q.

For nδ ď t ďM we have

sup
nδďtďM

|Dn ptq| ď sup
nδďtďM

TC ptntuq

u pnq

ˇ

ˇ

ˇ

ˇ

Stntu pfq

π pfqTC ptntuq
´ 1

ˇ

ˇ

ˇ

ˇ

ď TC,n pMq sup
nδďtďM

ˇ

ˇ

ˇ

ˇ

Stntu pfq

π pfqTC ptntuq
´ 1

ˇ

ˇ

ˇ

ˇ

ď TC,n pMq sup
měnδ

ˇ

ˇ

ˇ

ˇ

Sm pfq

π pfqTC pmq
´ 1

ˇ

ˇ

ˇ

ˇ

which is opp1q thanks to the boundness in probability of TC,n pMq (by Theorem

2.2.39) and the almost sure convergence of
Smpfq
TCpmq

to π pfq (consequence of (2.34)).

The following result is a functional generalization of Theorem 2.2.35. It appears

as Lemma A.2 in [49]
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Theorem 2.2.41. Suppose X is a β-null recurrent Markov chain that satis�es the

minorization condition M p1, s, νq and f is such such that E|f pB1q ´ π pfq|
2m is

�nite for somem ą 1, then

˜

Stntu pfq ´ π pfqT ptntuq
a

u pnqσf
, Tn

¸

Dr0,`8q
ÝÝÝÝÑ pB ˝Mβ,Mβq ,

where B is a standard Brownian motion independent ofMβ and σf “ Var pf pB1qq.

Remark 2.2.14. When π pfq “ 0 and t “ 1 the limit of the �rst component in Theo-

rem 2.2.41 isB pMβ p1qq. Because for each s,
Bpsq
?
s
has a standard normal distribution

and B andMβ are independent, then U “
BpMβp1qq?

Mβp1q
also has standard normal distri-

bution and is independent ofMβ p1q
58. Hence, we can writeB pMβ p1qq as

a

Mβ p1qU

which coincides with the form of the limit in Theorem 2.2.35.

Under random normalization, a Central Limit Theorem was proved in Lemma

A.3 of [49].

Theorem 2.2.42 (Central Limit Theorem). Under the same hypothesis of Theorem

2.2.41. For any small set C ,

a

Tn pCq π pCq

σf

ˆ

Sn pfq

Tn pCq
´
π pfq

π pCq

˙

d
ÝÑ N p0, 1q .

58
See Theorem A.1 in [67]
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Chapter 3
Tail Index Estimation for Discrete

Heavy-Tailed Distributions

The content of this chapter is based in [17]. It is the result of a collaboration

with Patrice Bertail
1

and Stephan Clemençon
2
.

Abstract: It is the purpose of this paper to investigate the issue of estimat-

ing the regularity index β ą 0 of a discrete heavy-tailed r.v. Z , namely a random

value. Z valued in N˚ such that PtZ ą nu “ Lpnq ¨ n´β for all n ě 1, where

L : R˚` Ñ R` is a slowly varying function. Such discrete probability laws, referred

to as generalized Zipf’s laws sometimes, are commonly used to model rank-size

distributions after a preliminary range segmentation in a wide variety of areas,

ranging from quantitative linguistics to social sciences through information the-

ory. As a �rst go, we consider the situation where inference is based on indepen-

dent copies Z1, . . . , Zn of the generic r.v. Z . Just like the popular Hill estimator

in the continuous heavy-tail situation, the estimator
pβ we propose can be derived

1
MODAL’X, UMR 9023 - Université Paris Nanterre, CNRS, UPL, 200 ave de la République, F92000

Nanterre.

2
LTCI, Telecom Paris, Institut Polytechnique de Paris.
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by means of a suitable reformulation of the regularly varying condition, replacing

Z’s survivor function with its empirical counterpart. Under mild assumptions, a

nonasymptotic bound for the deviation between
pβ and β is established, as well as

limit results (consistency and asymptotic normality). Beyond the i.i.d. case, the in-

ference method proposed is extended to the estimation of the regularity index of an

atomic β-null recurrent Markov chain. Since the parameter β can be then viewed

as the tail index of the (regularly varying) distribution of the return time of the

chain X to any atom, the estimator is constructed from the successive regenera-

tion times. We prove that in this case, the consistency of the estimator promoted

is preserved. In addition to the theoretical analysis carried out, simulation results

provide empirical evidence of the relevance of the inference technique proposed.

3.1 Introduction

This article is devoted to the study of the problem of estimating the regularity

index β ą 0 of a generalized discrete Pareto distribution, namely the probability

distribution of a random variable S de�ned on a probability space pΩ, F , Pq,

taking its values in N˚ and such that:

P pS ą nq “ n´βL pnq for all n ě 1, (3.1)

where L : R` Ñ R is a slowly varying function, i.e. such that Lpλzq{Lpzq Ñ `1

as z Ñ `8 for any λ ą 0, see [21]. Such discrete power law probability distribu-

tions also referred to as generalized Zipf’s laws are often used to model the distri-

bution of discrete data exhibiting a speci�c rank-frequency relationship, namely

when the logarithm of the frequency and that of the rank order are nearly pro-
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portional. Such a phenomenon has been empirically observed in many ranking

systems: in quantitative linguistics (i.e. when analyzing word frequency law in

natural language, refer to e.g. [83]) in the �rst place, as well as in a very wide va-

riety of situations, too numerous to be exhaustively listed here (see [1], [78] or

[121] among many others). In this paper, we �rst consider the issue of estimating

the parameter β involved in (3.1) (supposedly unknown, like the function L) in

the classic (asymptotic) i.i.d. statistical setting, i.e. based on an increasing num-

ber n ě 1 of independent copies S1, . . . , Sn of the generic r.v. S. Statistical

inference for discrete heavy-tailed distributions has not received much attention

in the literature. Most of the very few dedicated methods documented either deal

with very speci�c cases as in e.g. [51], [85] or [31] or else consists in applying tech-

niques originally designed for continuous heavy-tailed distributions to the discrete

data after a preliminary addition of an independent uniform noise, see e.g. [116].

The vast majority of the regular variation index estimators proposed in the lit-

erature, Hill’s or Pickand’s estimators in particular (cf [56], [100]), are based on

order statistics, which causes obvious di�culties in the discrete case because of

the possible occurrence of many ties. In contrast, the estimator under study here

is based on the analysis of the probability of exponentially separated tail events. It

simply rests on the fact that, as can be immediately deduced from (3.1), we have

lnppkq ´ lnppk`1q “ β ` lnpLpekq{Lpek`1qq, where lnpxq denotes the natural log-

arithm of any real number x ą 0 and pl “ PpS ą elq for all l P N, and that

Lpek`1q{Lpekq is expected to be very close to 1 for k P N chosen su�ciently large.

A natural (plug-in) inference technique can be then devised by replacing the tail

probabilities pl with their empirical versions pp
pnq
l “ p1{nq

řn
i“1 ItSi ą elu for

l P N, where ItEu denotes the indicator function of the event E . This yields the
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estimator

pβn pkq “ ln
´

pp
pnq
k

¯

´ ln
´

pp
pnq
k`1

¯

, (3.2)

provided that pp
pnq
k`1 ą 0. We point out that it has exactly the same form as that

proposed and analyzed in [25] in a di�erent context, that of (continuous) approxi-

mately Pareto distributions3
namely. In the discrete generalized Pareto framework,

we prove that for an appropriate choice of the hyperparameter k “ kn (typically

chosen of order lnpnq), the estimator (3.2) is strongly consistent and asymptotically

normal as nÑ `8. Nonasymptotic upper con�dence bounds for the absolute de-

viations between
pβn pkq and β are also established here.

As explained in [28, 30, 67], for β-null recurrent Markov chains, the regularity

index β P p0, 1q controls the (sublinear) rate at which the number of visits to any

given Harris set increases with observation time n, no matter the initial distribu-

tion. In the regenerative case (i.e. when the chain X possesses an accessible atom,

a Harris set on which the transition probability is constant), the distribution of

the regenerative time, the return time to the atom, is a discrete generalized Pareto

(3.1) and the parameter β is its tail index. Due to the non-standard behavior of tra-

ditional estimators in this context, statistical inference for null-recurrent Markov

chains is very poorly documented in the literature (see for instance [49, 66, 67, 88])

and, to the best of our knowledge, estimation of the key quantity β has not been

considered besides the estimator described in [67, Remark 3.7], which is of limited

practical use due to its slow convergence (see Section 3.3.3 for a more precise for-

mulation of this statement). Hence, it is also the goal of this article to extend the

use of the estimator (3.2) to the case where the Si’s are the successive durations

3
The distribution of a real-valued r.v.X is said to be approximately Pareto with tail index β ą 0

i� its survivor function is of the form: @x ą 0, PpX ą xq “ Lpxqx´β , where L is asymptotically

constant at in�nity, i.e. there exists C P p0, 8q s.t. Lpxq Ñ C as xÑ `8.
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between the consecutive regeneration times up to time n. The main di�culty nat-

urally arises from the fact that the number T pnq of regeneration times (and thus

the number of durations) is now random and the variables S1, . . . , ST pnq are not

independent anymore (in particular, their sum is less than n by construction). We

show that the strong consistency of the estimator is preserved. For illustration pur-

poses, numerical experiments have been carried out, providing empirical evidence

of the relevance of the estimation method promoted.

The paper is organized as follows. A thorough analysis of the behavior of the

estimator (3.2) in the i.i.d. case is �rst carried out in section 3.2. The asymptotic

results thus established are next extended in section 3.3.3 to the regenerative β-

null recurrent Markovian setup, when the estimator is computed based on a single

�nite-length trajectory of the atomic chain. Illustrative numerical results are pre-

sented in section 3.4, while technical proofs are deferred to Section 3.5.

3.2 Tail Index Estimation - The Discrete Heavy-

Tailed i.i.d. Case

Throughout this section, S1, . . . , Sn are independent copies of a generic dis-

crete generalized Pareto r.v. S, i.e. a random variable S with survivor function of

type 3.1, where the parameter β ą 0 and the slowly varying functionL are suppos-

edly unknown. As a �rst go, we start to investigate the behavior of the estimator

(3.2) in this basic general framework and next develop the analysis in speci�c sit-

uations, i.e. for particular choices of the function L.
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3.2.1 Main Results - Con�dence Bounds and Limit Theorems

As explained in the Introduction section, the estimator (3.2) can be viewed as

an empirical counterpart of the quantity

βpkq :“ lnppkq ´ lnppk`1q “ β ` ln

ˆ

Lpekq

Lpek`1q

˙

, (3.3)

see (3.1), which tends to β as k Ñ 8 by virtue of the slow variation property of L.

As previously emphasized, unless the function L is supposed to be asymptotically

constant (i.e. there exists C ą 0 s.t. Lpxq Ñ C as x Ñ `8), the discrete general-

ized Pareto model (3.1) is not a discrete version of the (continuous) approximately

β-Pareto model considered in [25] and, consequently, the validity framework es-

tablished therein does not apply here.

The proposition below provides an upper con�dence bound for the absolute

deviations between (3.2) and β (respectively, between (3.2) and βpkq ).

Proposition 3.2.1. Let δ P p0, 1{2q and set unpδq “ lnp2{δq{n for all n ě 1. If

k ě 1 is such that pk`1 ě 16unpδq, then, with probability at least 1´ 2δ, we have:

ˇ

ˇ

ˇ

pβnpkq ´ β
ˇ

ˇ

ˇ
ď 6

d

unpδq

pk`1

`

ˇ

ˇ

ˇ

ˇ

ln

ˆ

Lpekq

Lpek`1q

˙
ˇ

ˇ

ˇ

ˇ

. (3.4)

The bound (3.4) reveals some sort of ’bias-variance’ trade-o�, ruled by the hy-

perparameter k ą 0. The second term on the right-hand side can be viewed as

the bias of the inference method, insofar as the estimator (3.2) can be seen as an

empirical version of the approximant (3.3). It decays to 0 as k increases towards

in�nity, while the �rst term, whose presence is due to the random nature of the es-

timator, tends to`8. We point out that second-order slow variation conditions (see

[50]) are required to bound the (vanishing) bias term in (3.4), as shall be explained
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in subsection 3.2.2. The following result reveals that for an appropriate choice of

k “ kn, the estimator (3.2) is strongly consistent.

Theorem3.2.2 (Strong consistency). Suppose that, asnÑ `8, we have kn Ñ `8

so that plnnq exppknβq{n “ opLpexppknqq. Then, we have:

pβnpknq Ñ β almost surely, as nÑ `8.

In particular, as stated below, strong consistency is guaranteed when kn is of

logarithmic order.

Corollary 3.2.1. Let 0 ă A ă 1{β. Then, we have:

pβnpA lnpnqq Ñ β almost surely, as nÑ `8.

Now the following results establish the asymptotic normality of the deviation

between (3.2) and βpknq, when appropriately normalized.

Theorem 3.2.3 (Asymptotic normality). Suppose that kn satis�es the conditions of

Theorem 3.2.2 and kn “ opnq as nÑ `8.

(i) Then, as nÑ `8, we have the convergence in distribution:

?
npkn

´

pβnpknq ´ βpknq
¯

ñ N
`

0, eβ ´ 1
˘

.

(ii) In addition, asymptotic normality holds true for the ’standardized’ deviation:

b

npp
pnq
kn

´

pβn pknq ´ β pknq
¯

a

epβnpknq ´ 1
ñ N p0, 1q , as nÑ `8.
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The asymptotic normality results above can be extended to the deviation be-

tween (3.2) and β, provided that the bias term βpknq´β vanishes at an appropriate

rate, as stated below.

Corollary 3.2.2. Suppose that the conditions of Theorem 3.2.3 are ful�lled. In addi-

tion, assume that kn is such that

?
npkn

˜

1´
L
`

ekn
˘

L pekn`1q

¸

Ñ 0, as nÑ `8. (3.5)

(i) Then, we have the convergence in distribution

?
npkn

´

pβn pknq ´ β
¯

ñ N p0, eβ ´ 1q as nÑ `8.

(ii) In addition, the ’studentized’ version is asymptotically normal:

b

npp
pnq
kn

´

pβnpknq ´ β
¯

a

epβnpknq ´ 1
ñ N p0, 1q as nÑ `8.

Of course, the condition (3.5) on kn can be hardly checked in practice. This is a

classic issue in tail estimation and in the statistical analysis of extreme values more

generally. The choice of the hyperparameter k somehow rules the (asymptotic)

bias-variance trade-o�: the estimator (3.2) is expected to be of large variance when

k is large and to have a large bias if k is too small. As depicted in Fig. 3.1, to choose

k, one may use the same approach as that originally proposed for the Hill estimator

(see e.g. [106]), which consists in plotting the values of (3.2) for a range of values

of k and choosing k in a region where a certain degree of stability is exhibited.

Averaged versions. Rather than picking a single value for k, another natural ap-

proach would consist in averaging the estimators (3.2) over a range of values for
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Figure 3.1: Behaviour of
pβnpkq for di�erent values of k, to estimate the parameter

β “ 0.15 based on a dataset of 106
independent realizations of a Zeta distribution

with parameter α “ β ´ 1 (see section 3.4 for its de�nition).

the hyperparameter. Let k and m such that k ą m and de�ne

β pk,mq “
1

2m` 1

m
ÿ

j“´m

β pk ` jq, (3.6)

pβn pk,mq “
1

2m` 1

m
ÿ

j“´m

pβn pk ` jq. (3.7)

One may easily check that

β pk,mq “ β `
1

2m` 1
ln

˜

L
`

ek´m
˘

L pek`m`1q

¸

.

The nonasymptotic result in Proposition 3.2.1 can be extended to (3.7), as re-

vealed by the bound stated below, which suggests that a more favorable balance

between bias and variance could be attained by means of an adequate choice of

the range de�ned by k and m.

Proposition 3.2.4. Let k and m such that k ą m and let δ P p0, 1{p2p1 ` 2mqq.

Then, as soon as pk`m`1 ě 16unpδq, we have with probability larger than 1´2δp1`
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2mq:
ˇ

ˇ

ˇ

pβn pk,mq ´ β
ˇ

ˇ

ˇ
ď 6

d

un pδq

pk`m`1

`
1

2m` 1

ˇ

ˇ

ˇ

ˇ

ˇ

ln

˜

L
`

ek´m
˘

L pek`m`1q

¸
ˇ

ˇ

ˇ

ˇ

ˇ

. (3.8)

3.2.2 Re�ned Bias Analysis - Examples

We now consider several speci�c cases of distributions of type (3.1) (i.e. several

instances of the slowly varying functions L) to explicit the asymptotic order of

magnitude of the terms 1{
?
npk`1 and | lnpLpekq{Lpek`1qq| involved in the bound

(3.4), when kn is picked as in Corollary 3.2.1: kn “ A lnn with 0 ă A ă 1{β.

‚ The logarithmic case. Suppose that Lpnq “ C lnn, where C ą 0. In this

situation, we have | lnpLpeknq{Lpekn`1qq| „ 1{pA lnnq as n Ñ `8, whereas

1{
?
npk`1 “ Op1{

?
n1´Aβ lnnq.

‚ The inversely logarithmic case. Consider now the situation where Lpnq “

C{ lnnwithC ą 0. Then, we still have we have | lnpLpeknq{Lpekn`1qq| „ 1{pA lnnq,

while 1{
?
npk`1 “ Op

a

plnnq{n1´Aβq as nÑ `8.

We point out that, in the two examples above, the conditions of Corollary 3.2.2

are not met, the bias being too big to get asymptotic normality (centered at β).

‚ The asymptotically constant case. Suppose that Lpnq “ eC0p1` εpnqq where

C0 ą 0 and εpnq Ñ 0 as nÑ `8. In this case, | lnpLpeknq{Lpekn`1qq| “ OpεpnAqq

and 1{
?
npk`1 “ Op1{

?
n1´Aβq. Hence, if |εpnAq| “ Opn´λq for some λ ą 0,

then the conditions of Corollary 3.2.2 are satis�ed with kn “ A lnn such that

maxtp1´ 2λq{β, 0u ă A ă 1{β.

‚ Slow variation with a remainder (SR2). Consider the case where the slowly

varying function satis�es the condition SR2 introduced in [21]: there exist two
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real-valued functions k and g de�ned on R` such that, for all λ ą 0,

Lpλxq

Lpxq
´ 1 „ κpλqgpxq, as xÑ `8, (3.9)

where κpλq “ c
şλ

1
θρ´1dθ, c ą 0 and g is regularly varying with index ρ ď 0,

i.e. gpxq “ xρUpxq where U is a slowly varying function. Under the additional

assumption that g has positive decrease, Corollary 3.12.3 in [21] gives the following

representation:

Lpxq “ C
`

1´ c|ρ|´1gpxq ` o pg pxqq
˘

, as xÑ `8, (3.10)

where C is a �nite constant. The result below provides a precise control of the

bias of the estimation method in this case.

Lemma 3.2.1. Suppose that conditions (3.9) and (3.10) are ful�lled. Then, as n Ñ

`8, we have:

ln

˜

L
`

nA
˘

L penAq

¸

“ ´c|ρ|´1n´A|ρ|
`

U
`

nA
˘

´ e´|ρ|U
`

enA
˘˘

` o
`

n´A|ρ|U
`

nA
˘˘

.

In this situation, the bias of the method is thus of orderOpn´A|ρ|q, while 1{
?
npk`1

is of orderOpn´p1´Aβq{2q. Hence, if 1{pβ`2|ρ|q ď A ă 1{β, satis�es the conditions

of Corollary 3.2.2 are satis�ed with kn “ A lnn.
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3.3 RegularNull-RecurrentChains -Regularity In-

dex Estimation

We start by setting out the notations used throughout this section and listing

�rst the properties satis�ed by the class of Markov chains under study. One may

refer to [87] for an excellent account of the Markov chain theory. The concept

of β-regularity for describing how fast a Harris chain returns to Harris sets is

then recalled, together with related asymptotic results, invoked in the subsequent

statistical analysis, for clarity’s sake.

3.3.1 Harris recurrent Markov chains

Here and throughout, X “ pXnqnPN denotes a time-homogeneous Markov

chain, with state spaceE, equipped with a countably generated σ-�eld E , and tran-

sition probability P px, dyq. For any probability distribution λ on E, we denote by

Pλ the probability distribution on the underlying space such that X0 „ pdxq and

byEλr.s the corresponding expectation. For notational convenience, we shall write

Px and Exr.s when λ is the Dirac mass at x P E.

We suppose that the chain X is ψ-irreducible, meaning that there exists some

σ-�nite measure ψ on pE, Eq such that any measurable setB Ă E, weighted by ψ,

can be reached by the chain with positive probability in a �nite number of steps, i.e.
ř

ně1 P
npx,Bq ą 0, no matter the starting point x P E, denoting by P npx, dyq the

n-th iterate of the transition probability P px, dyq. An irreducibility measure is said

to be maximal if it dominates any other irreducibility measure. A measurable set

A P E is called accessible if ψ pAq ą 0. An irreducible chain possesses an accessible

atom, and hence is called atomic, if there is an accessible set α P E such that for
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all x, y in α: P px, ‚q “ P py, ‚q.

If X is ψ-irreducible, there is d1 P N˚ and disjoints setsD1, . . . , Dd1 Dd1`1 “ D1

weighted by ψ such that ψpEzY1ďiďd1 Diq “ 0 and @x P Di, P px,Di`1q “ 1. The

g.c.d. d of such integers is called the period of the chain. X is said to be aperiodic if

d “ 1.

For any setA P E denote byT pAq the total number of visits ofX toA. Similarly,

denote by Tn pAq the number of visits X to A up to time n, i.e.

TnpAq “
n
ÿ

i“1

ItXi P Au, (3.11)

this sequence is called the occupation time sequence.

An irreducible Markov chain is Harris recurrent if it visits any accessible set

in�nitely often with probability one, no matter the starting point, i.e.

Px pT pAq “ 8q “ 1 @x P E.

Every Harris recurrent chain admits a nonzero invariant measure, that is, a

measure π such that

ş

xPE
πpdxqP px,Aq “ π pAq for all A P E . This measure

is unique up to a multiplicative constant and it is also a maximal irreducibility

measure for X. Measurable sets weighted by π are said to be Harris. When the

measure πpdxq is �nite, the chain is said to be positive recurrent otherwise, is called

null recurrent.

For Harris recurrent chains, the following strong ratio limit theorem holds: as

nÑ 8,
řn
i“1 ItXi P Au

řn
i“1 ItXi P Bu

Ñ
πpAq

πpBq
Pλ-almost-surely, (3.12)

for any initial distribution λ and any measurable setsA andB such that πpBq ą 0.
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3.3.2 β-null recurrent Markov Chains

For a wide class of Harris Markov chains, the regularity index describes how

fast the occupation time related to a Harris set C (i.e. the number of visits to C)

increases with time n. When X is positive recurrent, it follows from the Strong

Law of Large Numbers for Markov chains that occupation times of Harris sets

(3.11) grow in a linear fashion with the observation time: as nÑ 8,

TnpCq „ πpCqn Pν-almost surely.

Dealing with null recurrent chains is considerably more challenging, given that

a comprehensive theory of non-parametric estimation for this type of chain does

not exist. To tackle this problem, Karlsen and Tjøstheim developed in [67] the con-

cept of a β-null recurrent Markov chain (called β-regular Markov chains in [28]),

which establishes a regularity condition that makes the issue more manageable.

Before formulating it, we need a few de�nitions.

Denote by E` the class of nonnegative measurable functions with positive ψ

support. A function s P E` is called small if there exists an integer m0 ě 1 and a

measure ν P M pEq
`

such that

Pm0 px,Aq ě s pxq ν pAq @x P E,A P E . (3.13)

When a chain possesses a small function s, we say that it satis�es the minorization

inequality M pm0, s, νq. As pointed out in [90], there is no loss of generality in

assuming that 0 ď s pxq ď 1 and

ş

E
spxqdνpxq ą 0.

A set A P E is said to be small if the function IA is small. Similarly, a measure

ν is small if there exist m0, and s that satisfy (3.13). By Theorem 2.1 in [90], every
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irreducible Markov chain possesses a small function and Proposition 2.6 of the

same book shows that every accessible set contains a small set. Moreover, if π is

an invariant measure and A is a small set, then 0 ă π pAq ă `8 [90, Proposition

5.6, pp. 72].

We will say that an irreducible and Harris recurrent Markov chain X is β-null

recurrent (or β-regular) if there exists a small function h, an initial measure λ, a

constant β P p0, 1q and a slowly varying function Lh such that

Eλ

«

n
ÿ

t“0

h pXtq

ff

„
1

Γ p1` βq
nβLh pnq . (3.14)

as n goes to `8. Here Γpzq “
ş

tě0
tz´1e´tdt denotes the Gamma function.

Lemma 3.1 in [67] shows that the parameter β is a global parameter of the

chain, following [28], we will call this parameter the regularity index of the chain.

Furthermore, the lemma shows that the function Lh in (3.14) is essentially unique

up to a multiplicative constant. This means that if a small function h satis�es (3.14),

then for any small function f , there exists a constant Kf,h such that f satis�es

(3.14) with Lf “ Kf,hLh.

When particularized to functions of the form IA where A is a small set, (3.14)

shows that under β-null recurrence, the expectation of the growth of the occupa-

tion time of small sets is sublinear

EλTn pCq „
1

Γ p1` βq
nβLC pnq .

The following theorem, which is the particularization of Theorem 3.2 and

Lemma 3.6 of [67] to the atomic case, shows that when X is atomic, β-null recur-

rence is characterized by the fact that the time of the �rst return to the atom has
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a generalized Pareto distribution. The theorem also provides the limit distribution

for the occupation time of small sets.

Theorem3.3.1. AssumeX is a β-null recurrent atomicMarkov chain with accessible

atom α. Let τα “ mintn ě 1 : Xn P αu. Then,

i) There exists a slowly varying function Lα such that

Pα pτα ą nq „
1

Γp1´ βqnβLαpnq
. (3.15)

ii) For any small set C , there is a constant Kα,C ą 0 such that

Tn pCq

nβLα pnqKα,C

d
ÝÑMβp1q (3.16)

whereMβp1q is a Mittag-Le�er4 distribution of index β.

The class of β-null recurrent Markov chains contains many stochastic pro-

cesses widely used in probabilistic modeling.

Bessel random walks

A Bessel random walk is a stochastic process de�ned on Z` “ t0, 1, 2, . . .u,

re�ecting at 0, with steps ˘1 and transition probabilities of the form

P pXn`1 “ x` 1 |Xn “ xq “ px “
1

2

ˆ

1´
δ

2x
` h pxq

˙

x ě 1,

P pXn`1 “ x´ 1 |Xn “ xq “ 1´ px x ě 1,

4
The Mittag-Le�er distribution with index β is a non-negative continuous distribution, whose

moments are given by

E
`

Mm
β p1q

˘

“
m!

Γ p1`mβq
m ě 0.

See (3.39) in [67] for more details.
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P pXn`1 “ 1 |Xn “ 0q “ 1,

where h pxq “ o
`

1
x

˘

as xÑ `8.

The parameter δ is named the drift parameter. A Bessel random walk is recur-

rent if δ ą ´1, positive recurrent if δ ą 1 and transient if δ ă ´1; for δ “ ´1

recurrence of transience depends on the function hpxq. In the null recurrent case,

the chain is β-regular with β “ 1`δ
2

and P pτ0 ě nq „ n´
1`δ

2 L˚ pnq where L˚ is a

slowly varying function (see Theorem 2.1 in [3]). For δ “ 0 and h ” 0 this process

corresponds with a re�ected random walk with p “ 1
2
.

TAR model

Let

Xn “ α1Xn´1I tXn´1 P Su `Xn´1I
 

Xn´1 P S
C
(

` xn, X0 “ 0

where α1, is a real constant, S is a compact set in R, SC is its complement and xn

is an i.i.d sequence of random variables such that Exn “ 0, Ex4
n ă 8, its distribu-

tion function is absolutely continuous with respect to the Lebesgue measure with

density function f0 such that infxPC0f0 pxq ą 0 for all compact sets C0.

In Section 4.5 of [49], this model is used to study the relationship between

the logarithm of the British pound/American dollar real exchange rate and the

Consumer Price Index. In that same paper, it was proven that the index of this

model is
1
2
. This shows that having index

1
2

does not characterize random walks.
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Null recurrent, but not β-regular

The following construction, presented in [88], allows us to construct β-null

recurrent chains for a given value of β and also null recurrent chains that are not

β-regular.

Let ηn be a sequence of i.i.d. random variables. Let’s de�ne Xn as

Xn “

$

’

&

’

%

Xn´1 ´ 1, if Xn´1 ą 1,

ηn, if Xn´1 P r0, 1s .

Then, Xn is an irreducible Markov Chain and the interval r0, 1s is an atom for

the chain. Moreover,Px
`

τr0,1s ą n
˘

“ P ptη1u ą nq, therefore,Xn is null recurrent

if and only if Etη1u “ 8 and is β-null recurrent if and only if

P ptη1u ą nq „ n´βL pnq

for some slowly varying function Lpnq.

3.3.3 Regularity Index of a Regular Chain - Statistical Infer-

ence

The estimation of the regularity index β has not received much attention in

the literature. To our knowledge, the only consistent estimator of this parameter

is
lnTnpCq

lnn
whereC is a small set. This estimator was proposed in Remark 3.7 of [67],

where it was shown to be strongly consistent for β-null recurrent chains where the

minorization condition M p1, s, νq is satis�ed. It was pointed out by the authors

that this estimator is of limited practical use due to its slow convergence. To make

this statement more clear, consider the simplest case, where X is atomic and Lα
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is constant. By part ii of Theorem 3.3.1, we can �nd a constant K 1
α,C such that

TnpCq
nβ

converges in distribution to K 1
α,CMβ p1q. Then, by the Continuous Mapping

Theorem,

lnn

ˆ

lnTn pCq

lnn
´ β

˙

d
ÝÑ ln

`

K 1
α,CMβ p1q

˘

,

which shows that the rate of convergence, in this case, is of order 1{lnn.

In this section, we will show that in the atomic case, we can use the estimator

proposed in Section 3.2 to consistently estimate β.

Assume that we observe the �rst n points of an atomic β-null recurrent ho-

mogeneous Markov Chain. Let Tn pαq be the number of times the chain visits the

atom up to time n, and denote by τ1, . . . , τTnpαq the times of those visits. By the

Strong Markov property, the random variables Si “ τi`1´τi are i.i.d. and by (3.15)

their survival function has the form of (3.1) (with L “ 1
Γp1´βqLα

).

The recurrence of the chain implies that T pnq “ Tn pαq ´ 1 converges almost

surely to `8, then, by Theorem 8.1 in page 302 of [55], we can replace n by T pnq

on the strong consistency results we presented on section 3.2, to obtain equivalent

results for the sequence S1 . . . , ST pnq.

Theorem 3.3.2. If kn is a sequence that satisfy the hypothesis of Theorem 3.2.2, then

pβT pnq
`

kT pnq
˘

converges almost surely to β.

From this result, we get that if we chose kn “ lnn, then the estimator is

strongly consistent and takes the form

pβT pnq plnT pnqq “ ln

¨

˚

˚

˚

˝

T pnq
ř

i“1

I tSi ą T pnqu

T pnq
ř

i“1

I tSi ą eT pnqu

˛

‹

‹

‹

‚

. (3.17)

Theorem 3.3.3. pβT pnq plnT pnqq is a strongly consistent estimator of β.
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The following result is the application of Theorem 3.5.1 to the Markovian case.

Theorem 3.3.4. Let kn andmn be sequences that satisfy the hypothesis of Theorem

3.5.1, then pβT pnq
`

kT pnq,mT pnq

˘

Ñ β almost surely.

Lastly, if we take kn “ lnn, mn “
X

lnn
l

\

and replace n by lnT pnq we get that

pβT pnq

ˆ

lnT pnq ,

Z

lnT pnq

l

^˙

“
1

2
Y

lnT pnq
l

]

` 1
ln

¨

˚

˚

˚

˝

T pnq
ř

j“1

I
!

Si ą e´t lnT pnq
l uT pnq

)

T pnq
ř

j“1

I
!

Si ą et
lnT pnq

l u`1T pnq
)

˛

‹

‹

‹

‚

(3.18)

is a strongly consistent estimator of β.

Theorem 3.3.5. If l is a positive number such that l ě β
1´β

, then

pβT pnq

ˆ

lnT pnq ,

Z

lnT pnq

l

^˙

Ñ β a.s.

Remark 3.3.1. Due to the impossibility of controlling the sequence Tn pαq (and

hence T pnq) by a deterministic quantity in probability (part ii of Theorem 3.3.1),

we have not been able to extend to the markovian case the asymptotic normality

results of Theorem 3.2.3 and Corollary 3.2.2. Heuristically, if in Theorem 3.2.3 we

take kn “ lnT pnq and replace T pnq by its approximate expectation nβLα pnq [67,

Lemma 3.3], we would get a convergence rate of order n´βp1´βq{2Lα,β pnq, where

Lα,β pnq is the slowly varying function given by
b

LαpnβLαpnqq

Lαpnq
1´β . This suggest a con-

vergence rate of order n´βp1´βq{2 when Lα is asymptotically constant. However, we

have not been able to prove this result.
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3.4 Illustrative Numerical Experiments

In order to test the accuracy of the estimators proposed in this paper, we �rst

consider the following simulation framework: for di�erent values of β we generate

64 samples of 105
points from a Zeta distribution

5
with parameter α “ β ´ 1. For

each sample, we estimate β. Table 3.1 contains the mean squared error for each

value of β.

For comparison, we have also estimated β using the implementation of the

Hill estimator provided in [116], where they add a small uniform noise to each

sample in order to improve the stability of the estimator for discrete data and use a

double bootstrap method [33, 104] to �nd the order statistic that provides the best

estimator. These changes make the Hill estimator more precise, but considerably

slower, especially for small values of β.

Table 3.1: Mean squared error

β Hill β plnnq β
`

lnn, lnn
4

˘

0.1 1.7ˆ107
3.47ˆ10´3

3.04ˆ10´3

0.2 103860 1.09ˆ10´3
8.71ˆ10´4

0.35 398 3.5ˆ10´4
1.63ˆ10´4

0.4 2.81ˆ10´5
5.81ˆ10´4

1.25ˆ10´4

0.5 4.09ˆ10´5
2.18ˆ10´3

4.59ˆ10´4

0.75 3.05ˆ10´5
8.48ˆ10´2

1.84ˆ10´2

5
A discrete random variable S follows a Zeta distribution with parameter β if

P pS “ kq “
k´α

ζ pαq

where ζ is the Riemann zeta function. The cumulative distribution function of a Zeta distribution

satis�es (see Lemma 9.1 in [120])

P pS ě kq „
kα`1

ζ pαq pα` 1q
.

This distribution is also known as Zipf’s distribution due to its relationship with Zipf’s law.
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Using the same methodology, we have generated di�erent β-null recurrent

Markov Chains (each one with 105
points) and we have estimated the value of

β.

Table 3.2: Mean squared error

Markov chain T pnq Hill β plnnq β
`

lnn, lnn
4

˘

Random walk (β “ 0.5) 2187 5.2ˆ10´3
3.57ˆ10´2

1.92ˆ10´2

Bessel random walk with β “ 0.35 148 1.4ˆ10´2
3.78ˆ10´2

1.73ˆ10´2

Bessel random walk with β “ 0.4 833 4.19ˆ10´3
1.83ˆ10´2

1.39ˆ10´2

Bessel random walk with β “ 0.7 7722 8.64ˆ10´4
4.95ˆ10´2

3.26ˆ10´2

3.5 Technical Proofs

3.5.1 Proof of Proposition 3.2.1

Lemma 3.5.1. Let δ ą 0 and k such that pk`1 ě 16unpδq, then

ˇ

ˇ

ˇ

pβnpkq ´ βpkq
ˇ

ˇ

ˇ
ď 6

d

unpδq

pk`1

, (3.19)

with probability larger than 1´ 2δ.

Proof. In order to prove this result, we need the following lemma, proved in the

supplementary material of [25].

Lemma3.5.2. Bernstein’s inequality for Bernoulli randomvariables LetX1, . . . , Xn

be i.i.d. samples from a distributionF , andwe de�ne pk “ 1´F pekq, ppnk “
1
n

n
ř

i“1

I
 

Xi ą ek
(

and un pδq “
lnp2{δq
n

. Let δ ą 0 and also let n large enough so that pk ě 4unpδq, then

with probability 1´ δ,

|ppnk ´ pk| ď 2
a

pkunpδq.
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Because pk ě 16unpδqwe can apply the previous lemma, then with probability

greater than 1´ δ we have

´2
a

pkunpδq ď ppnk ´ pk ď 2
a

pkunpδq

pk

˜

1´ 2

d

unpδq

pk

¸

ď ppnk ď pk

˜

1` 2

d

unpδq

pk

¸

,

taking the log in the previous equation we get

ln pk ` ln

˜

1´ 2

d

unpδq

pk

¸

ď ln ppnk ď ln pk ` ln

˜

1` 2

d

unpδq

pk

¸

ln

˜

1´ 2

d

unpδq

pk

¸

ď ln ppnk ´ ln pk ď ln

˜

1` 2

d

unpδq

pk

¸

´3

d

unpδq

pk
ď ln ppnk ´ ln pk ď 2

d

unpδq

pk
, (3.20)

where the last pair of inequalities is obtained by using ln p1` xq ď x and

ln p1´ xq ě ´3x
2

(x ă 1{2).

Inequality (3.20) implies that

|ln ppnk ´ ln pk| ď 3

d

unpδq

pk
(3.21)

with probability bigger that 1-δ.

Applying (3.21) for k ` 1 we get with probability bigger that 1-δ

ˇ

ˇln ppnk`1 ´ ln pk`1

ˇ

ˇ ď 3

d

unpδq

pk`1

. (3.22)

Combining the triangular inequality and the equations 3.21 and 3.22 we get
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with probability bigger than 1´ 2δ

ˇ

ˇ

ˇ

pβnpkq ´ βpkq
ˇ

ˇ

ˇ
ď |ln ppnk ´ ln pk| `

ˇ

ˇln ppnk`1 ´ ln pk`1

ˇ

ˇ

ď 3

d

unpδq

pk
` 3

d

unpδq

pk`1

ď 6

d

unpδq

pk`1

.

Finally, Theorem 3.2.1 follows after noticing that

ˇ

ˇ

ˇ

pβnpkq ´ β
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

pβnpkq ´ βpkq
ˇ

ˇ

ˇ
`

|βpkq ´ β| and applying equation (3.3) and lemma 3.5.1.

3.5.2 Proof of Theorem 3.2.2

Lemma 3.5.3.

lim
kÑ`8

βpkq “ β.

Proof. Because L is an slowly varying function, limxÑ8
Lpλxq
Lpxq

“ 1 (see 1.2.1 of

[21]) for all λ ą 0, therefore
Lpekq
Lpek`1q

“
Lpekq
Lpeekq

Ñ 1 and the result follows by taking

limits in (3.3).

Let ε ą 0. Because kn Ñ 8, Lemma 3.5.3 implies that βpknq Ñ β, therefore

we can �nd N1 P N such that

|βpknq ´ β| ď
ε

2
@n ě N1, (3.23)

Let’s take δ “ 2
n2 , then unpδq “

2 lnn
n

.

BecauseL is slowly varying,L
`

ekn`1
˘

„ L
`

ekn
˘

, then eknβ lnn
n
“ o

`

L
`

ekn`1
˘˘
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and we can �nd N2 P N such that

pkn`1 “
Lpekn`1q

epkn`1qβ
ě

32 lnn

n
“ 16unpδq @n ě N2,

therefore, we can apply Lemma 3.5.1, obtaining that, with probability bigger

than 1´ 4
n2

ˇ

ˇ

ˇ

pβnpknq ´ βpknq
ˇ

ˇ

ˇ
ď 6

d

2 lnn

npkn`1

@n ě N2, (3.24)

Combining triangular inequality with equations (3.23) and (3.24) we have that

for all n ě max pN1, N2q

ˇ

ˇ

ˇ

pβnpknq ´ β
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

pβnpknq ´ βpknq
ˇ

ˇ

ˇ
` |βpknq ´ β|

ď 6

d

2 lnn

npkn`1

`
ε

2
(3.25)

with probability bigger than 1´ 4
n2 .

Plugging pkn`1 “
Lpekn`1q

epkn`1qβ in the �rst term of right hand side of (3.25), we get

6

d

2 lnn

npkn`1

“ 6

d

2 lnn

n

epkn`1qβ

Lpekn`1q
“ 6

?
2eβ

d

lnn

n

epknqβ

Lpekn`1q

The assumption that eknβ lnn
n
“ o

`

L
`

ekn`1
˘˘

implies the above equality con-

verges to 0 therefore we can �ndN3 P N such that

ˇ

ˇ

ˇ
6
b

2 lnn
npkn`1

ˇ

ˇ

ˇ
ď ε

2
for all n ě N3.

Then, for all n ě max pN1, N2, N3q

ˇ

ˇ

ˇ

pβnpknq ´ β
ˇ

ˇ

ˇ
ď ε

with probability bigger than 1´ 4
n2 . Because this is valid for all ε ą 0, it implies

that
pβnpknq converges in probability to β. Moreover, because

ř

n
4
n2 converges,
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Borell-Cantelli lemma implies that
pβnpknq Ñ β almost surely.

3.5.3 Proof of Corollary 3.2.1

If we take kn “ A lnn, we have eβkn “ nAβ then

lim
n
eknβ

lnn

nLpeknq
“ lim

n

nAβ lnn

nLpnAq
“ lim

n

lnn

n1´AβLpnAq

“ lim
n

lnn

np1´Aβq{2
1

np1´Aβq{2LpnAq
“ 0.

For the last limit we have used that if L is slowly varying, then LpnAq is also

slowly varying and that limn n
γLpnq Ñ `8 for γ ą 0 and L slowly varying [21,

Proposition 1.3.6.v]. Theorem 3.2.1 now follows by Theorem 3.2.2.

3.5.4 Proof of Theorem 3.2.3 and Corollary 3.2.2

Lemma 3.5.4. LetXn be a sequence of positive random variables and an and bn two

positive sequences such that an ą 0, bn
an
Ñ 0. If there exists a random variable Y

with continuous distribution function F such that

Xn ´ an
bn

Ñ
d
Y,

then,

an

ˆ

lnXn ´ ln an
bn

˙

Ñ
d
Y.

Proof. Let x P R be �xed. Because
Xn´an
bn

Ñ
d
Y , we have

P pXn ď an ` bnxq Ñ F pxq .
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Using that an ` bnx “ an

´

1` bn
an
x
¯

and taking logs we get

P

ˆ

lnXn ď ln an ` ln

ˆ

1`
bn
an
x

˙˙

Ñ F pxq .

bn
an
Ñ 0 implies that

bn
an
xÑ 0, therefore, for n big enough,

ln

ˆ

1`
bn
an
x

˙

“
bn
an
x` o

ˆ

bn
an

˙

.

Then,

P

ˆ

lnXn ´ ln an ď
bn
an
x` o

ˆ

bn
an

˙˙

Ñ F pxq

P

ˆ

an
lnXn ´ ln an

bn
ď x` o p1q

˙

Ñ F pxq

and the result follows from the continuity of F .

Lemma 3.5.5. If kn satis�es the hypothesis of Theorem 3.2.2, then,

ppnkn
F̄ peknq

a.s.
ÝÝÑ 1.

Proof. By Lemma 3.5.2, for any δ ą 0 such that pk ě 4un pδq we have that, with

probability bigger than 1´ δ,

|ppnk ´ pk| ď 2
a

pkunpδq,

then,

P

˜

ˇ

ˇ

ˇ

ˇ

ppnk
pk
´ 1

ˇ

ˇ

ˇ

ˇ

ď 2

d

un pδq

pk

¸

ě 1´ δ. (3.26)

As in the proof of Theorem 3.2.2, let δ “ 2
n2 , so unpδq “

2 lnn
n

. The condition
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eknβ lnn
n
“ o

`

L
`

ekn`1
˘˘

“ o
`

L
`

ekn
˘˘

implies that we can �nd N1 P N such that

pkn ě
8 lnn
n

for all n ě N1, therefore, by equation (3.26),

P

˜

ˇ

ˇ

ˇ

ˇ

ppnkn
pkn

´ 1

ˇ

ˇ

ˇ

ˇ

ď 2

d

2 lnn

npkn

¸

ě 1´
2

n2
@n ě N1.

Let ε ą 0. Notice that
lnn
npkn

“ lnn
ne´knβLpekn q

“
lnpnqeknβ

nLpekn q
and this goes to 0 as n

goes to `8, therefore, we can �nd N2 such that 2
b

2 lnn
npkn

ď ε for all n ě N2, then

P

ˆ
ˇ

ˇ

ˇ

ˇ

ppnkn
pkn

´ 1

ˇ

ˇ

ˇ

ˇ

ď ε

˙

ě 1´
2

n2
@n ě max pN1, N2q ,

and the Lemma follows by Borel-Cantelli’s Lemma.

The following lemma can be obtained using the same arguments of Example

11 on [39].

Lemma 3.5.6. LetXn be a sequence of i.i.d. random variables with survival function

(3.1), φ1 and φ2 bounded functions and un an increasing sequence of real numbers

such that un Ñ `8. De�ne

Xn,i “
Xi

un
I
"

Xi

un
ą 1

*

, vn “ P pXn,i ‰ 0q and

rZn pφkq “
1

?
nvn

n
ÿ

i“1

pφk pXn,iq ´ Eφk pXn,iqq.

If there exists a sequence rn such that

(A1) rn “ opnq.

(A2) rnvn Ñ 0.

(A3) nvn Ñ `8.
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(A4) E
ˆ

rn
ř

i“1

φk pXn,iq

˙4

“ O prnvnq k “ 1, 2.

(A5) lim
n

1
rnvn

rn
ř

i“1

rn
ř

j“1

E pφk pXn,iqφl pXn,jqq “ σkl.

then
´

rZn pφkq
¯

1ďkď2
converges weakly to a centered normal distribution with co-

variance matrix pσklq1ďk,lď2.

Let kn satisfy the conditions of Theorem 3.2.2, takeun “ ekn ,φ1 pxq “ I tx ą 1u

and φ2 pxq “ I tx ą eu. With this notation

φ1 pXn,iq “ I
"ˆ

Xi

un
I
"

Xi

un
ą 1

*˙

ą 1

*

“ I
"

Xi

un
ą 1

*

,

φ2 pXn,iq “ I
"ˆ

Xi

un
I
"

Xi

un
ą 1

*˙

ą e

*

“ I
"

Xi

un
ą e

*

,

Eφ1 pXn,iq “ P

ˆ

Xi

un
ą 1

˙

“ F punq ,

Eφ2 pXn,iq “ P

ˆ

Xi

un
ą e

˙

“ F peunq ,

vn “ P pXn,i ‰ 0q “ P

ˆ

Xi

un
ą 1

˙

“ F punq .

Let wn “ F peunq, λn “
F punq

F peunq
“ vn

wn
(notice that λn Ñ eβ) and yn “

a

vn
nwn2 ,

then,

pλn “

n
ř

i“1

I tXi ą unu

n
ř

i“1

I tXi ą eunu
“

n
ř

i“1

φ1 pXn,iq

n
ř

i“1

φ2 pXn,iq

“

nEφ1 pXn,iq `
n
ř

i“1

tφ1 pXn,iq ´ Eφ1 pXn,iqu

nEφ2 pXn,iq `
n
ř

i“1

tφ2 pXn,iq ´ Eφ2 pXn,iqu

“

Eφ1pXn,iq

Eφ2pXn,iq
`

n
ř

i“1
tφ1pXn,iq´Eφ1pXn,iqu

nEφ2pXn,iq

1`

n
ř

i“1
tφ2pXn,iq´Eφ2pXn,iqu

nEφ2pXn,iq

“

Eφ1pXn,iq

Eφ2pXn,iq
` rZn pφ1q

a

vn
nwn2

1` rZn pφ2q
a

vn
nwn2
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“
λn ` rZn pφ1q yn

1` rZn pφ2q yn
. (3.27)

To apply Lemma 3.5.6, let’s take rn “ kn and assume that rn “ opnq. For

condition (A2) we have:

lim
n
rnvn “ lim

n
knF

`

ekn
˘

“ lim
n

knL
`

ekn
˘

eknβ
“ lim

n

kn

e
knβ

2

L
`

ekn
˘

e
knβ

2

“ 0.

Because eknβ lnn
n
“ o

`

L
`

ekn`1
˘˘

andL is slowly varying, we can write eknβ lnn
n
“

L
`

ekn
˘

ε pnq where ε pnq Ñ 0 and this implies (A3).

For (A4), note that

rn
ř

i“1

φ1 pXn,iq follows a binomial distribution with parame-

ters rn and vn, then, E

ˆ

rn
ř

i“1

φ1 pXn,iq

˙4

“ rnvn p1´ h prn, vnqq , where h is a two

variables polynomial of degree 3 such that the degree of rn on each monomial is

always greater or equal than the degree of vn. Condition (A2), and the fact that

vn Ñ 0 implies E

ˆ

rn
ř

i“1

φ1 pXn,iq

˙4

“ O prnvnq. With a similar argument and us-

ing the fact that
wn
vn
Ñ e´β , it can be shown that E

ˆ

rn
ř

i“1

φ2 pXn,iq

˙4

“ O prnvnq

and therefore condition (A4) is ful�lled.

For (A5), �rst, notice that

E pφ1 pXn,iqφ1 pXn,jqq “

$

’

&

’

%

vn , i “ j

vn
2 , i ‰ j

E pφ1 pXn,iqφ2 pXn,jqq “

$

’

&

’

%

wn , i “ j

vnwn , i ‰ j

E pφ2 pXn,iqφ2 pXn,jqq “

$

’

&

’

%

wn , i “ j

wn
2 , i ‰ j
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therefore,

σ11 “ lim
n

1

rnvn

rn
ÿ

i“1

rn
ÿ

j“1

E pφ1 pXn,iqφ1 pXn,jqq “ lim
n

rnvn ` rn prn ´ 1q vn
2

rnvn
“ 1

σ12 “ lim
n

1

rnvn

rn
ÿ

i“1

rn
ÿ

j“1

E pφ1 pXn,iqφ2 pXn,jqq “ lim
n

rnwn ` rn prn ´ 1q vnwn
rnvn

“ e´β

σ22 “ lim
n

1

rnvn

rn
ÿ

i“1

rn
ÿ

j“1

E pφ2 pXn,iqφ2 pXn,jqq “ lim
n

rnwn ` rn prn ´ 1qwn
2

rnvn
“ e´β.

By Lemma 3.5.6,

´

rZn pφkq
¯

1ďkď2
converges to a centered normal distribution

with covariance matrix pσklq1ďk,lď2. Taking into account that yn „
eβ
?
nvn

, it follows

that

pλn “
´

λn ` rZn pφ1q yn

¯

ˆ

1´ rZn pφ2q yn ` oP

ˆ

1
?
nvn

˙˙

“ λn ` yn

´

rZn pφ1q ´ λn rZn pφ2q

¯

` oP

ˆ

1
?
nvn

˙

.

Then,

?
nvn

´

pλn ´ λn

¯

converges weakly to a centered normal distribution

with variance e2β
`

σ11 ` e
2βσ22 ´ 2eβσ12

˘

“ e2β
`

eβ ´ 1
˘

. This can be resumed in

the following lemma.

Lemma 3.5.7. Let Xn and un be as in Lemma 3.5.6, if kn satis�es the conditions of

Theorem 3.2.2 and kn “ opnq, then

b

nF̄ peknq

¨

˚

˚

˝

n
ř

i“1

I
 

Xi ą ekn
(

n
ř

i“1

I tXi ą ekn`1u

´
F̄
`

ekn
˘

F̄ pekn`1q

˛

‹

‹

‚

converges weakly to a centered normal distribution with variance e2β
`

eβ ´ 1
˘

.

Lemmas 3.5.3, 3.5.4 and 3.5.7 combined with equation (3.3) imply the �rst part
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of Theorem 3.2.3, the second part follows from Lemma 3.5.5 and Slutsky’s Theorem

(pp. 248 in [55]). Corollary 3.2.2 follows immediately.

3.5.5 Averaged Estimators

Here we collect some remarks and results related to the averaged estimator

(3.7). First, we detail how to get the expression (3.2.1) from (3.3). Let k ą 0 be

�xed, we have:

β pk ` jq “ β ` ln

˜

L
`

ek`j
˘

L pek`j`1q

¸

, @j,

so that

1

2m` 1

m
ÿ

j“´m

β pk ` jq “
1

2m` 1

m
ÿ

j“´m

β `
1

2m` 1

m
ÿ

j“´m

ln

˜

L
`

ek`j
˘

L pek`j`1q

¸

“ β `
1

2m` 1
ln

˜

m
ź

j“´m

L
`

ek`j
˘

L pek`j`1q

¸

“ β `
1

2m` 1
ln

˜

L
`

ek´m
˘

L pek`m`1q

¸

.

The result below establishes the strong consistency of the estimator (3.7).

The following results show that, for well-chosen kn and mn, the estimator

pβnpkn,mnq is strongly consistent.

Theorem 3.5.1 (Strong consistency). Let kn andmn such that

i kn ´mn Ñ `8.

ii
`8
ř

n“1

4
n2 p1´ 2mnq is convergent.

iii epkn`mnqβ lnn
n
“ o

`

L
`

ekn`mn
˘˘

.
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then, pβn pkn,mnq converges almost surely to β.

Corollary 3.5.1. Let A, l be a positive numbers such that l ą 1 and 1
β
ą

Aβpl`1q
l

then

pβn

ˆ

A lnn,
A lnn

l

˙

Ñ β a.s.

3.5.6 Proof of Theorem 3.2.4

The following lemma provides us a bound for the di�erence between
pβpk,mq´

βpk,mq.

Lemma 3.5.8. Let δ ą 0 and k andm such that pk`m`1 ě 16unpδq, then

ˇ

ˇ

ˇ

pβnpk,mq ´ βpk,mq
ˇ

ˇ

ˇ
ď 6

d

unpδq

pk`m`1

, (3.28)

with probability larger than 1´ 2δ p1´ 2mq.

Proof. For the left hand side of equation (3.28) we have

ˇ

ˇ

ˇ

pβnpk,mq ´ βpk,mq
ˇ

ˇ

ˇ
“

1

2m` 1

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“´m

´

pβn pk ` jq ´ β pk ` jq
¯

ˇ

ˇ

ˇ

ˇ

ˇ

“
1

2m` 1

ˇ

ˇ

ˇ

ˇ

ˇ

2m
ÿ

j“0

´

pβn pk ´m` jq ´ β pk ´m` jq
¯

ˇ

ˇ

ˇ

ˇ

ˇ

,

then,

ˇ

ˇ

ˇ

pβnpk,mq ´ βpk,mq
ˇ

ˇ

ˇ
ď

1

2m` 1

2m
ÿ

j“0

ˇ

ˇ

ˇ

pβn pk ´m` jq ´ β pk ´m` jq
ˇ

ˇ

ˇ
. (3.29)

Because pk`m`1 ě 16unpδq, we have that pk´m`j`1 ě 16unpδq for all j be-
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tween 0 and 2m, therefore, we can apply Lemma 3.5.1 obtaining that, for each j

ˇ

ˇ

ˇ

pβn pk ´m` jq ´ β pk ´m` jq
ˇ

ˇ

ˇ
ď 6

d

unpδq

pk´m`j`1

, (3.30)

with probability bigger than 1 ´ 2δ. The probability that inequality (3.30) is

true for all j between 0 and 2m is bigger than p2m` 1q p1´ 2δq ´ 2m “ 1 ´

2δ p1´ 2mq, therefore, with at least that probability, equation (3.29) becomes,

ˇ

ˇ

ˇ

pβnpk,mq ´ βpk,mq
ˇ

ˇ

ˇ
ď

1

2m` 1

2m
ÿ

j“0

6

d

unpδq

pk´m`j`1

ď 6

d

unpδq

pk`m`1

.

Similarly to the proof of Theorem 3.2.1, Theorem 3.2.4 now follows by trian-

gular inequality, equation (3.6) and Lemma 3.5.8.

3.5.7 Proof of Theorem 3.5.1

Lemma 3.5.9. Let αn, kn and bn be sequences such that, αn Ñ α, kn Ñ `8 and

kn ´ bn Ñ `8. Then,
1

2bn ` 1

bn
ÿ

j“´bn

αkn`j Ñ α.

Proof. Let λn “
1

2bn`1

bn
ř

j“´bn

αkn`j , then

λn ´ α “
1

2bn ` 1

bn
ÿ

j“´bn

pαkn`j ´ αq “
1

2bn ` 1

2bn
ÿ

j“0

pαkn´bn`j ´ αq.

Take ε ą 0 �xed, by the convergence of αn there exists N1 such that, for

all n ě N1, |αn ´ α| ă ε. Because kn ´ bn Ñ `8, we can �nd N2 such that

kn ´ bn ě N1, for all n ě N2, then, |αkn´bn`j ´ α| ď ε for all n ě N2 and all
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j P N. This implies that for all n ě N2

|λn ´ α| ď
1

2bn ` 1

2bn
ÿ

j“0

|αkn´bn`j ´ α| ď
1

2bn ` 1

2bn
ÿ

j“0

ε “ ε.

Lemma 3.5.9 shows that if kn ´mn Ñ `8, then

β pkn,mnq Ñ β. (3.31)

Theorem 3.5.1 follows by the same argument used to prove Theorem 3.2.2,

using (3.31) instead of Lemma 3.5.3 and Lemma 3.5.8 instead of Lemma 3.5.1.

3.5.8 Proof of Corollary 3.5.1

We just need to show that sequences kn “ A lnn and mn “
A lnn
l

satisfy

conditions i, ii and iii in Theorem 3.5.1. The �rst two are trivially satis�ed, for the

third one, notice that

lim
n

epA lnn`A lnn
l qβ

L
´

eA lnn`A lnn
l

¯

lnn

n
“ lim

n

np1`
1
l qAβ

L
´

np1`
1
l qA

¯

lnn

n
“ lim

n

lnn

n1´p1` 1
l qAβL

´

np1`
1
l qA

¯

“ lim
n

1

n
1´p1` 1

l qAβ
2 L

´

np1`
1
l qA

¯

lnn

n
1´p1` 1

l qAβ
2

.

The condition
1
β
ą

Apl`1q
l

implies that 1´
`

1` 1
l

˘

Aβ ą 0, therefore,

lim
n

1

n
1´p1` 1

l qAβ
2 L

´

np1`
1
l q
¯

“ 0 and lim
n

lnn

n
1´p1` 1

l qAβ
2

“ 0,

which shows that kn and mn satisfy condition iii in Theorem 3.5.1.
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3.5.9 Proof of Lemma 3.2.1

The representation is a direct application of Lemma 3.5.10 and the fact that g

is a regularly varying function of index ρ.

Lemma 3.5.10. Assume that L satis�es SR2, has positive decrease and x is big

enough such that representation the (3.10) holds, then

ln

ˆ

Lpxq

Lpλxq

˙

“ ´c|ρ|´1
pgpxq ´ gpλxqq ` o pgpxqq . (3.32)

Proof. Let’s denote Apxq “ cρ´1gpxq ` o pg pxqq. By (3.10) we have

ln

ˆ

Lpxq

Lpλxq

˙

“ ln

ˆ

Cp1` Apxqq

Cp1` Apλxqq

˙

“ ln

ˆ

1` Apxq

1` Apλxq

˙

“ ln p1` A pxqq ´ lnp1` Apλxqq. (3.33)

Applying the �rst order expansion for lnp1` Apxqq we have that

ln p1` A pxqq “ cρ´1gpxq ` o pg pxqq ` o
`

cρ´1gpxq ` o pg pxqq
˘

looooooooooooomooooooooooooon

opgpxqq

“ cρ´1gpxq ` o pg pxqq . (3.34)

Applying (3.34) to λx we get

ln p1` A pλxqq “ cρ´1gpλxq ` o pg pxqq , (3.35)

where we have used that if g is regularly varying then o pg pλxqq “ o pg pxqq.

The result now follows by plugging (3.34) and (3.35) into (3.33).
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Chapter 4
Regenerative bootstrap for β-null

recurrent Markov chains

The content of this chapter is based on [47].

Abstract: Two regeneration-based bootstrap methods, namely, the Regenera-

tion based-bootstrap [6, 34] and the Regenerative Block bootstrap [15] are shown to

be valid for the problem of estimating the integral of a function with respect to the

invariant measure in a β-null recurrent Markov chain with an accessible atom. An

extension of the Central Limit Theorem for randomly indexed sequences is also

presented.

4.1 Introduction

In [43], Bradley Efron introduced the Bootstrap as a way to overcome some

limitations of classical methods that often relied on strong assumptions about the

data’s underlying distribution or the model’s form. Since then, these techniques,

�rst studied in the i.i.d. case, have been developed and extended to time-series
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(see [77] for an extensive survey of methods) and applied to a wide range of prob-

lems in various �elds such as signal processing [122, 123], soil science [111] and

econometrics [58, 82]. They can handle any level of complexity in data or models

from fully parametric to completely nonparametric cases. These methods are easy

to implement with modern computing power and can provide more accurate and

reliable inferences than traditional methods in many situations.

Although originally designed for i.i.d. sampling, there has been signi�cant in-

terest in adapting the bootstrap to situations where the data is dependent. Several

resampling methods have been proposed for time series data: these include the

autoregressive-sieve bootstrap [74], block bootstrap [76] , circular bootstrap [101],

the stationary bootstrap [102], continuous-path block bootstrap [93], tapered block

bootstrap [95], frequency-domain bootstrap [72, 92], and local bootstrap [96]. For

detailed reviews and comparisons of these methods see [27, 48, 71, 73] and the

references therein.

In the Markovian case, numerous approaches have been developed and exam-

ined. In [75], the authors proposed a block resampling scheme that consists in

resampling from a nonparametric estimate of the one-step transition matrix of a

�nite state Markov chain. This method was extended to the countable case in [6].

Extensions of this method have been proposed for the case where the state space

is Euclidean, as seen in [105], [94, 97] and [57]. The general concept is to estimate

the marginal distribution and the transition probability function using a nonpara-

metric function estimation technique and then resample from those estimates. For

a detailed explanation of this approach, refer to Section 4 in [71].

A completely new approach to this problem was introduced in [6]. Instead of

using estimated transition probabilities, they exploit the regeneration properties

of a Markov chain when an accessible atom is visited in�nitely often. The main
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idea underlying this method consists in dividing the chain into a random number

of i.i.d. regeneration blocks and then resampling the same number of regeneration

blocks. This method, named Regeneration based bootstrap, was proved to be valid

for �nite state atomic chains in [6], and it was extended to general atomic positive

recurrent Markov chains in [34].

It was pointed out in [16] that the Regeneration based bootstrap is not second-

order correct (its rate is OPpn
´1{2q only). To overcome this limitation, a variation

of this method, called Regenerative Block bootstrap (RBB), was introduced in [15].

This method consists in imitating the renewal structure of the chain by sampling

regeneration data blocks, until the length of the reconstructed bootstrap series is

larger than the length n of the original data series (notice the di�erence with the

Regeneration based bootstrap, where the number of sampled blocks is equal to the

number of regeneration blocks in the original chain). It was shown in [15] that,

for atomic positive recurrent Markov chains, the RBB for estimating the integral

of a function with respect to the invariant probability, has a uniform rate of con-

vergence of order OP pn
´1q (the same as in the i.i.d. case).

Despite all these e�orts in the positive recurrent case, up to our knowledge,

no bootstrap method has been studied in the null-recurrent scenario. Hence, our

objective in this paper is to start this study and show that both Regeneration based-

bootstrap and Regenerative Block bootstrap are valid schemes for estimating inte-

grals with respect to the invariant measure when the Markov chain is β-null re-

current and possesses an accessible atom.

The paper is organized as follows: in section 4.2 we provide a brief introduction

to null recurrent Markov chains, making a special emphasis on atomic ones and

presenting the main results that we use throughout the paper. In subsection 4.2.3

we present an extension of the Central Limit Theorem for randomly indexed se-
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quences (Lemma 4.2.1). Section 4.3 is dedicated to the Regenerative Block bootstrap

in β-null recurrent Markov chains, while Section 4.4 is devoted to the Regeneration

based-bootstrap. In section 4.5 we have added a few simulations to show the behav-

ior of both algorithms in practice. The technical proofs are postponed to Section

4.6.

4.2 A short introduction to null-recurrentMarkov

chains

In this section, we introduce some notation and review some important con-

cepts from Markov chain theory that will be used throughout the paper. For more

details, please refer to [38, 87].

4.2.1 Notation and de�nitions

Consider an homogeneous Markov chain X “ X0, X1, . . . , on a countably

generated state space pE, Eq, with transition kernel P and initial probability dis-

tribution λ. This means that for any B P E and n P N, we have L pX0q “ λ

and

PpXn`1 P B | X0, . . . , Xnq “ P pXn, Bq almost surely.

Note that the assumption of a countably generated state space is commonly used

in Markov chain theory to avoid pathological examples known as ’anormal’ chains

[37]. For more information on this topic, see [37], [61], and [107]. An example of

an ’anormal’ chain can be found in [22]. This assumption does not signi�cantly

limit the generality of our results since most of the time E “ B
`

Rd
˘

, which is

countably generated.
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In the following, we use Pλ (or Px for x inE) to denote the probability measure

on the underlying space such that X0 „ λ (or X0 “ x). We use Eλp.q to repre-

sent the Pλ-expectation (or Exp.q to represent the Px-expectation), and I tAu to

represent the indicator function of event A.

A homogeneous Markov chain is said to be irreducible if there exists a σ-�nite

measure φ on pE, Eq such that for all x P E and all A P E with φpAq ą 0, there

exists some n ě 1 such that P npx,Aq ą 0. In this case, there exists a maximal

irreducibility measure ψ with respect to which all other irreducibility measures

are absolutely continuous. If X is ψ-irreducible, there is d1 P N˚ and disjoints sets

D1, . . . , Dd1 Dd1`1 “ D1 weighted by ψ such that ψpEz Y1ďiďd1 Diq “ 0 and

@x P Di, P px,Di`1q “ 1. The the g.c.d. d of such integers is called the period of

the chain. X is said to be aperiodic if d “ 1.

In the following, we assume that the Markov chains under consideration are

homogeneous, aperiodic, and irreducible with maximal irreducibility measure ψ.

An irreducible chain possesses an accessible atom, if there is a set α P E such

that for all x, y in α: P px, ‚q “ P py, ‚q and ψpαq ą 0. For instance, when a chain

can take a countable number of values, any single point visited by the chain is an

atom. Denote by σα and τα, respectively, the times of �rst visit and �rst return

of the chain to α, i.e. τα “ inf tn ě 1 : Xn P αu and σα “ inf tn ě 0 : Xn P αu.

The subsequent visit and return times σα, τα pkq, k ě 1 are de�ned inductively as

follows:

τα p1q “ τα , τα pkq “ min tn ą τα pk ´ 1q : Xn P αu , (4.1)

σα p1q “ σα , σα pkq “ min tn ą σα pk ´ 1q : Xn P αu . (4.2)

We useTnpαq to represent the random variable that counts the number of times
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the chain visits the set α up to time n, i.e., Tnpαq “
řn
t“0 ItXt P αu. Similarly,

we use T pαq to represent the total number of visits of chain X to α. An atom α is

called recurrent if ExT pαq “ `8 for all x P α; otherwise, it is called transient. A

notable property of atomic chains is that all accessible atoms are either all recurrent

or all transient. Therefore, we say that an atomic chain is recurrent if one (and thus

all) of its accessible atoms is recurrent.

Denote by Pα and Eαp.q the probability and the expectation conditionally to

X0 P α. If X possesses an accessible atom and is aperiodic, the probability of

returning in�nitely often to the atom α is equal to one, no matter the starting

point, i.e.

Px
`

T pαq “ 8
˘

“ 1 @x P E.

A fundamental tool for understanding the long-term behavior of Markov chains

is the existence of invariant measures, that is, a measure π such that

π pAq “

ż

P px,Aq dπ pxq @A P E .

Every irreducible and recurrent Markov chain admits a unique (up to a mul-

tiplicative constant) invariant measure [87, Theorem 10.4.9]. In the atomic case, the

invariant measure is just the occupation measure overB1 “
`

Xταp1q`1, . . . , Xταp2q

˘

[38, Theorem 6.4.2], i.e.

πα pAq “ Eα

˜

τα
ÿ

j“1

I tXj P Au

¸

, @A P E . (4.3)

An irreducible Markov chain is positive recurrent if its invariant measure is

�nite. When the invariant measure is just σ-�nite, then the chain is called null re-

current. From (4.3), it is clear that an atomic Markov chain is positive recurrent if
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and only if Eατα ă `8, and in this case, the measure de�ned by
πα

Eατα
is an in-

variant probability for the chain. The existence of this invariant probability makes

the theory of positive recurrent Markov chains, very similar to the i.i.d. case [87,

Chapter 17].

Conversely, dealing with null recurrent chains is considerably more challeng-

ing, and a comprehensive theory of non-parametric estimation for this type of

chain does not exist. To address this issue, Karlsen and Tjøstheim introduced in

[67] a regularity condition for the tail behavior of the distribution of τα that ren-

ders the problem more tractable. Speci�cally, a chain is referred to as β-null recur-

rent (refer to [67, De�nition 3.2 and Theorem 3.1]) if there is a constant β P p0, 1q

and a slowly varying function
1 L such that

Pα pτα ą nq „
1

Γp1´ βqnβLpnq
. (4.4)

The number β, also known as the regularity index (see [28, 30]) satis�es

β “ sup tp ą 0 : Eα pτ
p
αq ă `8u .

Some of the most well-known examples of β-null recurrent Markov chain are

the random walks inR, which are 1{2-null recurrent [64], the Bessel random walks

[3], [36] and some types of threshold autoregressive (TAR) [49] and vector autore-

gressive processes (VAR) [88].

1
A measurable and positive function L is said to be slowly varying at `8 if it is de�ned in

ra,`8q for some a ě 0, and satis�es limxÑ`8
Lpxtq
Lpxq “ 1 for all t ě a. For a detailed discussion

on these types of functions, refer to [21].
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4.2.2 Renewal properties and Block decomposition

The strong Markov property implies that the sample paths of an atomic Markov

chain can be partitioned into independent blocks of random length corresponding

to consecutive visits to α, given by:

B0 “
`

X0, X1, . . . , Xταp1q

˘

B1 “
`

Xταp1q`1, . . . , Xταp2q

˘

. . .

Bn “
`

Xταpnq`1, . . . , Xταpn`1q

˘

. . .

Note that the distribution of B0 depends on the initial measure, and thus it does

not have the same distribution as Bj for j ě 1. The sequence tταpjqujě1 de�nes

successive times at which the chain forgets its past, which are called regeneration

times. Similarly, the sequence of i.i.d. blocks tBjujě1 is called regeneration blocks.

As customary in the β-null recurrent Markov chain literature, we will use T pnq

to denote the number of complete regeneration blocks up to time n, i.e. T pnq “

max pTn pαq ´ 1, 0q. We will denote by ` pBiq the length of the i-th block, therefore,

` pBjq “

$

’

’

&

’

’

%

τα , j “ 0

τα pj ` 1q ´ τα pjq , j ě 1

(4.5)

The random variable T pnq, and its relationship with

řk
j“0 ` pBjq, is crucial in

the theory we will develop in this paper, therefore, we will state in this section its

main properties in the β-null recurrent scenario.

Assume X is a β-null recurrent Markov chain with an accessible atom α. By
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(3.27) in [67], the function L in (4.4) can be normalized in such a way that

u pzq “ zβL pzq (4.6)

is a continuous function that is strictly increasing in the interval rz0,`8q for some

z0 P R`. De�ne v pzq as

v pzq “ up´1q
pzq “ inf ts : u psq ą zu , (4.7)

then, u pv pzqq “ v pu pzqq “ z for z ě z0.

Consider the space of càdlàg functions de�ned on the interval r0,`8q, denoted

by Dr0,`8q. This space consists of the real functions that are right-continuous with

left limits and de�ned over r0,`8q. More precisely, a function g P Dr0,`8q if and

only if g is right-continuous, has left limits at all points t ą 0, and limtÓ0 gptq “

gp0q. The space Dr0,`8q is equipped with the Skorokhod
2

topology, making it a

completely separable metric space. We will use

Dr0,`8q
ÝÝÝÝÑ to denote weak conver-

gence in this space, and
fd

ÝÑ for convergence of �nite-dimensional laws. Two stochas-

tic processes Yn, Zn in Dr0,`8q are said to be equivalent if Yn ´ Zn converges

weakly to the zero process. If Yn
Dr0,`8q
ÝÝÝÝÑ Y and Yn and Zn are equivalent, then

Zn
Dr0,`8q
ÝÝÝÝÑ Y (see Lemma 3.31 in [60]).

De�ne the following processes

Tn ptq “
T ptntuq

u pnq
, Cn ptq “

1

v pnq

tntu
ÿ

k“0

` pBkq, (4.8)

andC
p´1q
n ptq “ inf tx : Cn pxq ą tu. The following Theorem, proved in [67], shows

that these three processes converge in Dr0,`8q and that Tn and C
p´1q
n are equiva-

2
See Chapter 6 of [60] or Chapter 3 in [20] for more details about this space.
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lent.

Theorem 4.2.1. Assume X is a β-null recurrent atomic Markov chain. Then,

i) Cn
Dr0,`8q
ÝÝÝÝÑ Sβ where Sβ is the one-sided stable Levy process de�ned by the

marginal characteristics

E rexp pisSβ ptqqs “ exp
`

isβt
˘

s P R, t P r0,`8s.

ii) Cp´1q
n and Tn are equivalent processes and both converge in Dr0,`8q to the

Mittag-Le�er process of parameter β.

Remark 4.2.1. The Mittag-Le�er process with parameter β is de�ned as the inverse

of Sβ . It is a strictly increasing continuous stochastic process de�ned as

Mβ ptq “ tβMβ p1q , E
`

Mm
β p1q

˘

“
m!

Γ p1`mβq
m ě 0.

Theorem 4.2.1 shows a striking di�erence between positive and null recurrent

Markov chains. While in the former the existence of moments for ` pBjq implies

that Cn and Tn (taking u pnq “ n) converge almost surely respectively to tEατα

and
t

Eατα
, and therefore, T pnq can be approximated almost surely by the deter-

ministic quantity n, in the latter, we only have weak convergence, hence T pnq can

only be controlled by the deterministic quantity upnq in distribution.

4.2.3 Properties of linear functionals de�ned on β-null re-

current chains

For a measurable function f : E Ñ R, and an atomic Markov chain X with an

accessible atom α, consider the problem of estimating παpfq “
ş

fdπα, where πα
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is as in (4.3) and πα pfq ă `8. Denote by Sn pfq the partial sums of f over the

chain, that is

Sn pfq “
n
ÿ

k“0

f pXkq. (4.9)

The Ratio Limit Theorem for atomic chains [38, Theorem 6.6.2] shows that if

g is a measurable function, then, for every invariant measure π we have

Sn pfq

Sn pgq
a.s.

ÝÑ
π pfq

π pgq
, (4.10)

as long as π pgq ‰ 0.

Remark 4.2.2. From (4.10) is clear that Snpfq
T pnq

is a strongly consistent estimator of

πα pfq, and, in the positive recurrent case, Snpfq
n

a.s.
ÝÑ

παpfq
Eατα

. In the null recurrent

case, however, Snpfq
n

a.s.
ÝÑ 0 (see Corollary 6.6.3 in [38]) and there is no deterministic

sequence a pnq such that Snpfq
apnq

converges almost surely to a non-zero limit [28].

Given that our interest in this paper is to apply the bootstrap method to the

estimation of πα pfqwe need to �nd a series of i.i.d. random variables whose mean

strongly converges to πα pfq. To do this, de�ne the following random variables

f pBjq “

$

’

’

’

&

’

’

’

%

τα
ř

i“0

f pXiq , j “ 0

ταpj`1q
ř

i“ταpjq`1

f pXiq , j ě 1

.

The strong Markov property implies that under Pα, the sequence tf pBjqujě0

is i.i.d. Moreover, for every initial measure λ P M pEq
`

such that Pλ pτα ă 8q “ 1,

the random variables f pBjq , j ě 0 are independent and for j ě 1 they are i.i.d.

Therefore, Sn pfq can now be written as a sum of independent random variables

as follows:
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Sn pfq “ f pB0q `

T pnq
ÿ

j“1

f pBjq `
n
ÿ

i“ταpT pnq`1q`1

f pXiq, (4.11)

with the convention that the sum of an empty set is 0. As customary in the

β-null recurrent literature, we will denote the last term in (4.11) by f
`

Bpnq
˘

.

Equation (4.3) indicates that

EαfpBjq “ πα pfq , j “ 1, . . . . (4.12)

hence, if the assume that πα p|f |q ă `8, the Law of Large Numbers for ran-

domly indexed sequences [55, Theorem 8.2, pp 302] shows that

1

T pnq

T pnq
ÿ

j“1

fpBjq
a.s.

ÝÑ πα pfq . (4.13)

Remark 4.2.3. The almost sure convergence of both Snpfq
T pnq

and 1
T pnq

řT pnq
j“1 fpBjq to

πα pfq and the decomposition (4.11) shows that fpB0q

T pnq
and

fpBpnqq
T pnq

both converge al-

most surely to 0. This allow us to only consider in our estimations the i.i.d. blocks

f pBjq , j ě 1.

If we suppose further that fpB1q has �nite second moment and we denote by

σ2
the variance of fpB1q, then

1

T pnq

T pnq
ÿ

j“1

˜

fpBjq ´
1

T pnq

T pnq
ÿ

i“1

fpBiq

¸2

a.s.

ÝÑ σ2. (4.14)

Much of the work carried out in this investigation deals with sequences indexed

by the sequence of random variables T pnq. As explained at the end of Section 4.2.2,

this sequence, although it converges almost surely to`8, can not be deterministi-

cally approximated in probability, it only admits an approximation in distribution.
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This creates huge problems, even for simple tasks, as to obtaining a CLT, because,

CLTs for randomly indexed sequences (see [4] for the original formulation and Th.

17.2 in [20] for its more general form) require being able to control deterministi-

cally, at least in probability, the sequence of the number of terms. The result we

present below, extends this CLT, replacing the requirement of the control in prob-

ability by the existence of the limit of a stochastic process de�ned in terms of the

sequence of the number of terms.

Lemma 4.2.1 (CLT for randomly indexed sequences). Let X1, X2 . . . be i.i.d. ran-

dom variables such that EpX1q “ µ and VarX1 “ σ2 ą 0. Let Npnq be a sequence

of integer-valued random variables. If there exists an unbounded increasing sequence

of real numbers un such that the process Nnptq “
Nptntuq
un

satisfy the following condi-

tions:

• Exists a process Sn inDr0,`8q that is non-negative and non-decreasing for each

n.

• Sn
Dr0,`8q
ÝÝÝÝÑ S where S is a strictly increasing non-negative process with inde-

pendent increments, no �xed jumps, and Sp0q ” 0.

• Nn is equivalent to S
p´1q
n .

Then, Nn converges to Sp´1q,

a

Npnq

¨

˚

˚

˚

˝

Npnq
ř

j“1

pXj ´ µq

Npnqσ

˛

‹

‹

‹

‚

, (4.15)

converges weakly to a standard Normal distribution and this distribution is indepen-

dent of Sp´1qp1q.
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Corollary 4.2.1. [Theorem 17.2 in [20]] SupposeX1, . . . , Xn are i.i.d. withEX1 “ µ

and VarX1 “ σ2. IfNpnq is a sequence of integer-valued random variables such that

Npnq

un

p
ÝÑ θ, (4.16)

where θ is a positive random variable and the un is sequence of positive numbers

going to in�nity, then

a

Npnq

¨

˚

˚

˚

˝

Npnq
ř

j“1

pXj ´ µq

Npnqσ

˛

‹

‹

‹

‚

converges in distribution to a standard normal random variable.

Using Lemma 4.2.1 and Theorem 4.2.1 we can provide a di�erent proof of

the following Central Limit Theorem for β-null recurrent atomic Markov chains,

which was originally proved in [8].

Proposition 4.2.2. Let X be a β-null recurrent Markov chain, with an accessible

atom α. For every πα- measurable function f such that E
“

pf pB1qq
2
‰

ă `8,

a

T pnq

¨

˚

˚

˚

˝

T pnq
ř

j“1

fpBjq

T pnq
´

ż

fdπα

˛

‹

‹

‹

‚

(4.17)

converges in distribution to a Normal random variable with mean 0 and variance σ2.

Moreover, T pnq
nβLpnq

converges to a Mittag-Le�er distribution with parameter β that is

independent of the limiting distribution of (4.17).

The following corollary follows directly by Proposition 4.2.2, equation (4.14)

and Slutsky’s theorem.
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Corollary 4.2.2. Under the same hypothesis of Proposition 4.2.2,

a

T pnq

sn

¨

˚

˚

˚

˝

T pnq
ř

j“1

fpBjq

T pnq
´

ż

fdπα

˛

‹

‹

‹

‚

(4.18)

converges weakly to a Normal distribution with mean 0 and variance 1. Here s2
n “

1
T pnq

T pnq
ř

j“1

˜

fpBjq ´ 1
T pnq

T pnq
ř

j“1

fpBjq

¸2

.

4.3 The regenerative block-bootstrap algorithm

Let Xpnq “ pX0, ..., Xnq be observations drawn from a β-null recurrent Markov

chain X with an a priori known accessible atom α. As in the previous section, let

f be a πα-integrable function such that f pB1q has a �nite second moment. Denote

by σ2
the variance of f pB1q.

The bootstrap method we study in this section was introduced in [15] for pos-

itive recurrent Markov chains. In the atomic case, it was shown to have a uniform

rate of convergence of Op pn
´1q under mild conditions.

In this section, we show that the method is also applicable in the β-null recur-

rent case, although, we have not been able to obtain a rate.

Proposition 3.1 in [14] shows that for positive recurrent chains, in the nonsta-

tionary case (when the initial law λ is not the invariant probability measure), the

�rst data block B0 induces a bias of orderOpn´1q, which cannot be estimated from

a single realization Xpnq of the chain starting from λ. The last block Bpnq (which is

incomplete) induces a �rst-order term in the bias too. This led the authors in [15]

to only consider statistics based on the regenerative data blocks B1, ....,BT pnq.

In the β-null recurrent case, the lack of �nite �rst moment for the block sizes

127



4.3. THE REGENERATIVE BLOCK-BOOTSTRAP ALGORITHM

suggests that considering the non-regenerative blocks will incur in an even worst

bias, hence, as in [15], we will only consider statistics based on the regenerative

data blocks B1, ....,BT pnq.

While our asymptotic results are speci�cally stated for integrals with respect to

the invariant measure, the algorithm can be applied to a broader range of statistics

Gn that have an appropriate standardization Sn. This includes non-degenerate U -

statistics and di�erentiable functionals.

The RBB procedure is performed in four steps as follows:

1. Count the number of visits Tn pαq to the atom α up to time n. And divide

the observed sample path Xpnq “ pX0, ...., Xnq into Tn pαq ` 1 blocks, B0,

B1, ...., BTnpαq´1, BpnqTnpαq
valued in the torus T “ Y8n“1E

n, corresponding to

the pieces of the sample path between consecutive visits to the atom α. Drop

the �rst and last (non-regenerative) blocks. Denote by T pnq the number of

remaining blocks.

2. Draw sequentially bootstrap data blocks B˚1,T pnq, ..., B˚k,T pnq independently

from the empirical distributionFn “ T pnq´1 řT pnq
j“1 δBj of the blocks tBju1ďjďT pnq

conditioned on Xpnq, until the length `˚pkq “
řk
j“1 `pB˚j,T pnqq of the boot-

strap data series is larger than n. Let T ˚n pαq “ inftk ě 1, `˚pkq ą nu and

T ˚ pn, T pnqq “ T ˚n pαq ´ 1.

3. From the data blocks generated in step 2, reconstruct a pseudo-trajectory of

size l˚pT ˚ pn, T pnqqq by binding the blocks together

X˚pnq
“ pB˚1,T pnq, ...,B˚T˚pn,T pnqq,T pnqq.

Compute the RBB statistic G˚n “ GnpX
˚pnqq.
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4. If Sn “ SpB1, ...,BT pnqq is an appropriate standardization of the original

statistic Gn, compute S˚n “ SpB˚1,T pnq, ...,B˚T˚pn,T pnqq,T pnqq.

The RBB distribution is then given by

HRBBpxq “ P˚
´

S˚´1
n pG˚n ´Gnq ď x

¯

where P˚ p‚q “ P
`

‚ | Xpnq
˘

denotes the conditional probability given Xpnq.

Our main asymptotic result, in the case of integrals concerning the invariant

measure, is the following.

Theorem 4.3.1. Let X be a β-null recurrent Markov chain with an accessible atom

α, and let f be a πα-integrable function such that E
“

pf pB1qq
2
‰

ă `8. Then we

have,

a

T ˚ pn, T pnqq

¨

˚

˚

˚

˚

˝

T˚pn,T pnqq
ř

j“1

˜

fpB˚j,T pnqq ´
1

T pnq

T pnq
ř

i“1

fpBiq

¸

T ˚ pn, T pnqqσT pnq

˛

‹

‹

‹

‹

‚

d˚
ÝÑ N p0, 1q ,

in probability along the data, where d˚ denotes the convergence in distribution con-

ditionally to the data and

σ2
T pnq “

1

T pnq

T pnq
ÿ

j“1

˜

fpBjq ´
1

T pnq

T pnq
ÿ

i“1

fpBiq

¸2

.

This theorem yields that the bootstrap distribution of the standardized sum has

asymptotically the same distribution as the statistics

T pnq
ř

j“1
fpBjq

T pnq
estimating

ş

fdπα.

The regenerative block bootstrap is thus �rst-order correct. In particular, this jus-

ti�es the use of the quantiles of the bootstrap distribution (with or without stan-
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dardizing) to obtain con�dence intervals for

ş

fdπα.

4.4 The regeneration-based bootstrap algorithm

In this section, we adapt the Regeneration-base bootstrap to the β-null recurrent

Markov chain scenario.

Similarly to Section 4.3, consider observations Xpnq “ pX0, . . . , Xnq drawn

from a β-null recurrent Markov chain X that has an accessible atom α known be-

forehand. Suppose that f is a function such πα pfq is �nite and the second moment

of f pB1q is also �nite. Let σ2
represent the variance of f pB1q.

The algorithm we present in this section was introduced in [6, 34] for positive

recurrent Markov chains with an accessible known atom. Similarly to the RBB,

it consists on dividing the chain into B1, . . . ,BT pnq regenerative blocks and then

resampling blocks to form the empirical distribution of B1, . . . ,BT pnq. The main

di�erence between the Regeneration-based bootstrap and the RBB is that in the

former, the number of bootstrapped blocks is T pnq, hence, non-random condi-

tionally to Xpnq, while in the latter is random.

The full algorithm is as follows:

1. Count the number of visits Tn pαq to the atom α up to time n. And divide

the observed sample path Xpnq “ pX0, ...., Xnq into Tn pαq ` 1 blocks, B0,

B1, ...., BTnpαq´1, BpnqTnpαq
valued in the torus T “ Y8n“1E

n, corresponding to

the pieces of the sample path between consecutive visits to the atom α. Drop

the �rst and last (non-regenerative) blocks. Denote by T pnq the number of

remaining blocks.

2. Draw T pnq bootstrap data blocks B˚1,T pnq, ..., B˚T pnq,T pnq independently from
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the empirical distributionFn “ T pnq´1 řT pnq
j“1 δBj of the blocks tBju1ďjďT pnq

conditioned on Xpnq.

3. From the bootstrap data blocks generated at step 2, reconstruct a trajectory

by binding the blocks together, getting the reconstructed sample path

X˚pnq
“ pB˚1,T pnq, ...,B˚T pnq,T pnqq.

Compute the statistic G˚n “ Gn

`

X˚pnq
˘

.

4. If Sn “ SpB1, . . . ,BT pnqq is an appropriate standardization of the original

statistic Gn, compute S˚n “ SpB˚1,T pnq, . . . ,B˚T pnq,T pnqq.

As in the RBB case, the asymptotic result stated below shows the validity of

this bootstrap scheme when used in estimations of integrals with respect to the

invariant measure.

Theorem 4.4.1. Let X be a β-null recurrent Markov chain with an accessible atom

α, and let f be a πα-integrable function such that E
“

pf pB1qq
2
‰

ă `8, then

a

T pnq

¨

˚

˚

˚

˚

˝

T pnq
ř

j“1

˜

fpB˚j,T pnqq ´
1

T pnq

T pnq
ř

i“1

fpBiq

¸

T pnqσT pnq

˛

‹

‹

‹

‹

‚

d˚
ÝÑ N p0, 1q ,

almost surely along the data, where d˚ denotes the convergence in distribution condi-

tionally to the data and

σ2
T pnq “

1

T pnq

T pnq
ÿ

j“1

˜

fpBjq ´
1

T pnq

T pnq
ÿ

i“1

fpBiq

¸2

.

131



4.5. SIMULATIONS

Remark 4.4.1. In its original formulation for the positive recurrent case, the estima-

tor used was Snpfq
n

, however, by Remark 4.2.2, this can not be done in the null recurrent

case, hence, we need to use 1
T pnq

řT pnq
j“1 fpBiq.

4.5 Simulations

To illustrate the convergence of the regenerative bootstraps method described

in the previous two sections we will do the following simulation experiment.

Take X as the simple symmetric random walk in Z, that is

Xt “

$

’

’

&

’

’

%

0 , t “ 0

t
ř

k“1

Yi , t ě 1

(4.19)

with P pYi “ 1q “ P pYi “ ´1q “ 1
2
. In this random walk, the state 0 is an atom

and the invariant measure is π0 piq ” 1 (see pp.1143 in [8]). Consider the function

fpkq “ 1
k2 if k ‰ 0 and fp0q “ 0, then

ż

f pxq dπ pxq “ 2
`8
ÿ

k“1

1

k2
“
π2

0

3
.

In order to show the validity of the proposed methods, we have simulated the

�rst 108
points of a simple symmetric random walk (see �gure 4.1). Using this data,

we have applied both the RBB and the Regeneration Based-bootstrap 1000 times

each and computed the values of

Z˚RBB “
a

T ˚ pn, T pnqq

¨

˚

˚

˚

˚

˝

T˚pn,T pnqq
ř

j“1

˜

fpB˚j,T pnqq ´
1

T pnq

T pnq
ř

i“1

fpBiq

¸

T ˚ pn, T pnqqσT pnq

˛

‹

‹

‹

‹

‚

,
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Z˚RegBB “
a

T pnq

¨

˚

˚

˚

˚

˝

T pnq
ř

j“1

˜

fpB˚j,T pnqq ´
1

T pnq

T pnq
ř

i“1

fpBiq

¸

T pnqσT pnq

˛

‹

‹

‹

‹

‚

.

Figure 4.2 shows the validity of both methods, despite the fact that we observed

a huge block (52% of the whole trajectory is inside this block) and 25% of the re-

alization is in the �nal incomplete block. The 95% con�dence interval for

ş

fdπ0

using the RBB is p3.1439, 3.3096q and using the regenerative based-bootstrap is

p3.1434, 3.3067q. Notice that the true value of

ş

fdπ0 is 3.2899, while the esti-

mation obtained using (4.13) is 3.2226, and the con�dence interval obtained via

Proposition 4.2.2 is p3.1432, 3.302q.

Figure 4.1: First 108
points of a realization of a simple symmetric random walk

starting at 0. There are 9406 complete blocks in this realization. The red dashed

lines delimit the largest block, while the green dotted line marks the end of the last

complete block.

133



4.6. PROOFS

Figure 4.2: Density estimation of the bootstrap distributions Z˚RBB and Z˚RegBB
after 103

simulations.

4.6 Proofs

4.6.1 Proof of Lemma 4.2.1

For the proof of Lemma 4.2.1 we need the following result, which appears as

part A.3 of Theorem A.1 in [67].

Lemma 4.6.1. Let An and Bn be a pair of stochastic processes which are càdlàg,

where An is non-negative and non-decreasing. Let B denote a Brownian motion de-

�ned for t P R and let A denote a strictly increasing non-negative process with inde-

pendent increments, Ap0q ” 0 and with no �xed jumps. Assume that Bn

Dr0,`8q
ÝÝÝÝÑ B

and An
Dr0,`8q
ÝÝÝÝÑ A. Then, Ap´1q

n
Dr0,`8q
ÝÝÝÝÑ Ap´1q and

¨

˝Ap´1q
n ptq ,

Bn ˝ A
p´1q
n ptq

b

A
p´1q
n ptq

˛

‚

d
ÝÑ

`

Ap´1q
ptq , Z

˘

@t P p0, 1s ,
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where Z is standard normal variable independent of Ap´1qptq.

To prove Lemma 4.2.1, let Wk “ σ´1
`

Xk ´ µ
˘

, then tWku
8
k“1 is an i.i.d. se-

quence with EpWkq “ 0 and VarWk “ 1 for all k.

Let’s de�ne the following continuous time process for t ě 0

Qnptq “
1
?
n

tntu
ÿ

k“1

Wk. (4.20)

By Theorem 23 and Example 24 in [103], Qn

Dr0,`8q
ÝÝÝÝÑ B and given that un is

an unbounded increasing sequence, we also have Qun converges weakly to B in

Dr0,`8q.

The conditions imposed to the process Nn allow us to apply Lemma 4.6.1 with

An “ Sn and Bn “ Qun . Taking into account that Nn is equivalent to S
p´1q
n we

obtain that for all t ą 0

Qun pNn ptqq
a

Nn ptq

d
ÝÑ N p0, 1q. (4.21)

Using that N ptntuq “ unNnptq, we get

QunpNnptqq “
σ´1

?
un

Nptntuq
ÿ

j“1

pXj ´ µq, (4.22)

and Lemma 4.2.1 follows after plugging (4.22) into (4.21) and taking t “ 1.

4.6.2 Proof of Corollary 4.2.1

We assume, at �rst, that θ is bounded, that is, there exists a constant K such

that 0 ă θ ă K with probability 1. Without loss of generality, assume the un are
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integers. De�ne the process

Nn ptq “

$

’

’

&

’

’

%

tNpnq
un

, if
Npnq
un

ă 1

tθ , otherwise

As stated in pp. 147 of [20], this process converges to the process tθ and trivially

satis�es the conditions of Lemma 4.2.1 (using Sn ptq “
t
θ
, S´1

n ptq “ tθ).

The case whenK is unbounded can be treated by following the same argument

as in pp. 148 of [20].

4.6.3 Proof of Proposition 4.2.2

Recall from Section 4.2.3 that, by the Strong Markov Property, the sequence

tfpBjqu`8j“1 is i.i.d. with mean

ş

fdπα and variance σ2
. Consider the processesTn ptq

and Cn de�ned in (4.8)

Tn ptq “
T ptntuq

u pnq
, Cn ptq “

1

v pnq

tntu
ÿ

k“0

` pBkq.

By Theorem 4.2.1, we can apply Lemma 4.2.1 with Xi “ fpBiq, µ “
ş

fdπα,

Npnq “ T pnq and un “ nβLpnq, which completes the proof.

4.6.4 Proof of Theorem 4.3.1

Assume we have observed the chain until time n, i.e., Xpnq “ X0, X1, . . . , Xn,

and we have extracted the T pnq regeneration blocks: B1, . . . ,BT pnq.

Now we start to sequentially bootstrap data blocks B˚1,T pnq, . . . ,B˚k,T pnq inde-

pendently from the empirical distribution FT pnq “ T pnq´1 řT pnq
j“1 δBj of the blocks

tBju1ďjďT pnq, conditioned on Xpnq, until the length `˚pkq “
řk
j“1 `

´

B˚1,T pnq
¯

of
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the bootstrap data series is larger than n.

For each m, de�ne

T ˚ pm,T pnqq “ max

#

k :
k
ÿ

j“1

`
`

fpB˚j,T pnqq
˘

ď m

+

, (4.23)

U˚ pm,T pnqq “
?
m

¨

˚

˚

˚

˚

˝

m
ř

j“1

˜

fpB˚j,T pnqq ´
1

T pnq

T pnq
ř

i“1

fpBiq

¸

mσT pnq

˛

‹

‹

‹

‹

‚

. (4.24)

Theorem 4.3.1 will be proved if we show that

P˚
˜

U˚
´

T ˚ pn, T pnqq , T pnq
¯

ď x

¸

p
ÝÑ P pN ď xq @x P R, (4.25)

where P is a standard normal random variable and P˚ p‚q “ P
`

‚ | Xpnq
˘

denotes

the conditional probability given Xpnq.

Given that we will bootstrap T ˚ pn, T pnqq terms, which is a random quantity

conditionally to the data, we will use Lemma 4.6.1 to prove (4.25). In order to do

this we need, conditionally to the data:

1. Find a process S˚n,T pnqptq that is non-negative, non-decreasing that converges

in Dr0,`8q to a process S˚ that is non-negative, strictly increasing, has inde-

pendent increments, no �xed jumps and S˚ p0q ” 0.

2. Show that T ˚n,T pnqptq “
T˚ptntuq
T pnq

“
T˚ptntu,T pnqq

T pnq
is equivalent in Dr0,`8q to

S
˚p´1q
n,T pnq.

3. Find a process Q˚n,T pnq ptq that converges in Dr0,`8q to a Brownian motion
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when n goes to `8. This process should satisfy, for some t ą 0

U˚
´

T ˚ pn, T pnqq , T pnq
¯

“
Q˚n,T pnq ˝ T

˚
n,T pnq ptq

b

T ˚n,T pnq ptq
. (4.26)

A natural choice for Q˚n,T pnq, which satis�es (4.26) for t “ 1, is

Q˚n,T pnq ptq “
a

T pnq

¨

˚

˚

˚

˚

˝

tT pnqtu
ř

j“1

˜

f
´

B˚j,T pnq
¯

´ 1
T pnq

T pnq
ř

j“1

fpBiq

¸

T pnqσT pnq

˛

‹

‹

‹

‹

‚

. (4.27)

Take S˚n,T pnqptq as

S˚n ptq “
1

v˚ pT pnqq

tT pnqtu
ÿ

i“1

`
`

B˚i,T pnq
˘

, (4.28)

where v˚ pT pnqq “
T pnq
ř

i“0

` pBiq.

Following the notation of [69], let Yi “ l pBiq and let Y1,n ě Y2,n ě . . . ě Yn,n

be the order statistics of the sizes of the �rst n blocks, and take Zk,n “
Yk,n
vpnq

where

v pnq is as in (4.7). By Theorem 1 in [69],

Zpnq “ pZ1,n, Z2,n, . . . , Zn,n, 0, . . . , 0q
d
ÝÑ pZ1, Z2, . . . ,q “ Z, (4.29)

where Zk “ pE1 ` ¨ ¨ ¨ ` Ekq
´ 1
β and Ei is a sequence of i.i.d. of exponential ran-

dom variables with mean 1. By Skorokhod-Dudley-Wichura Theorem (see pp. 1171

in [69] and pp. 476 in [12]) we can choose a probability space such that, without

changing the distribution of the left hand side of (4.29),

Zpnq
a.s.
ÝÝÑ Z. (4.30)
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The following Lemma shows that in that space, conditionally to the data, the

process S˚n,T pnq converges in Dr0,`8q.

Lemma 4.6.2. Suppose that (4.30) holds, then T pnq
upnq

converges almost surely to a pos-

itive random variable and

S˚n,T pnq
Dr0,`8q
ÝÝÝÝÑ S˚ and S

˚p´1q
n,T pnq

Dr0,`8q
ÝÝÝÝÑ S˚p´1q

(4.31)

almost surely along the data.

Here, S˚ ptq “ KR˚ ptq` t,R˚ ptq “
`8
ř

j“1

Zj
`

λ˚j ptq ´ t
˘

, λ˚j ptq are independent

Poisson processes with parameter 1 andK is a positive constant. Moreover, the process

S˚ is non-negative, strictly increasing, continuous, with independent increments and

S˚ p0q ” 0.

Proof. When (4.30) holds, by Theorem 1 and Remark 1.3 in [79],

1

vpnq

n
ÿ

j“1

` pBjq
a.s.
ÝÝÑ

`8
ÿ

j“1

Zj.

The length of the �rst block, ` pB0q, is �nite with probability 1 and does not depend

on n, hence
`pB0q

vpnq
converges almost surely to 0. This implies that

1

vpnq

n
ÿ

j“0

` pBjq
a.s.
ÝÝÑ

`8
ÿ

j“1

Zj. (4.32)

In (4.7), we de�ned v pzq as the inverse of u pzq “ zβL pzq, then, by Proposition

1.5.15 in [21], vpzq „ z1{βL1 pzq where L1 is a slowly varying function, hence,

1

vpnq

tntu
ÿ

j“0

` pBjq
a.s.
ÝÝÑ t

1
β

`8
ÿ

j“1

Zj @t ą 0. (4.33)
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For each t ą 0, let Sn ptq “
1

vpnq

tntu
ř

j“0

` pBjq, Sp´1q
n ptq “ inf tx ą 0 : Sn pxq ą tu and

S ptq “ t
1
β

`8
ř

j“1

Zj , and de�ne the three processes as 0 on t “ 0. By (4.33) and the

Continuous Mapping Theorem, S
p´1q
n

a.s.
ÝÝÑ S´1

.

Similar to what is described on page 1141 in [8], suppose that y is such that y ă

S
p´1q
n p1q. Then, since Snpyq ă 1, it follows that

řtnyu

j“0 `pBjq ă vpnq. Consequently,

we have T ptvpnquq ě tnyu ą ny ´ 1. This in turn implies that
T ptvpnquq

n
ě y ´

1
n
ě S

p´1q
n p1q ´ 1

n
for all n. In a similar way, but taking y ą S

p´1q
n , we show that

T ptvpnquq
n

ď S
p´1q
n p1q ` 1

n
for all n. Then,

Supnqp´1q
p1q ´

1

u pnq
ď
T ptv pu pnqquq

u pnq
ď Supnqp´1q

p1q `
1

u pnq
. (4.34)

The �rst part of the lemma now follows from (4.34), the convergence of S
p´1q
upnq p1q

to S´1 p1q and the fact that u pv pnqq “ n for n big enough.

To show (4.31), consider the following process, which was studied in [12],

Z˚m,n ptq “
1

v pnq

tmtu
ÿ

j“1

ˆ

`
`

B˚j,n
˘

´

řn
i“1 ` pBiq
n

˙

.

By Corollary 1.2 in [12] (and its proof
3
), we see that when (4.30) holds, for any mn

such that
mn
n
Ñ c, conditionally to the data, the process Z˚mn,n converges weakly

in D pr0, 1sq to R˚ pctq. Let C ą 1, on r0, Cs de�ne the process

W ˚
n ptq “

1

v pnq

tntu
ÿ

j“1

ˆ

`
`

B˚j,n
˘

´

řn
i“1 ` pBiq
n

˙

.

Notice that W ˚
n ptq “ Z˚nC,n

`

t
C

˘

, hence, W ˚
n

Dr0,Cs
ÝÝÝÑ R˚ as n Ñ `8. Because

3
In [12], they standardize by Tn “ max

1ďkďn
l pBkq but from the proof is clear that the result

remains valid if we standardize by v pnq (bn in their notation).
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this convergence holds for arbitrary C ą 0, by Lemma 1.3.ii in [68] we have that

W ˚
n

Dr0,`8q
ÝÝÝÝÑ R˚, and therefore, W ˚

T pnq

Dr0,`8q
ÝÝÝÝÑ R˚.

The process S˚n,T pnq can be written as

S˚n,T pnq ptq “
v pT pnqq

v˚ pT pnqq
W ˚
T pnq,T pnq ptq `

tT pnq tu

T pnq
(4.35)

Conditionally to the data,
vpT pnqq
v˚pT pnqq

“

´

1
vpT pnqq

řT pnq
j“0 ` pBjq

¯´1

converges to a

positive constant K by equation (4.32). Equation (4.31) now follows from the con-

vergence of W ˚
T pnq,T pnq and (4.35).

The continuity of S˚ was shown in pp. 466 of [12], and the rest of the properties

are evident from the form of R˚.

The next Lemma handles the equivalence of T ˚n,T pnq and S
˚p´1q
n,T pnq in Dr0,`8q.

Lemma 4.6.3. Under the same hypothesis of Lemma 4.6.2, the processes T ˚n,T pnq and

S
˚p´1q
n,T pnq are equivalent in Dr0,`8q.

Proof. The proof of this result follows the proof of Theorem 3.2 on [67] with slight

modi�cations.

We need to show that, for any ε ą 0 given,

P
ˆ

sup
0ătďK

ˇ

ˇ

ˇ
T ˚n,T pnq ptq ´ S

˚p´1q
n,T pnq ptq

ˇ

ˇ

ˇ
ą ε

˙

Ñ 0 @K ą 0. (4.36)

To prove this, we will show that

P
ˆ

sup
0ătďK

ˇ

ˇ

ˇ
T ˚v˚pT pnqq,T pnq ptq ´ S

˚p´1q
n,T pnq ptq

ˇ

ˇ

ˇ
ą ε

˙

Ñ 0 @K ą 0, (4.37)

P
ˆ

sup
0ătăK

ˇ

ˇT ˚v˚pT pnqq,T pnq ptq ´ T
˚
n,T pnq ptq

ˇ

ˇ ą ε

˙

Ñ 0 @K ą 0. (4.38)

from where (4.36) will follow by triangular inequality.
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Let η ą 0

!

S
˚p´1q
n,T pnq ptq ă η

)

Ď
 

S˚n,T pnq pηq ą t
(

“

#

1

v˚ pT pnqq

tT pnqηu
ÿ

i“1

`
`

B˚i,T pnq
˘

ą t

+

“

#

tT pnqηu
ÿ

i“1

`
`

B˚i,T pnq
˘

ą tv˚ pT pnqq

+

“

"

T ˚ ptv˚ pT pnqqtu, T pnqq

T pnq
ă

tT pnqηu

T pnq

*

. (4.39)

Because T pv˚ pnqq “ n, we can write,

T ˚v˚pT pnqq,T pnq ptq “
T ˚ ptv˚ pT pnqq tu, T pnqq

u˚ pv˚ pT pnqqq
“
T ˚ ptv˚ pT pnqq tu, T pnqq

T pnq
,

therefore, equation (4.39) becomes

!

S
˚p´1q
n,T pnq ptq ă η

)

Ď

"

T ˚v˚pT pnqq,T pnq ptq ă
tT pnqηu

T pnq

*

. (4.40)

Similarly, we obtain that

!

S
˚p´1q
n,T pnq ptq ą η

)

Ď

"

T ˚v˚pT pnqq,T pnq ptq ě
tT pnqηu

T pnq

*

. (4.41)

Let ε1 P p0, 1q be �xed and take η1 ă η2, then, by (4.41) and (4.40),

!

η1 ď S
˚p´1q
n,T pnq ptq ă η2

)

Ď

!

η1 p1´ ε1q ă S
˚p´1q
n,T pnq ptq ă η2

)

Ď

"

tT pnqη1 p1´ ε1qu

T pnq
ď T ˚v˚pT pnqq,T pnq ptq ă

tT pnqη2u

T pnq

*

.
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This means, that, if S
˚p´1q
n,T pnq ptq P rη1, η2q, then

tT pnqη1 p1´ ε1qu

T pnq
´ η2 ă T ˚v˚pT pnqq,T pnq ptq ´ S

˚p´1q
n,T pnq ptq ă

tT pnqη2u

T pnq
´ η1,

which implies that, if S
˚p´1q
n,T pnq ptq P rη1, η2q, then

ˇ

ˇ

ˇ
T ˚v˚pT pnqq,T pnq ptq ´ S

˚p´1q
n,T pnq ptq

ˇ

ˇ

ˇ
ď η2 ´ η1 ` ε1η1 `

1

T pnq
. (4.42)

Let ε ą 0 be �xed. For any s we have

P
ˆ

sup
tďK

ˇ

ˇξ˚n,T pnq ptq
ˇ

ˇ ą ε

˙

ď P

ˆ

sup
tďK

ˇ

ˇξ˚n,T pnq ptq
ˇ

ˇ ą ε, sup
tďK

S
˚p´1q
n,T pnq ptq ă s

˙

` P

ˆ

sup
tďK

S
˚p´1q
n,T pnq ptq ě s

˙

,

where ξ˚n,T pnq ptq “ T ˚v˚pT pnqq,T pnq ptq ´ S
˚p´1q
n,T pnq ptq.

By (4.31),

lim
sÒ8

lim
nÑ8

P

ˆ

sup
tďK

S
˚p´1q
n,T pnq ptq ě s

˙

“ 0.

Therefore, for any δ ą 0 we can choose s0 such that P
ˆ

sup
tďK

S
˚p´1q
n,T pnq ptq ě s0

˙

ď δ

for all n big enough. By (4.42), sup
tďK

S
˚p´1q
n,T pnq ptq ă s0 implies that

ˇ

ˇξ˚n,T pnq ptq
ˇ

ˇ ď η2 ´ η1 ` ε1η1 `
1

T pnq
@t P r0, Ks , @ε1 P p0, 1q .

Choose η0, . . . , ηL, N1, ε1 with η0 “ 0 ă η1 ă . . . ă ηL´1 ă ηL “ s0 such that

ηi ´ ηi`1 ă
ε
3

for all i. Let ε1 ă
ε
s0

and choose N1 such that
1

T pN1q
ă ε

3
.

Notice that for all t P r0, Ks there is only one in,t such that S
˚p´1q
n,T pnq ptq belongs
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to

“

ηin,t , ηin,t`1

˘

, then, by (4.42)

ˇ

ˇξ˚n,T pnq ptq
ˇ

ˇ ď ηin,t ´ ηin,t`1 ` ε1η1 `
1

T pnq
ď ε @t P r0, Ks , @n ą N1,

whenever S
˚p´1q
n,T pnq ptq ă s0. This implies that

P
ˆ

sup
tďK

ˇ

ˇξ˚n,T pnq ptq
ˇ

ˇ ą ε, sup
tďK

S
˚p´1q
n,T pnq ptq ă s0

˙

“ 0 @n ě N1.

Hence,

P
ˆ

sup
tďK

ˇ

ˇξ˚n,T pnq ptq
ˇ

ˇ ą ε

˙

ă δ @n ą N1. (4.43)

which implies (4.37).

Now we turn to the proof of (4.38).

According to the de�nition of v˚, v˚ pT pnqq “
T pnq
ř

i“0

l pBiq ď n, therefore,

T ˚v˚pT pnqq,T pnq ptq “
T ˚ ptv˚ pT pnqq tu, T pnqq

T pnq
ď
T ˚ ptntu, T pnqq

T pnq
“ T ˚n,T pnq ptq @n, t.

Notice that v˚ pT pnq ` 1q “
T pnq`1
ř

i“0

l pBiq ą n, therefore,

T ˚n,T pnq ptq ď T ˚v˚pT pnq`1q,T pnq ptq
T pnq ` 1

T pnq
@n, t.

Hence,

T ˚v˚pT pnqq,T pnq ptq ď T ˚n ptq ď T ˚v˚pT pnq`1q ptq
T pnq ` 1

T pnq
@n, t.

Equation (4.38) now follows from the convergence of bothT ˚v˚pT pnqq,T pnq andT ˚v˚pT pnq`1q,T pnq

to S˚p´1q
and the fact that

T pnq`1
T pnq

a.s.
ÝÝÑ 1.
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By (4.27), Lemmas 4.6.1, 4.6.2 and 4.6.3 we have that, in a space where (4.30)

holds, the convergence in (4.25) holds almost surely. Therefore, in the original

space we have the weakly-weakly (see pp.2550 in [26]) convergence

P˚
˜

U˚
´

T ˚ pn, T pnqq , T pnq
¯

ď x

¸

d
ÝÑ P pN ď xq @x P R. (4.44)

However, given that the right hand side of (4.44) is a constant for each x, the con-

vergence in (4.44) can be improved to convergence in probability, which completes

the proof.

4.6.5 Proof of Theorem 4.4.1

This proof follows the line of the proof of Theorem 2.1 in [19]. As in that paper,

let Γ2 be the set of distribution functions G satisfying

ş

x2dG pxq ă 8 and de�ne

the following notion of convergence in Γ2

Gn ñ G i� Gn Ñ G weakly and

ż

x2dGn pxq Ñ

ż

x2dG pxq. (4.45)

Denote by d2 a Mallows metric that metricizes theñ convergence in Γ2 (see details

in Section 8 of [19])

If Y1, . . . , Yn are i.i.d. random variables with common distribution G, denote

by Gpmq the distribution of

m´ 1
2

m
ÿ

j“1

pYj ´ EYjq

By pp. 1198 in [19], if G,H P Γ2 then Gpmq and Hpmq
are also in Γ2 and

d2

`

Gpmq, Hpmq
˘

ď d2 pG,Hq . (4.46)
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Let F be the distribution of fpB1q and denote by Fn the empirical distribution

function of fpB1q, . . . , fpBnq. By (2.1) in [19] and the fact that T pnq Ñ `8 a.s.,

FT pnq ñ F along almost almost all sample paths, hence, conditionally to the data

d2

`

FT pnq, F
˘

Ñ 0. (4.47)

Denote by Nσ a standard distribution with mean 0 and variance σ2
. By Propo-

sition 4.2.2,

d2

`

F pT pnqq, Nσ

˘

Ñ 0. (4.48)

Conditionally to the data, the distribution of

a

T pnq

¨

˚

˚

˚

˚

˝

řT pnq
j“1

˜

f
´

B˚j,T pnq
¯

´ 1
T pnq

T pnq
ř

i“1

f pBiq

¸

T pnq

˛

‹

‹

‹

‹

‚

is F
pT pnqq
T pnq , then, conditionally to the data,

d2

´

F
pT pnqq
T pnq , Nσ

¯

ď d2

´

F
pT pnqq
T pnq , F pT pnqq

¯

` d2

`

F pT pnqq, Nσ

˘

which goes to 0 by (4.47) and (4.48). The theorem now follows by (4.45), (4.14) and

Slutsky’s theorem.
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Chapter 5
Harris recurrent Markov chains and

nonlinear monotone cointegrated models

The content of this chapter is based on [41]. It is the result of a collaboration

with my advisors Cécile Durot
1

and Patrice Bertail
1
.

Abstract: In this paper, we study a nonlinear cointegration-type model of the

form Zt “ f0pXtq `Wt where f0 is a monotone function and Xt is a Harris re-

current Markov chain. We use a nonparametric Least Square Estimator to locally

estimate f0, and under mild conditions, we show its strong consistency and obtain

its rate of convergence. New results (of the Glivenko-Cantelli type) for localized

null recurrent Markov chains are also proved.

5.1 Introduction

The concept of linear cointegration refers to two time series, Zt and Xt, that

are both nonstationary and of unit root type, and where there exists a stationary

1
MODAL’X, UMR 9023 - Université Paris Nanterre, CNRS, UPL, 200 ave de la République, F92000

Nanterre.
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5.1. INTRODUCTION

linear combination of Xt and Zt. This concept was �rst introduced in [52] and has

since been extensively studied, particularly in the �eld of econometrics [44, 62, 63,

98, 99].

However, the long-term relationship between the two series, Zt and Xt, might

not necessarily be linear, nor Xt be linearly generated. This has led to the study of

nonlinear cointegrated models such as,

Zt “ f0pXtq `Wt, (5.1)

where a nonlinear function f0 and a nonlinearly generated input process Xt are

incorporated to model the relationship between the series.

In [23, 65] a relationship like (5.1) has been studied under the assumptions that

f0 is nonlinear, Xt and Wt are independent processes, and Xt is a positive or β-

null recurrent Markov chain. They have applied the Nadaraya-Watson method to

estimate f0 and established the asymptotic theory of the proposed estimator.

The problem of estimating f0 under the Markovian assumption has also been

tackled using local linear M-type estimators in [24, 80] and using advanced con-

cepts like local time and nonlinear transformations of Brownian motion-like pro-

cesses in [117, 118, 119]. A comprehensive survey of the latest advances in this

problem can be found in [112].

To the best of our knowledge, the case where f0 is subject to shape constraints

has not been addressed under Markovian assumptions. Such estimators are non-

linear and therefore pose signi�cant theoretical challenges. In the context of inde-

pendent observations, constraints such as convexity, concavity, and log-concavity

are known to be even more complex than monotonicity constraints (see [54, 109]

and the references therein). As a result, we have chosen to initiate our study of
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shape-constrained estimators in the Markovian setting by focusing on the mono-

tone case.

In this paper, we wish to establish a nonparametric estimation theory of the

nonparametric least squares estimator (LSE) for the function f0 in the model (5.1)

under the constraints that f0 is monotone non-increasing. Here, tWtu is an un-

observed process such that EpWt|Xtq “ 0 to ensure identi�ability of f0. Since a

minimal condition for undertaking asymptotic analysis on f0px0q at a given point

x0 is that, as the number of observations on tXtu increases, there must be in�nitely

many observations in the neighborhood of x0, the process tXtu will be assumed

to be a Harris recurrent Markov chain (cf section 5.2).

This model is clearly very attractive in situations where monotonicity is a rea-

sonable assumption but commonly assumed structures such as linearity or additiv-

ity are not. Indeed, this formulation, in the i.i.d. case, has found useful applications

in econometrics [59], biology [81, 91], medicine [110], engineering [86] among oth-

ers. However, up to our knowledge, it has not been treated under the markovian

assumption on Xt.

5.1.1 The estimator

LetC be a set that its interior contains our point of interest x0. Having observed

tpXt, Ztqu
n
t“0, we denote by TnpCq the number of times that X visitedC up to time

n and by σC piq the time of the i-th visit. Then, we consider the nonparametric LSE

de�ned as the minimizer of

f ÞÑ

TnpCq
ÿ

i“1

`

ZσCpiq ´ f
`

XσCpiq

˘˘2
(5.2)
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over the set of non-increasing functions f on R. The nonparametric LSE
pfn has a

well know characterization, as follows. Let m be the number of unique values of

XσCp1q, . . . , XσCpTnpCqq, and Y1 ă ¨ ¨ ¨ ă Ym be the corresponding order statistics.

Then,
pfnpYkq is the left-hand slope at

řTnpCq
i“1 I

 

XσCpiq ď Yk
(

of the least concave

majorant of the set of points

#

p0, 0q,

˜

TnpCq
ÿ

i“1

I
 

XσCpiq ď Yk
(

,

TnpCq
ÿ

i“1

ZσCpiqI
 

XσCpiq ď Yk
(

¸

, k “ 1, . . . ,m

+

,

(5.3)

and it can be computed using simple algorithms as discussed in [10]. Thus, the

constrained LSE is uniquely de�ned at the observation points, however, it is not

uniquely de�ned between these points: any monotone interpolation of these values

is a constrained LSE. As is customary, we consider in the sequel the piecewise-

constant and left-continuous LSE that is constant on every interval pYk´1, Yks, k “

2, . . . ,m and also on p´8, Y1s and on rYm,8q.

The use of a localized estimator is due to the fact that we need to control the

behavior of the chain around x0, and, to do this, we need to estimate the asymptotic

"distribution" ofX in a vecinity of x0. For Harris recurrent Markov chains, the long-

term behavior of the chain is given by its invariant measure (see Section 5.2). In

the positive recurrent case, the invariant measure is �nite and it can be estimated

by simply considering the empirical cumulative distribution function of the Xt.

However, in the null recurrent case, the invariant measure is only σ-�nite, hence,

we need to localize our analysis in a set big enough that the chain visits it in�nitely

often, but small enough that the restriction of the invariant measure to it is �nite.

Moreover, contrary to the bandwidth in kernel type estimators,C does not depend

on n, and the rate of convergence of the estimator does not depend on C .
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5.1.2 Outline

Since our paper draws quite heavily on the theory of Harris recurrent Markov

chains, we have added a small introduction to the subject as well as the main re-

sults that we use throughout the paper in Section 5.2. In Section 5.3, we show that

under very general assumptions, our estimator
pfn is strongly consistent, while its

rate of convergence is presented in Section 5.4. In Section 5.5, we present three

new results concerning Harris recurrent Markov chains that have emerged dur-

ing our investigation and we believe are interesting in their own right. Section 5.6

contains an overview of the proofs of our main results, while the technical proofs

are presented in Section 5.7.

5.2 Markov chain theory and notation

In this section, we present the notation and main results related to Markov

chains that are needed throughout the paper. For further details, we refer the reader

to [38, 87, 90].

Let X “ X0, X1, X2, . . . be a time-homogeneous Markov Chain de�ned on a

probability space pE, E ,Pqwhere E is countably generated. Let P px,Aq denote its

transition kernel, i.e. for x P E , A P E we have

P px,Aq “ P pXi`1 P A |Xi “ xq , i “ 0, 1, . . .

Let P npx,Aq denote the n-step transition probability, i.e.

P n
px,Aq “ P pXi`n P A |Xi “ xq @i.
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5.2. MARKOV CHAIN THEORY AND NOTATION

If λ is a probability measure in pE, Eq such that L pX0q “ λ, then λ is called the

initial measure of the chainX. A homogeneous Markov chain is uniquely identi�ed

by its kernel and initial measure.

When the initial measure of the chain is given, we will write Pλ (and Eλ) for

the probability (and the expectation) conditioned on L pX0q “ λ. When λ “ δx

for some x P E we will simply write Px and Ex.

An homogeneous Markov chain is irreducible if there exists a σ-�nite mea-

sure φ on pE, Eq such that for all x P E and all A P E with φpAq ą 0 we have

P npx,Aq ą 0 for some n ě 1. In this case, there exists a maximal irreducibil-

ity measure ψ (all other irreducibility measures are absolutely continuous with

respect to ψ). In the following, all Markov chains are supposed to be irreducible

with maximal irreducibility measure ψ.

For any set C P E , we will denote by σC and τC , respectively, the times of

�rst visit and �rst return of the chain to the set C , i.e. τC “ inf tn ě 1 : Xn P Cu

and σC “ inf tn ě 0 : Xn P Cu. The subsequent visit and return times σC , τC pkq,

k ě 1 are de�ned inductively as follows:

τC p1q “ τC , τC pkq “ min tn ą τC pk ´ 1q : Xn P Cu , (5.4)

σC p1q “ σC , σC pkq “ min tn ą σC pk ´ 1q : Xn P Cu . (5.5)

Given that our methods will only deal with the values of X in a �xed set C , if

A is a measurable set, we will write ICtXt P Au instead of ItXt P A X Cu and if

A “ E, then we will simply write IC pXtq.

We will use Tn pCq to denote the random variable that counts the number of

times the chain has visited the set C up to time n, that is Tn pCq “
řn
t“0 IC pXtq.

Similarly, we will write T pCq for the total of numbers of visits the chain X to C .
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The set C is called recurrent if ExT pCq “ `8 for all x P C and the chain X is

recurrent if every set A P E such that ψ pAq ą 0 is recurrent.

Although recurrent chains possess many interesting properties, a stronger type

of recurrence is required in our analysis. An irreducible Markov chain is Harris

recurrent if for all x P E and all A P E with ψpAq ą 0 we have

P pXn P A in�nitely often |X0 “ xq “ 1.

An irreducible chain possesses an accessible atom, if there is a set α P E such

that for all x, y in α: P px, .q “ P py, .q and ψpαq ą 0. Denote by Pα and Eαp.q the

probability and the expectation conditionally toX0 P α. If X possesses an accessi-

ble atom and is Harris recurrent, the probability of returning in�nitely often to the

atom α is equal to one, no matter the starting point, i.e. @x P E,Px pτα ă 8q “ 1.

Moreover, it follows from the strong Markov property that the sample paths may be

divided into independent blocks of random length corresponding to consecutive

visits to α:

B0 “
`

X0, X1, . . . , Xταp1q

˘

B1 “
`

Xταp1q`1, . . . , Xταp2q

˘

. . .

Bn “
`

Xταpnq`1, . . . , Xταpn`1q

˘

. . .

taking their values in the torus T “ Y8n“1E
n
. Notice that the distribution of B0

depends on the initial measure, therefore it does not have the same distribution as

Bj for j ě 1. The sequence tταpjqujě1 de�nes successive times at which the chain
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forgets its past, called regeneration times. Similarly, the sequence of i.i.d. blocks

tBjujě1 are named regeneration blocks. The random variable T pnq “ Tn pαq ´

1 counts the number of i.i.d. blocks up to time n. This term is called number of

regenerations up to time n.

Notice that for any function de�ned on E, we can write

řn
t“0 f pXtq as a sum

of independent random variables as follows:

n
ÿ

t“0

f pXtq “ f pB0q `

T pnq
ÿ

j“1

f pBjq ` f
`

Bpnq
˘

, (5.6)

where, f pB0q “
řτα
t“0 f pXtq, f pBjq “

řταpj`1q
t“ταpjq`1 f pXtq for j “ 1, . . . , T pnq and

f
`

Bpnq
˘

“
řn
t“ταpT pnq`1q`1 f pXtq.

When an accessible atom exists, the stochastic stability properties of X amount

to properties concerning the speed of return time to the atom only. For instance,

the measure πα given by:

πα pBq “ Eα

˜

τα
ÿ

n“1

ItXi P Bu

¸

, @B P E (5.7)

is invariant, i.e.

πα pBq “

ż

P px,Bq dπα pxq.

Denote by E` the class of nonnegative measurable functions with positive ψ

support. A function s P E` is called small if there exists an integer m0 ě 1 and a

measure ν P M pEq
`

such that

Pm0 px,Aq ě s pxq ν pAq @x P E,A P E . (5.8)

When a chain possesses a small function s, we say that it satis�es the minorization
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inequality M pm0, s, νq. As pointed out in [90], there is no loss of generality in

assuming that 0 ď s pxq ď 1 and

ş

E
spxqdνpxq ą 0.

A set A P E is said to be small if the function IA is small. Similarly, a measure

ν is small if there exist m0, and s that satisfy (5.8). By Theorem 2.1 in [90], every

irreducible Markov chain possesses a small function and Proposition 2.6 of the

same book shows that every measurable set A with ψ pAq ą 0 contains a small

set. In practice, �nding such a set consists in most cases in exhibiting an accessible

set, for which the probability that the chain returns to it in m steps is uniformly

bounded below. Moreover, under quite wide conditions a compact set will be small,

see [45].

If X does not possess an atom but is Harris recurrent (and therefore satis�es

a minorization inequality M pm0, s, νq), a splitting technique, introduced in [89,

90], allows us to extend in some sense the probabilistic structure of X in order

to arti�cially construct an atom. The general idea behind this construction is to

expand the sample space so as to de�ne a sequence pYnqnPN of Bernoulli r.v.’s and a

bivariate chain X̌ “ tpXn, Ynqu
`8

n“0, named split chain, such that the set α̌ “ pE, 1q

is an atom of this chain. A detailed description of this construction can be found

in [90].

The whole point of this construction consists in the fact that X̌ inherits all the

communication and stochastic stability properties from X (irreducibility, Harris

recurrence,...). In particular, the marginal distribution of the �rst coordinate pro-

cess of X̌ and the distribution of the original X are identical. Hence, the splitting

method enables us to establish all the results known for atomic chains to general

Harris chains, for example, the existence of an invariant measure which is unique

up to multiplicative constant (see Proposition 10.4.2 in [87]).

The invariant measure is �nite if and only if Eα̌τα̌ ă `8, in this case we say
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the chain is positive recurrent, otherwise, we say the chain is null recurrent. A null

recurrent chain is called β-null recurrent (c.f. De�nition 3.2 in [67]) if there exists

a small nonnegative function h, a probability measure λ, a constant β P p0, 1q and

a slowly varying function Lh such that

Eλ

˜

n
ÿ

t“0

h pXtq

¸

„
1

Γ p1` βq
nβLh pnq as nÑ 8.

As argued in [67], is not a too severe restriction to assume m0 “ 1. There-

fore, throughout this paper we assume that X satis�es the minorization inequality

Mp1, s, νq, i.e, there exist a measurable function s and a probability measure ν

such that 0 ď s pxq ď 1,

ş

E
spxqdνpxq ą 0 and

P px,Aq ě s pxq ν pAq . (5.9)

Remark 5.2.1. The extensions to the case where m0 ą 1 of the results that will be

presented in this paper can be carried out (although they involve some complicated

notations/proofs) using them-skelethon or the resolvent chains, as described in [28, 30]

and Chapter 17 of [87]. However, they are not treated in this paper.

A measurable and positive function L, de�ned in ra,`8q for some a ě 0, is

called slowly varying at `8 if it satis�es limxÑ`8
Lpxtq
Lpxq

“ 1 for all t ě a. See [21]

for a detailed compendium of these types of functions.

It was shown in Theorem 3.1 of [67] that if the chain satis�es the minorization

condition (5.9), then it’s β-null recurrent if and only if

P pτα̌ ą nq „
1

Γ p1´ βqnβL pnq
, (5.10)

where L is a slowly varying function.
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The following theorem is a compendium of the main properties of Harris’s

recurrent Markov chains that will be used throughout the paper. Among other

things, it shows that the asymptotic behaviour of T pnq is similar to the function

u pnq de�ned as

u pnq “

$

’

’

&

’

’

%

n, if X is positive recurrent

nβL pnq , if X is β-null recurrent

. (5.11)

Theorem 5.2.1. 2 Suppose X is a Harris recurrent, irreducible Markov chain, with

initial measure λ, that satis�es the minorization condition (5.9). Let T pnq be the

number of complete regenerations until time n of the split chain X̌ , let C P E be a

small set and π be an invariant measure for X. Then,

1. 0 ă π pCq ă `8.

2. For any function f , de�ned onE, the decomposition (5.6) holds. Moreover, there

is a constant Kπ, that only depends on π, such that if f P L1 pE, πq, then

Eλf pB1q “ Kπ

ş

E
fdπ.

3. T pnq
TnpCq

converges almost surely to a positive constant.

4. T pnq
upnq

converges almost surely to a positive constant ifX is positive recurrent and

converges in distribution to a Mittag-Le�er3 random variable with index β if

X is β-null recurrent.
2
Part 1 is Proposition 5.6.ii of [90], part 2 is equation (3.23) of [67], part 3 is an application of the

Ratio Limit Theorem (Theorem 17.2.1 of [87]). For the positive recurrent case, part 4 also follows

by the aforementioned Ratio Limit Theorem while the claim for the null recurrent case appears as

Theorem 3.2 in [67].

3
The Mittag-Le�er distribution with index β is a non-negative continuous distribution, whose

moments are given by

E
`

Mm
β p1q

˘

“
m!

Γ p1`mβq
m ě 0.

See (3.39) in [67] for more details.
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5.3 Consistency

The aim of the section is to show that for an arbitrary x0 in the support of f0,

the LSE
pfnpx0q is consistent. We make the following assumptions on the processes

X “ tXtu and W “ tWtu.

(A1) X is a Harris recurrent Markov chain whose kernel P px,Aq satis�es the

minorization condition (5.9).

Let Fn “ σ ptX0, . . . , Xnuq be sigma algebra generated by the chain X up to

time n.

(A2) For each n, the random variablesW1, . . . ,Wn are conditionally independent

given Fn, EpWt|Fnq “ 0 and Var pWt|Fnq ď σ2
for some σ ą 0.

It follows from Assumption (A1) that the Markov Chain X admits a unique (up

to a multiplicative constant) σ-�nite invariant measure π. Let C be a set such that

0 ă π pCq ă 8 and x0 P C . We denote by Fn the process de�ned by

Fnpyq “
1

TnpCq

TnpCq
ÿ

i“1

ItXσCpiq ď yu “
1

TnpCq

n
ÿ

t“0

ICtXt ď yu (5.12)

for all y P R, which is a localized version of the empirical distribution function

of the Xt’s. It is proved in Lemma 5.5.1 that Fn converges almost surely to the

distribution function F supported on C and de�ned by

F pyq “
π pC X p´8, ysq

π pCq
. (5.13)

Our next two assumptions guarantee that there is a compact C , that is a small

set and contains x0 as an interior point. Sets like this can be found under very wide

conditions (cf [45]).
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(A3) There is δ “ δpx0q such that the set C “ rx0 ´ δ, x0 ` δs is small.

(A4) x0 belongs to the interior of the support of Xt.

Notice that by part 1 of Theorem 5.2.1, (A3) guarantees that πpCq is �nite and

positive, and hence, F is properly de�ned.

In addition to the assumptions on the processes tXtu and tWtu, we need smooth-

ness assumptions on F and on f0. In particular, we will assume that F and f0 are

continuous and strictly monotone inC . This implies that f0 and F are invertible in

C , so we can �nd neighborhoods of f0px0q and F px0q respectively, over which the

inverse functions are uniquely de�ned. We denote by f´1
0 andF´1

respectively the

inverses of f0 and F over such a neighborhood of f0px0q and F px0q respectively.

The function f0 is assumed to be monotone on its whole support.

(A5) F is locally continuous and strictly increasing in the sense that for all x1 in

C , for all ε ą 0, there exists γ ą 0 such that |F´1puq´x1| ą γ for all u such

that |u´ F px1q| ě ε.

(A6) f0 is non-increasing, and f0 is locally strictly decreasing in the sense that for

all x1 in C , for all ε ą 0, there exists γ ą 0 such that |f0px
1q´ f0pyq| ą γ for

all y such that |y ´ x1| ě ε.

(A7) f0 continuous in C .

Assumptions (A1), (A3) and (A5) ensure that Xt visits in�nite times any small

enough neighborhood of x0 with probability 1, and guarantee that x0 is not at the

boundary of the recurrent states. Assumptions (A1) and (A3) and Lemma 3.2 in

[67] imply that TnpCq Ñ 8 almost surely.
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Theorem 5.3.1. Suppose that assumptions (A1)-(A7) are satis�ed. Then, as nÑ 8,

one has

pfnpx0q “ f0px0q ` oP p1q, (5.14)

and

pf´1
n pf0px0qq “ x0 ` oP p1q. (5.15)

5.4 Rates of convergence

To compute rates of convergence, we need stronger assumptions than for con-

sistency. We replace assumption (A1) for the following stronger version

(B1) tXtu is a positive or β-null recurrent, aperiodic and irreducible Markov Chain

whose kernel P px,Aq satis�es the minorization condition (5.9).

We replace, (A5), (A6) and (A7), for the following slightly more restrictive as-

sumption

(B2) The function f0 is non-increasing, the functions f0 and FC are di�erentiable

in C , and the derivatives F 1C and f 10 are bounded, in absolute value, above

and away from zero in C .

Let λ be the initial measure of X. Our next hypothesis imposes some control

on the behaviour of the chain in the �rst regenerative block.

(B3) There exists a constant K and a neighborhood V of 0, such that

Eλ

˜

τα̌
ÿ

t“0

pIC tXt ď x0 ` γu ´ IC tXt ď x0 ´ γuq

¸

ď Kγ @γ P V.
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Assumption (B3)is satis�ed if we assume that the initial measure of the chain is

the small measure used for the construction of the split chain (see equation 4.16c

in [90]). In the positive recurrent case, taking λ equal to the unique invariant prob-

ability measure of the chain also satis�es (B3).

And �nally, we need to control the number of times the chain visits C in a

regeneration block.

(B4) `CpB1q “
ř

tPB1
ICtXtu has �nite second moment.

Theorem 5.4.1. Assume that (A2), (A3), (A4), (B1), (B2), (B3) and (B4) hold. Then,

as nÑ 8, one has

pfnpx0q “ f0px0q `OP pu pnq
´1{3

q, (5.16)

with u pnq as de�ned in (5.11).

The rate u pnq comes from Lemmas 5.5.3 and 5.6.7, and as it can be seen from

Theorem 5.2.1, it is a deterministic approximation ofT pnq. Note that in the positive

recurrent case, u pnq “ n, hence we obtain the same rate n´1{3
as in the i.i.d. case

[53, Chapter 2]. In the β-null recurrent case, however, the rate of convergence is

nβ{3L1{3 pnq which is slower than the usual rate. This is due to null recurrence of

the chain because it takes longer for the process to return to a neighborhood of

the point x0 and it is these points in the neighborhood of x0 which are used in

nonparametric estimation.

5.5 Localized Markov chains

Given the localized nature of our approach, in this section, we present some

results that are particularly useful in this scenario. These results are well known

for positive recurrent chains but are new in the null recurrent case.
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The �rst result can be viewed as an extension of the Glivenko-Cantelli theorem

to the localized scenario.

Lemma 5.5.1. Assume that (A1) and (A3) hold. Then, there exists a stationary σ-

�nite measure π, and F de�ned by (5.13), such that,

sup
yPR
|Fn pyq ´ F pyq| Ñ 0 a.s. (5.17)

as n Ñ 8. If (A5) is also satis�ed, then, for all su�ciently small ε ą 0, as n Ñ 8

we have

sup
|p´F px0q|ďε

ˇ

ˇF´1
n ppq ´ F´1

ppq
ˇ

ˇÑ 0 a.s. (5.18)

Our next result (Lemma 5.5.2), which is an extension of Lemma 2 in [18] to the

localized β-null recurrent case, deals with the properties of classes of functions

de�ned over the regeneration blocks. Before presenting the result, we need some

machinery.

Recall that E Ď R denotes the state space of X . De�ne
pE “ Y8k“1E

k
(i.e. the

set of �nite subsets of E) and let the localized occupation measureMC be given by

MCpB, dyq “
ÿ

xPBXC

δxpyq, for every B P pE.

The function that gives the size of the localized blocks is `C : pE Ñ N

`CpBq “

ż

MCpB, dyq, for every B P pE.

Let
pE denote the smallest σ-algebra formed by the elements of the σ-algebras

Ek, k ě 1, where Ek stands for the classical product σ-algebra. Let
pQ denote a prob-

ability measure on p pE, pEq. If Bpωq is a random variable with distribution Q1, then
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MCpBpωq, dyq is a random measure, i.e.,MCpBpωq, dyq is a (counting) measure on

pE, Eq, almost surely, and for everyA P E ,MCpBpωq, Aq “
ş

A
MCpBpωq, dyq is a

measurable random variable (valued inN). Henceforth `pBpωqqˆ
ş

fpyqMCpBpωq, dyq

is a random variable and, provided that
pQp`2q ă 8, the map QC , de�ned by

QCpAq “ E
pQ

ˆ

`CpBq ˆ

ż

A

MCpB, dyq

˙

{E
pQp`

2
Cq, for every A P E , (5.19)

is a probability measure on pE, Eq. The notationEQC stands for the expectation

with respect to the underlying measureQC . Introduce the following notations: for

any function g : E Ñ R, let pgC : pE Ñ R be given by

pgC pBq “

ż

g pyqMC pB, dyq “
ÿ

xPBXC

g pxq “
ÿ

xPB

gC pxq, (5.20)

and for any class G of real-valued functions de�ned on E, denote the localized

version of the sums on the blocks by
pGC “ tpgC : g P Gu.

Notice that, for any function g,

EQC pgq “
E

pQ

`

`C pBq ˆ
ş

g pyqMC pB, dyq
˘

E
pQ p`

2
Cq

“
E

pQ p`C pBq pgC pBqq

E
pQ p`

2
Cq

. (5.21)

Lemma 5.5.2. Let pQ be a probability measure on p pE, pEq such that 0 ă }`C}L2p pQq ă

8 and G be a class of measurable real-valued functions de�ned on pE, Eq. Then we

have, for every 0 ă ε ă 8,

N
´

ε}`C}L2p pQq
, pGC , L2

´

pQ
¯¯

ď N
`

ε,G, L2
pQq

˘

,

where Q is given in (5.19). Moreover, if G belongs to the Vapnik–Chervonenkis (VC)

class of functions with constant envelope U and characteristic pC, vq, then pG is VC
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with envelope U`C and characteristic pC, vq.

Remark 5.5.1. For a probability measure µ, and a class of functionsH, the covering

number N pε,H, Lr pµqq is the minimum number of Lr pµq ε-balls needed to cover

H. For more details about this concept and the VC class of functions, see [70].

To put into perspective Lemma 5.5.2, consider a class of bounded functions G

that is VC with �nite envelope. Lemma 5.5.2 tells us that the class of unbounded

functions
pGC is also VC. If we also have that (B4) holds, then Theorem 2.5 in [70]

tells us that
pGC is a Donsker class. A reasoning like this is used in the proof of the

following result, which is a stronger version of Lemma 5.5.1 under assumptions

(B1) and (B2) and has some interest on its own.

Lemma 5.5.3. Assume that (B1), (B2), (A3), (A4) and (B4) hold. Then, for all su�-

ciently small ε ą 0 we have,

TnpCq sup
|y´x0|ďε

|Fnpyq ´ F pyq|
2
“ Op p1q (5.22)

when n goes to `8. If (B2) is also satis�ed, as nÑ 8 we have

TnpCq sup
|p´F px0q|ďε

ˇ

ˇF´1
n ppq ´ F´1

ppq
ˇ

ˇ

2
“ Op p1q . (5.23)

5.6 Proofs

In this section we give a general outline of the proofs of Theorems 5.3.1 and

5.4.1. The technical proofs can be found in sections 5.7.2 to 5.7.5.
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5.6.1 Outline of the proof of Theorem 5.3.1

Recall that we consider the piecewise-constant and left-continuous LSE
pfn, that

is constant on every interval pYk´1, Yks, k “ 2, . . . ,m and also on p´8, Y1s and on

rYm,8q. With δ ą 0 �xed, we denote by TnpCq the number of times the Markov

Chain X visits the set C :“ rx0 ´ δ, x0 ` δs until time n:

TnpCq “
n
ÿ

t“0

ItXt P Cu. (5.24)

Let lk “
řn
t“1 ICtXt ď Yku for all k P t1, . . . ,mu and l0 “ 0.

Our aim is to provide a characterization of
pfnpx0q . Recall from (5.12) that the

localized empirical distribution function Fn is de�ned as

Fnpyq “
1

TnpCq

TnpCq
ÿ

i“0

ItXσCpiq ď yu “
1

TnpCq

n
ÿ

t“0

ICtXt ď yu

for y P R. Fn is 0 on p´8, Y1q, so, with an arbitrary random variable Y0 ă Y1 we

have Fnpyq “ FnpY0q “ 0 for all y ă Y1. Let K be the set

K :“ tFnpYkq, k “ 0, . . . ,mu (5.25)

and let Λn be the continuous piecewise-linear process on rFnpY0q, FnpYmqs with

knots at the points in K and values

Λn pFnpYkqq “
1

TnpCq

n
ÿ

t“0

ZtICtXt ď Yku (5.26)

at the knots. The characterization of
pfn in Lemma 5.6.2 involves the least concave

majorant of Λn. Note that we use TnpCq as a normalization in the de�nitions of

the processes Fn and Λn since this choice ensures that Fn and Λn converge to �xed
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functions, see Lemma 5.5.1.

Lemma 5.6.1. For all y P rFn pY0q , Fn pYmqs,

Λn pyq “ Ln pyq `Mn pyq ,

where,

Ln pyq “

y
ż

0

f ˝ F´1
n
puq du, (5.27)

andMn is a piece-wise linear processes with knots at FnpYkq for k P t0, . . . ,mu

such that

MnpFnpYkqq “
1

TnpCq

n
ÿ

t“0

WtICtXt ď Yku.

Moreover,Mn can be written as

Mnpyq “

$

’

’

&

’

’

%

0 , if y “ 0

Rj
npyq `M

j
n , otherwise

(5.28)

where,

M j
n “MnpFnpYjqq “

1

TnpCq

n
ÿ

t“0

WtICtXt ď Yju, (5.29)

Rj
n pyq “

n
ř

t“0

WtICtXt “ Yj`1u

lj`1 ´ lj
py ´ Fn pYjqq , (5.30)

and j is such that Yj`1 “ F´1
n pyq.

In the next lemma, we give an alternative characterization of the monotone

nonparametric LSE
pfn at the observation points Y1, . . . , Ym.
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Lemma 5.6.2. Let C “ rx´ δ, x` δs for some �xed δ ą 0. Let pλn be the left-hand

slope of the least concave majorant of Λn. Then,

pfnpYkq “ pλn ˝ FnpYkq, @k P t1, . . . ,mu. (5.31)

with probability 1 for n big enough.

We consider below the generalized inverse function of
pfn since it has a more

tractable characterization than
pfn itself. To this end, let us de�ne precisely the

generalized inverses of all processes of interest. Since
pλn is a non-increasing left-

continuous step function on pFnpY0q, FnpYmqs that can have jumps only at the

points FnpYkq, k P t1, . . . ,mu, we de�ne its generalized inverse
pUnpaq, for a P R,

as the greatest y P pFnpY0q, FnpYmqs that satis�es
pλnpyq ě a, with the convention

that the supremum of an empty set is FnpY0q. Then for every a P R and y P

pFnpY0q, FnpYmqs, one has

pλnpyq ě a if and only if
pUnpaq ě y. (5.32)

Likewise, since
pfn is a left-continuous non-increasing step function on R that can

have jumps only at the observation times Y1 ă ¨ ¨ ¨ ă Ym, we de�ne the generalized

inverse
pf´1
n paq, for a P R, as the greatest y P rY0, Yms that satis�es

pfnpyq ě a, with

the convention that the supremum of an empty set is Y0. We then have

pfnpyq ě a if and only if
pf´1
n paq ě y (5.33)

for all a P R and y P pY0, Yms. On the other hand, since Fn is a right-continuous

non-decreasing step function on R with range rFnpY0q, FnpYmqs, we de�ne the

generalized inverse F´1
n paq, for a ď FnpYmq, as the smallest y P rY0, Yms which
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satis�es Fnpyq ě a. Note that the in�mum is achieved for all a ď FnpYmq. We then

have

Fnpyq ě a if and only if F´1
n paq ď y (5.34)

for all a ď FnpYmq and y P rY0, Yms, and thanks to Lemma 5.6.2 we have

pf´1
n “ F´1

n ˝ pUn (5.35)

on R. Moreover, one can check that

pUnpaq “ argmax

pPrFnpY0q,FnpYmqs

tΛnppq ´ apu, for all a P R, (5.36)

where argmax denotes the greatest location of maximum (which is achieved on

the set K in (5.25)). Thus, the inverse process
pUn is a location process that is more

tractable than
pfn and

pλn themselves. A key idea in the following proofs is to derive

properties of
pUn from its argmax characterization (5.36), then, to translate these

properties to
pf´1
n thanks to (5.35), and �nally to translate them to

pfn thanks to

(5.33). The last step will be the aim of Section 5.7.3. We consider below the �rst

two steps.

To go from
pUn to

pf´1
n using (5.35) requires to approximate F´1

n by a �xed func-

tion. Hence, in the sequel, we are concerned by the convergence of the process Fn

given in (5.12), where δ ą 0 is chosen su�ciently small, and by the convergence

of the corresponding inverse function F´1
n .

It is stated in Lemma 5.5.1 that under (A1) and (A3), Fn converges to a �xed

distribution function F that depends on C , hence on δ. If, moreover, F is strictly

increasing in C , then we can �nd a neighborhood of F px0q over which the (usual)

inverse function F´1
is uniquely de�ned, and F´1

n converges to F´1
.
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In the following lemma, we show that F px0q belongs to the domain of Λn with

probability that tends to one as nÑ 8.

Lemma 5.6.3. Assume that (A1), (A3), (A4) and (A5) hold. Then, we can �nd ε ą 0

such that the probability that Y1`ε ď x0 ď Ym´ε tends to one as nÑ 8. Moreover,

the probability that FnpY1q ď F px0q ď FnpYmq tends to one as nÑ 8.

We will also need to control the noise tWtu. The following lemma shows that

the noise is negligible under our assumptions.

Lemma 5.6.4. Assume that (A1) and (A2) hold. Let Fn “ σ ptX1, . . . , Xnuq. Then,

n
ÿ

t“0

WtICtXt “ Anu “ oP pTnpCqq ,

and

sup
uąAn

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

WtIC tXt P pAn, usu

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP pTnpCqq .

for any sequence of random variables An, independent of the process tWtu, that is

adapted to the �ltration tFnu.

With the above lemmas, we can prove convergence of
pUn given by (5.36), and

then convergence of
pf´1
n given by (5.35), at the �xed point f0px0q.

Lemma 5.6.5. Suppose that assumptions (A1)-(A7) are satis�ed. Then, as n Ñ 8,

one has

pUnpf0px0qq “ F px0q ` oP p1q. (5.37)

5.6.2 Outline of the proof of Theorem 5.4.1

The proof of Theorem 5.4.1, uses similar ideas as the ones used in the proof

of Theorem 5.3.1 but under stronger assumptions (and therefore using stronger

lemmas).
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The �rst intermediate result is the following stronger version of Lemma 5.6.4.

Lemma 5.6.6. Assume that (A2), (A3), (A4), (B1), (B2) and (B3) hold. Then, there

exists K ą 0, γ0 ą 0 that do not depend on n and Nγ0 P N, such that for all

γ P r0, γ0s and n ě Nγ0 one has

Eλ

¨

˝ sup
|y´x0|ďγ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt pICtXt ď yu ´ ICtXt ď x0uq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚ď Ku pnq γ (5.38)

Eλ

¨

˝ sup
|y´x0|ďγ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

WtICtXt “ yu

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚ď Ku pnq γ (5.39)

Then, we need to quantify how well we can approximate TnpCq by u pnq.

Lemma 5.6.7. Assume that (B1) and (A3) hold. Then we have

a) As nÑ 8 we have
u pnq

TnpCq
“ OP p1q.

b) Let α and η be positive constants, then there exists constantsNη, cη and cη, such

that

P
ˆˆ

Tn pCq

a pnq

˙α

P
“

cη, cη
‰

˙

ě 1´ η, @n ě Nη.

With the above lemmas (including Lemma 5.5.3 and the ones used in Section

5.6.1), we can obtain the rate of convergence of
pUn given by (5.36), and then the

rate of convergence of
pf´1
n given by (5.35), at the �xed point f0px0q.

Lemma 5.6.8. Assume that (A2), (A3), (A4), (B1), (B2), (B3) and(B4) hold. Then, as

nÑ 8, one has

pUnpf0px0qq “ F px0q `OP

´

u pnq´1{3
¯

, (5.40)
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and

pf´1
n pf0px0qq “ x`OP

´

u pnq´1{3
¯

. (5.41)

5.7 Technical proofs

5.7.1 Technical proofs for Section 5.5

Proof of Lemma 5.5.1. Equation (5.17) follows from Corollary 2 in [9] and

part 2 of Theorem 5.2.1.

Now, we turn to the proof of (5.18). To do this, we adapt some of the ideas

presented in the proof of Lemma 21.2 in [114].

Let V a normal random variable independent of theXi’s, and Φ its distribution

function. it follows from (5.17) that conditionally on the Xt’s, FnpV q converges

almost surely to F pV q. Thus, denoting by PX the conditional probability given the

Xt’s, it follows from (5.34) that ΦpF´1
n puqq “ PXpFnpV q ă uq converges almost

surely to PXpF pV q ă uq “ ΦpF´1puqq at every u at which the limit function is

continuous . Since F is strictly increasing inC , one can �nd ε ą 0 such that F´1
is

continuous on rF px0q´ ε, F px0q` εs, so the above limit function is continuous at

every u P rF px0q´ε, F px0q`εs. By continuity of Φ´1
on p0, 1q, F´1

n puq converges

almost surely to F´1puq for every such u. By monotonicity, the convergence is

uniform, hence

sup
|p´F px0q|ďε

|F´1
n ppq ´ F´1

ppq| “ op1q a.s.

as nÑ 8.

Proof of Lemma 5.5.2. This proof is an adaptation to the localized case of

the proof of Lemma 2 in [18]. Let f 1C P F 1
C , i.e., there exists f P F such that
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f 1CpBq “
ş

fpyqMCpB, dyq. By Cauchy–Schwarz inequality,

ˆ
ż

fpyqMCpB, dyq

˙2

ď `C pBq

ˆ
ż

f 2MCpB, dyq

˙

,

then

EQ1pf 12C q ď EQ1
ˆ

`CpBq

ˆ
ż

fpyq2MCpB, dyq

˙˙

“ EQC pf
2
qEQ1p`

2
Cq,

where the last equality follows from (5.21). Applying this to the function

f 1CpBq ´ f
1
kpBq “

ż

pfpyq ´ fkpyqqMCpB, dyq,

when each fk is the center of an ε-cover of the space F and }f ´ fk}L2pQCq ď ε

gives the �rst assertion of the lemma. To obtain the second assertion, note that

U 1C “ U`C is an envelope for F 1
C . In addition, we have that

}U 1C}L2pQ1q “ U}`C}L2pQ1q.

From this, we derive that, for every 0 ă ε ă 1,

N pε}U 1C}L2pQ1q, U 1C , L2pQ
1
qq “ N pεU}`C}L2pQ1q, U 1, L2pQ

1
qq.

Then using the �rst assertion of the lemma, we obtain for every 0 ă ε ă 1,

N pε}U 1C}L2pQ1q, F 1
C , L2pQ

1
qq ď N pεU, F , L2pQCqq,

which implies the second assertion of the Lemmaz whenever the class F is VC

with envelope U .
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Proof of Lemma 5.5.3. Let B P pE and g : E ˆ R Ñ R`. For each y P R

we de�ne gy pxq “ g px, yq, then, using the notation of section 5.6.2 we will have

pgy pBq “
ř

xPBXC g px, yq. Finally, for any function h : RÑ R, we de�ne

rghy pBq “ p
{gy ´ hpyqqpBq “

ÿ

xPBXC

pg px, yq ´ h pyqq “ pgy pBq ´ `C pBqh pyq .

Let g px, yq “ I tx ď yu, and h “ F as de�ned in (5.13). Then, pgy pBq “
ř

xPB ICtx ď yu and

rgFy pBq “
ÿ

xPBXC

pI tx ď yu ´ F pyqq “ pgy pBq ´ `C pBqF pyq .

From now on, we’ll remove the superindex from rgFy to ease the notation.

By the de�nition of Fn and F ((5.12) and (5.13)), we have that

Fnpyq ´ F pyq “
1

TnpCq

TnpCq
ÿ

i“1

`

ItXσCpiq ď yu ´ F pyq
˘

“
1

TnpCq

n
ÿ

i“0

pICtXt ď yu ´ ICtXiuF pyqq

“
1

TnpCq

˜

rgy pB0q `

T pnq
ÿ

i“1

rgy pBiq ` rgy
`

Bpnq
˘

¸

,

therefore,

a

TnpCq
´

Fnpyq ´ F pyq
¯

“
rgy pB0q
a

TnpCq
`

řT pnq
i“1 rgy pBiq
a

TnpCq
`

rgy
`

Bpnq
˘

a

TnpCq
.

Notice that |rgy pB0q| ď 2`CpB0q ă `8 and TnpCq Ñ `8 almost surely,

therefore, the �rst term in the last equation converges almost surely to 0 uniformly
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in y. For the last term, we have that

ˇ

ˇ

rgy
`

Bpnq
˘
ˇ

ˇ

a

TnpCq
ď

2`CpBT pnqq
a

TnpCq
“ 2

d

T pnq

TnpCq

`CpBT pnqq
a

T pnq
,

by (B4), the expectation of `2
CpB1q is �nite, then, Lemma 1 in [9] shows that

`2CpBnq
n

Ñ

0 a.s. which implies that
`CpBnq?

n
also converges to 0 a.s. Since T pnq Ñ `8 a.s., by

Theorem 6.8.1 in [55] we have

`CpBT pnqq?
T pnq

Ñ 0 almost surely. Joining this with the

almost sure convergence of
T pnq
TnpCq

to a positive constant (see Theorem 5.2.1) we

obtain that
|rgypBpnqq|?

TnpCq
converges almost surely to 0 uniformly in y. Therefore,

a

TnpCq
´

Fnpyq ´ F pyq
¯

“

řT pnq
i“1 rgy pBiq
a

T pnq
` oP p1q . (5.42)

where we have used that
TnpCq
T pnq

converges almost surely to a positive constant

to use T pnq instead of TnpCq.

Then, (5.22) will be proved if we show that, for ε small enough

sup
|y´x0|ďε

ˇ

ˇ

ˇ

řT pnq
i“1 rgy pBiq

ˇ

ˇ

ˇ

a

T pnq
“ Op p1q . (5.43)

Fix η ą 0 arbitrarily. By Lemma 5.6.7 and Slutsky’s theorem, we can �nd pos-

itive numbers aη, aη and an integer Nη such that P pEnq ě 1 ´ η
2

for all n ě Nη,

where

En “
 

aηu pnq ď T pnq ď aηu pnq
(

. (5.44)

De�ne Wnpεq “ sup
|y´x0|ďε

|
řn
i“1 rgy pBiq| and let Mη be a �xed positive number.

Then, for all n ě Nη

P

˜

1
a

T pnq
WT pnq ąMη

¸

ă P

˜#

1
a

T pnq
WT pnq ąMη

+

X En

¸

` 1´ P pEnq
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ă P

˜#

1
a

T pnq
WT pnq ąMη

+

X En

¸

`
η

2
. (5.45)

On En, aηu pnq ď T pnq ď aηu pnq, therefore for all n ě Nη

P

˜#

1
a

T pnq
WT pnq ąMη

+

X En

¸

ă P

¨

˝

$

&

%

1
b

aηu pnq
max

1ďkďaηupnq
Wk ąMη

,

.

-

X En

˛

‚,

ă P

¨

˝

1
b

aηu pnq
max

1ďkďaηupnq
Wk ąMη

˛

‚.

(5.46)

The random variables

 

rgp¨q pBkq
(aηupnq

k“1
are i.i.d., therefore, by Montgomery-

Smith’s inequality (Lemma 4 in [2]), there exists a universal constant K such that

for all n ě Nη,

P

¨

˝

1
b

aηu pnq
max

1ďkďaηupnq
Wk ąMη

˛

‚ă KP

¨

˝

1
b

aηu pnq
Waηupnq ą

Mη

K

˛

‚,

ă KP

¨

˝

1
b

aηu pnq
sup

|y´x0|ďε

ˇ

ˇ

ˇ

ˇ

ˇ

aηupnq
ÿ

i“1

rgy pBiq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
Mη

K

˛

‚.

(5.47)

For an arbitrary set T , let ``8pT q be the space of all uniformly bounded, real

functions on T , equipped with the uniform norm. Weak convergence to a tight

process in this space is characterized by asymptotic tightness plus convergence of

marginals (see Chapter 1.5 in [115]).

The class of functions G ´ F “ tgyp¨q ´ F pyquyPR is VC with constant en-

velope 2, hence, by Lemma 5.5.2, the class of functions
{G ´ F is also VC and has

2`C as envelope. E`2
CpB1q is �nite (by (B4)), therefore, by Theorem 2.5 in [70],
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{G ´ F is Donsker. Then, the process
1?

aηupnq

ˇ

ˇ

ˇ

řaηupnq
i“1 rgy pBiq

ˇ

ˇ

ˇ
converges weakly in

`8
”

{G ´ F
ı

to a tight process Z . The map y ÞÑ }y}
8

from `8
”

{G ´ F
ı

to R is

continuous with respect to the supremum norm (cf. pp 278 of [114]), therefore,

1?
aηupnq

sup
|y´x0|ďε

ˇ

ˇ

ˇ

řaηupnq
i“1 rgy pBiq

ˇ

ˇ

ˇ
converges in distribution to sup

|y´x0|ďε

Z pyq, hence,

we can �nd Vη and N 1
η such that

P

¨

˝

1
b

aηu pnq
sup

|y´x0|ďε

ˇ

ˇ

ˇ

ˇ

ˇ

aηupnq
ÿ

i“1

rgy pBiq

ˇ

ˇ

ˇ

ˇ

ˇ

ą Vη

˛

‚ă
η

2K
, @n ą N 1

η. (5.48)

Choosing Mη “ KVη in 5.48 and joining (5.47), (5.46) and (5.45), completes the

proof of (5.22).

Now we proceed to prove (5.23). Let η be �xed, by (5.22) and Lemma 5.6.7, we

can �nd ε1, M 1
η and N 1

η such that

P

˜

a

TnpCq sup
|y´x0|ďε1

|Fnpyq ´ F pyq| ąM 1
η

¸

ă
η

4
@n ě N 1

η (5.49)

P pDnq ě 1´
η

2
@n ě N 1

η (5.50)

where Dn “
 

aηu pnq ď TnpCq ď aηu pnq
(

. De�ne the sets

Un “

#

a

TnpCq sup
|p´F px0q|ďε

ˇ

ˇF´1
n ppq ´ F´1

ppq
ˇ

ˇ ąMη

+

,

U1
n “

#

Dp P rF px0q ´ ε, F px0q ` εs : F´1
n ppq ´ F´1

ppq ą
Mη

a

TnpCq

+

,

U2
n “

#

Dp P rF px0q ´ ε, F px0q ` εs : F´1
ppq ´ F´1

n ppq ą
Mη

a

TnpCq

+

.

where ε and Mη are constants that will be speci�ed later.
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On U1
n XDn, F´1

n ppq ą Mη?
TnpCq

` F´1 ppq ą Mη?
aηupnq

` F´1 ppq, hence,

Fn

˜

Mη
a

aηu pnq
` F´1

ppq

¸

ď Fn
`

F´1
n ppq

˘

ď p`
1

TnpCq

ď p`
1

aηu pnq
. (5.51)

Assumption (B2) indicates that F has bounded derivative in C , take K1 as the

maximum value of this derivative in C , then, the Mean Value Theorem implies

that

p “ F
`

F´1
ppq

˘

“ F

˜

Mη
a

aηu pnq
` F´1

ppq

¸

´
F 1 pθpqMη
a

aηu pnq

ď F

˜

Mη
a

aηu pnq
` F´1

ppq

¸

´
K1Mη

a

aηu pnq
.

After plugging this into (5.51) we get

F

˜

Mη
a

aηu pnq
` F´1

ppq

¸

´Fn

˜

Mη
a

aηu pnq
` F´1

ppq

¸

ě
K1Mη

a

aηu pnq
´

1

aηu pnq
.

Because u pnq Ñ `8, we can �nd N1 such that

b

aη
upnq

1
aηK1

ă 1 for all n ě N1,

taking Mη bigger than

M 1
η

K1

b

aη
aη
` 1 and using that TnpCq ď aηu pnq on Dn, we

obtain, for all n ě N1

F

˜

Mη
a

aηu pnq
` F´1

ppq

¸

´ Fn

˜

Mη
a

aηu pnq
` F´1

ppq

¸

ą
M 1

η
a

TnpCq
. (5.52)

LetN2,η be such that
Mη?
aηupnq

ă ε1

2
for n ě N2,η. By the continuity of F´1

in F px0q

there exists ε ą 0 such that |F´1 ppq ´ x0| ď
ε1

2
for all p in rF px0q ´ ε, F px0q ` εs,

therefore, the triangular inequality implies that
Mη?
aηupnq

` F´1 ppq lies in the in-
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terval rx0 ´ ε
1, x0 ` ε

1s for all n ě Nη “ max pN1, N2,ηq. This, alongside (5.52),

shows that for all n ě Nη

U1
n XDn Ď

#

Dy P rx0 ´ ε
1, x0 ` ε

1
s : F pyq ´ Fnpyq ą

M 1
η

a

TnpCq

+

Ď

#

a

TnpCq sup
|y´x0|ďε1

|Fnpyq ´ F pyq| ąM 1
η

+

.

By a similar argument, it can be shown that

U2
n XDn Ď

#

Dy P rx0 ´ ε
1, x0 ` ε

1
s : Fnpyq ´ F pyq ą

M 1
η

a

TnpCq

+

@n ě Nη.

Using (5.49) and Un “ U1
nYU

2
n we obtain that P pUn XDnq ď

η
2

for all n ě Nη.

Equation (5.23) now follows by (5.50).

5.7.2 Technical proofs for Section 5.6.1

Proof of Lemma 5.6.1. Combining (5.26) and (5.1) yields

ΛnpFnpYkqq “
1

TnpCq

n
ÿ

t“0

f0pXtqICtXt ď Yku `
1

TnpCq

n
ÿ

t“0

WtICtXt ď Yku.

The �rst term on the right hand side of the previous display can be rewritten

as follows:

1

TnpCq

n
ÿ

t“0

f0pXtqICtXt ď Yku “
1

TnpCq

m
ÿ

j“1

f0pYlqplj ´ lj´1qICtYj ď Yku

“

k
ÿ

j“1

ż lj{TnpCq

lj´1{TnpCq

f0 ˝ F
´1
n puqdu,

using that F´1
n puq “ Yj for all u P plj´1{TnpCq, lj{TnpCqs. Hence, for all k in
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t0, . . . ,mu

ΛnpFnpYkqq “

ż lk{TnpCq

0

f0 ˝ F
´1
n puqdu`

1

TnpCq

n
ÿ

t“0

WtICtXt ď Yku. (5.53)

Combining (5.53) with the piece-wise linearity of Λn yields

Λn pFn pYkqq “ Ln pFn pYkqq `Mn pFn pYkqq ,

where Ln and Mn are piece-wise linear processes with knots at FnpYkq for k in

t0, . . . ,mu and such that

LnpFnpYkqq “

ż lk{TnpCq

0

f0 ˝ F
´1
n puqdu

and

MnpFnpYkqq “
1

TnpCq

n
ÿ

t“0

WtICtXt ď Yku.

In order to ease the notation, we will writeF i
n “ FnpYiq,L

i
n “ Ln pFn pYiqq and

M i
n “ Mn pFn pYiqq. Let y P pFn pY0q , Fn pYmqs, take j such that Yj`1 “ F´1

n pyq,

then Fn pYjq ă y ď Fn pYj`1q. With this notation,

Ln pyq “
Lj`1
n ´ Ljn

F j`1
n ´ F j

n

`

y ´ F j
n

˘

` Ljn,

Mn pyq “
M j`1

n ´M j
n

F j`1
n ´ F j

n

`

y ´ F j
n

˘

`M j
n.

Notice that

Lj`1
n ´ Ljn “

lj`1
TnpCq
ż

lj
TnpCq

f0 ˝ F
´1
n puq du “

lj`1 ´ lj
TnpCq

f pYj`1q ,
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F j`1
n ´ F j

n “
lj`1 ´ lj
TnpCq

,

therefore,

Ln pyq “ f0 pYj`1q
`

y ´ F j
n

˘

`Ljn “

y
ż

lj
TnpCq

f0 ˝ F
´1
n
puq du`Ljn “

y
ż

0

f0 ˝ F
´1
n
puq du,

which proves (5.27).

For Mn we have,

M j`1
n ´M j

n “
1

TnpCq

n
ÿ

t“0

WtICtXt “ Yj`1u,

then,

Mn pyq “

n
ř

t“1

WtICtXt “ Yj`1u

lj`1 ´ lj

`

y ´ F j
n

˘

`M j
n “ Rj

npyq `M
j
n.

and this completes the proof.

Proof of Lemma 5.6.2. By de�nition, with l0 “ 0, and lk “
řn
t“0 ICtXt ď Yku

for all k P t1, . . . ,mu, we have FnpYkq “ alk for all k P t0, . . . ,mu, where a “

1{TnpCq and does not depend on k. Moreover,

Λn pFnpYkqq “ a
n
ÿ

t“0

ZtICtXt ď Yku

Since
pfnpYkq is the left-hand slope at lk of the least concave majorant of the set of

points in (5.3), the equality in (5.31) follows from Lemma 2.1 in [42].

Proof of Lemma 5.6.3. The �rst assertion follows from Assumption (A4) and

the second immediately follows from the �rst one by (5.17) combined with the
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strict monotonicity of F in C .

Proof of Lemma 5.6.4. Let Fn “ σ ptX0, . . . , Xnuq be sigma algebra gener-

ated by the chain tXtu up to time n. Denote by PFn the probability conditioned to

Fn. Take ε ą 0.

By Chebyshev’s inequality,

PFn

¨

˚

˚

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ř

t“0

WtIC tXt “ Anu

Tn pCq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

˛

‹

‹

‚

ď

σ2
n
ř

t“0

IC tXt “ Anu

ε2Tn
2
pCq

ď
σ2

ε2Tn pCq
,

which implies the �rst part of the Lemma because TnpCq Ñ 8 with probability 1.

For the second part, let γnpuq be the number of times the chain visits pAn, usXC

up to time n and An puq “ tt ď n : Xt P pAn, us X Cu “
 

a1, . . . , aγnpuq
(

the

times of those visits. Using that γn “ sup
uąAn

γn puq ď Tn pCq and Kolmogorov’s

inequality (Th 3.1.6, pp 122 in [55]) we obtain,

PFn

¨

˚

˚

˝

sup
uąAn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ř

t“0

WtIC tXt P pAn, usu

Tn pCq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

˛

‹

‹

‚

“ PFn

˜

sup
uąAn

ˇ

ˇ

ˇ

ˇ

ˇ

γnpuq
ÿ

i“1

Wtai

Tn pCq

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

¸

ď PFn

˜

sup
1ďkďγn

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1

Wtai

Tn pCq

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

¸

ď
σ2

ε2Tn pCq
.

which by the same argument as before, implies the second part of the Lemma.

Proof of Lemma 5.6.5. In the sequel we set a “ f0px0q. We begin with the

proof of (5.37).

Fix ε ą 0 arbitrarily, and let ν ą 0 and γ ą 0 be such that |F´1puq ´ x0| ą ν

for all u such that |u ´ F px0q| ě ε{2, and |f0px0q ´ f0pyq| ą γ for all y such that
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|y´ x0| ě ν{2. Note that existence of ν and γ is ensured by assumptions (A5) and

(A6).

By Lemma 5.6.3, we can assume without loss of generality that F px0q belongs

to the domain rFnpY1q, FnpYmqs of Λn, since this occurs with probability that tends

to one. Therefore, we can �nd jpx0q such that Yjpx0q “ Fn
´1
pF px0qq. It follows

from the characterization in (5.36) that the event E1
n :“ tpUnpaq ą F px0q ` εu is

contained in the event that there exists p P K such that p ą F px0q ` ε and

Λn ppq ´ ap ě Λn pF px0qq ´ aF px0q ,

where we recall that a “ f0 px0q.

By Lemma 5.6.1, E1
n is contained in the event that there exists p P K such that

p ą F px0q ` ε and

Lnppq `Mnppq ´ ap ě LnpF px0qq `MnpF px0qq ´ aF px0q (5.54)

Using (5.27) in (5.54) we obtain that E1
n is contained in the event that there exists

p P K such that p ą F px0q ` ε and

ż p

t0{TnpCq

f0 ˝ F
´1
n puqdu` Sn ´ ap ě

ż F px0q

t0{TnpCq

f0 ˝ F
´1
n puqdu´ aF px0q,

where

Sn “ sup
pąF px0q`ε, pPK

tMnppq ´Mn pF px0qqu .

Let j and k such that Yj`1 “ F´1
n pF px0qq and p “ FnpYkq. By equation (5.28) we
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have Mn ppq ´Mn pF px0qq “Mk
n ´M

j
n ´R

j
npF px0qq, therefore,

Sn “ sup
pąF px0q`ε
pPK

 

Mk
n ´M

j
n

(

´Rj
n pF px0qq

ď sup
pąF px0q`ε
pPK

ˇ

ˇ

ˇ

ˇ

ˇ

1

TnpCq

n
ÿ

t“0

Wt

`

ICtXt ď F´1
n ppqu ´ ICtXt ď F´1

n pF px0qqu
˘

ˇ

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇRj
n pFn pYj`1qq

ˇ

ˇ

ď sup
pąF px0q`ε
pPK

ˇ

ˇ

ˇ

ˇ

ˇ

1

TnpCq

n
ÿ

t“0

WtIC
 

Xt P
`

F´1
n pF px0qq ;F´1

n ppq
‰(

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

n
ř

t“0

WtICtXt “ F´1
n pF px0qqu

ˇ

ˇ

ˇ

ˇ

TnpCq
.

Hence,

TnpCqSn ď sup
pąF px0q`ε
pPK

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

WtIC
 

Xt P
`

F´1
n pF px0qq ;F´1

n ppq
‰(

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

WtIC
 

Xt “ F´1
n pF px0qq

(

ˇ

ˇ

ˇ

ˇ

ˇ

.

Therefore, the event E1
n is contained in the event that there exists p ą F px0q ` ε

such that

ż p

F px0q

f0 ˝ F
´1
n puqdu` Sn ě app´ F px0qq.

Now, let E2
n be the event that

sup
|u´F px0q|ďε

|F´1
n puq ´ F´1

puq| ď η

where η P p0, ν{4q is such that |f0pyq´f0px0q| ď γ{2 for all y such that |x0´y| ď η.

Note that the existence of η is ensured by assumption (A7). Then, it follows from
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the monotonicity of f0 and Fn that on E2
n,

ż p

F px0q

f0 ˝ F
´1
n puqdu ď

ż F px0q`ε{2

F px0q

f0pF
´1
puq ´ ηqdu`

ż p

F px0q`ε{2

f0pF
´1
n pF px0q ` ε{2qqdu.

Hence, it follows from the de�nitions of η, ν and γ that on E2
n,

ż p

F px0q

f0 ˝ F
´1
n puqdu ď

ε

2
f0px0q `

γε

4
` pp´ F px0q ´ ε{2qf0pF

´1
pF px0q ` ε{2q ´ ηq

ď
ε

2
f0px0q `

γε

4
` pp´ F px0q ´ ε{2qf0px0 ` ν{2q

ď
ε

2
f0px0q `

γε

4
` pp´ F px0q ´ ε{2qpf0px0q ´ γq.

This implies that on E2
n,

ż p

F px0q

f0 ˝ F
´1
n puqdu ď app´ F px0qq ´ pp´ F px0q ´ 3ε{4qγ

ď app´ F px0qq ´ εγ{4

for all p ą F px0q ` ε. Hence, the event E1
n X E2

n is contained in the event tSn ě

εγ{4u. Now, on E2
n, for all p ą F px0q ` ε we have

F´1
n ppq ě F´1

n pF px0q ` εq

ě F´1
pF px0q ` εq ´ η

ě x` ν ´ η

ě F´1
n pF px0qq ` ν ´ 2η

ě F´1
n pF px0qq ` ν{2,
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since ν ą 4η. Therefore,

TnpCqSn ď sup
uąF´1

n pF px0qq`ν{2

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

WtICtXt P pF
´1
n pF px0qq, usu

ˇ

ˇ

ˇ

ˇ

ˇ

`

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

WtICtXt “ F´1
n pF px0qqu

ˇ

ˇ

ˇ

ˇ

ˇ

.

Hence, it follows from Lemma 5.6.4 that Sn converges in probability to zero as

nÑ 8, so that the probability of the event tSn ě εγ{4u tends to zero as nÑ 8.

It follows from Lemma 5.5.1 that for ε su�ciently small, the probability of the event

E2
n tends to one as nÑ 8, so we conclude that the probability of E1

n tends to zero

as n Ñ 8. Similarly, the probability of the event tpUnpaq ă F px0q ´ εu tends to

zero as nÑ 8, so that

lim
nÑ8

Pp|pUnpaq ´ F px0q| ą εq “ 0

for all ε ą 0. This completes the proof of (5.37).

5.7.3 Proof of Theorem 5.3.1

We �rst prove (5.15). Fix ε ą 0 arbitrarily small. It follows from (5.35) and (5.34)

that

P
´

pf´1
n paq ą x0 ` ε

¯

ď P
´

F´1
n ˝ pUnpaq ą x0 ` ε

¯

ď P
´

pUnpaq ě Fnpx0 ` εq
¯

ď P
´

pUnpaq ě F px0 ` εq ´Kn

¯

,
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where

Kn “ sup
|y´x0|ďε

|Fnpyq ´ F pyq|.

With ν :“ F px0 ` εq ´ F px0q, we obtain

P
´

pf´1
n paq ą x0 ` ε

¯

ď P
´

pUnpaq ě F px0q ` ν ´Kn

¯

,

and ν is strictly positive since F is strictly increasing in the neighborhood of x0.

Hence, it follows from (5.17) that for su�ciently small ε ą 0 one has

P
´

pf´1
n paq ą x0 ` ε

¯

ď P
´

pUnpaq ě F px0q ` ν{2
¯

` op1q,

so it follows from (5.37) that the probability that
pf´1
n paq ą x0 ` ε tends to zero as

nÑ 8. Similarly, the probability that
pf´1
n paq ă x0´ ε tends to zero as nÑ 8 so

we conclude that the probability that | pf´1
n paq ´ x0| ą ε tends to zero as n Ñ 8.

This completes the proof of (5.15). l

To prove (5.14), �x ε ą 0 su�ciently small so that F and f0 are continuous and

strictly increasing in the neighborhood of x1 :“ f´1
0 pf0px0q ` εq. Equation (5.15)

shows that

pf´1
n pf0px0q ` εq “ f´1

0 pf0px0q ` εq ` oP p1q, (5.55)

as nÑ 8. Now, it follows from the switch relation (5.32) that

P
´

pfnpx0q ą f0px0q ` ε
¯

ď P
´

pf´1
n pf0px0q ` εq ě x

¯

ď P
´

pf´1
n pf0px0q ` εq ě f´1

0 pf0px0q ` εq ` ν
¯

,

(5.56)

where ν :“ x´ f´1
0 pf0px0q ` εq ą 0. It follows from (5.55) that the probability on
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the right-hand side tends to zero as nÑ 8. Hence, the probability on the left-hand

side tends to zero as well as nÑ 8.

Similarly, the probability that
pfnpx0q ă f0px0q ´ ε tends to zero as n Ñ 8

so we conclude that the probability that | pfnpx0q ´ f0px0q| ą ε tends to zero as

nÑ 8. This completes the proof of Theorem 5.3.1.

5.7.4 Technical proofs for Section 5.6.2

Proof of Lemma 5.6.6. Let Fn “ σ ptX0, . . . , Xnuq be sigma algebra gener-

ated by the chain X up to time n. Denote by EFn the expected value conditioned

to Fn. Take 0 ă γ ď δ and de�ne I0 “ rx0 ´ γ, x0s, I1 “ rx0, x0 ` γs and

S0 pγq “ sup
yPI0

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt pI tXt ď yu ´ I tXt ď x0uq

ˇ

ˇ

ˇ

ˇ

ˇ

2

S1 pγq “ sup
yPI1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt pI tXt ď yu ´ I tXt ď x0uq

ˇ

ˇ

ˇ

ˇ

ˇ

2

then,

S pγq “ sup
|y´x0|ďγ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt pI tXt ď yu ´ I tXt ď x0uq

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ max
´

S0 pγq , S1 pγq
¯

,

ď S0 pγq ` S1 pγq (5.57)

Following the notation of section 5.2, let

αp0qn pγq “ sup
yPI0

Tn pry, x0sq , αp1qn pγq “ sup
yPI1

Tn prx0, ysq ,

with this notation,S0 “ sup
yPI0

ˇ

ˇ

ˇ

ˇ

ˇ

Tnpry,x0sq
ř

i“1

Wσry,x0q
piq

ˇ

ˇ

ˇ

ˇ

ˇ

2

andS1 “ sup
yPI1

ˇ

ˇ

ˇ

ˇ

ˇ

Tnprx0,ysq
ř

i“1

Wσrx0,ys
piq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.
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By Doob’s maximal inequality (Th 10.9.4 in [55]), we have, for j “ 0, 1,

EFnSj pγq ď 4EFn

¨

˝

α
pjq
n
ÿ

i“1

Wti

˛

‚

2

“ 4σ2αpjqn pγq

ď 4σ2Tn prx0 ´ γ, x0 ` γsq

ď 4σ2
n
ÿ

t“0

pI tXt ď x0 ` γu ´ I tXt ă x0 ´ γuq. (5.58)

Therefore, by (5.57) and (5.58)

EFnS pγq ď 8σ2
n
ÿ

t“0

´

I tXt ď x0 ` γu ´ I tXt ă x0 ´ γu
¯

. (5.59)

De�ne,

• h py, γq “ Ity P rx0 ´ γ, x0 ` γsu,

• h pBj, γq “

$

’

’

’

&

’

’

’

%

τα
ř

t“0

h pXt, γq , j “ 0

τApj`1q
ř

t“τApjq`1

h pXt, γq , j ě 1

• Zn pγq “
n
ř

t“0

h pXt, γq

• ` pBjq “

$

’

’

&

’

’

%

τα , j “ 0

ταpj ` 1q ´ ταpjq , j ě 1

•
rT pnq “ min

"

k :
k
ř

i“0

` pBjq ě n

*

.

• Gk “ σ
´

tph pBj, γq , ` pBjqqukj“0

¯

for k ě 0.

By the Strong Markov property, tph pBj, γq , ` pBjqqu`8j“1 is an i.i.d. sequence

which is independent of ph pB0, γq , ` pB0qq (and, therefore, of the initial measure
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λ). For n �xed, the random variable
rT pnq is a stopping time for the sequence

tph pBj, γq , ` pBjqqu`8j“0, in e�ect

!

rT pnq “ 0
)

“ t` pB0q ě nu P G0,

!

rT pnq “ k
)

“

k´1
č

j“0

#

j
ÿ

i“0

` pBiq ă n

+

č

#

k
ÿ

i“0

` pBjq ě n

+

P Gk @k ě 1.

For each n and γ we have that

Zn pγq “
τα
ÿ

t“0

h pXt, γq `

T pnq
ÿ

j“1

h pBj, γq `
n
ÿ

t“tαpT pnqq`1

h pXt, γq

ď h pB0, γq `

rT pnq
ÿ

j“1

h pBj, γq. (5.60)

where the last inequality is justi�ed by the fact that, T pnq ď rT pnq and h py, γq is

a nonnegative function. Because ` pBjq ě 1 for all j, we have that,

rT pnq
ÿ

j“1

h pBj, γq “
n
ÿ

j“1

h pBj, γq I
!

rT pnq ě j
)

,

then,

E

¨

˝

rT pnq
ÿ

j“1

h pBj, γq

˛

‚“

n
ÿ

j“1

E
´

h pBj, γq I
!

rT pnq ě j
)¯

. (5.61)

For each j we have,

Eλ
´

h pBj, γq I
!

rT pnq ě j
)¯

“ Eλ
´

E
´

h pBj, γq I
!

rT pnq ě j
)

|Gj´1

¯¯

Notice that I
!

rT pnq ě j
)

“ 1 ´ I
!

rT pnq ď j ´ 1
)

P Gj´1 and h pBj, γq is inde-
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pendent of Gj´1, therefore,

Eλ
´

h pBj, γq I
!

rT pnq ě j
)¯

“ Eλ
´

I
!

rT pnq ě j
)¯

E ph pBj, γqq .

Plugging this into equation (5.61) we get,

Eλ

¨

˝

rT pnq
ÿ

j“1

h pBj, γq

˛

‚“

n
ÿ

j“1

E ph pBj, γqqPλ
´

rT pnq ě j
¯

ď E ph pB1, γqqEλ rT pnq .

Then, by taking expectation in (5.60) we obtain

EλZn pγq ď Eλh pB0, γq ` E ph pB1, γqqEλ rT pnq

ď Eλh pB0, γq ` E ph pB1, γqqEλ pT pnq ` 1q . (5.62)

By Theorem 5.2.1 and the fact that F is Lipschitz we can �nd K1 independent of

γ such that,

E ph pB1, γqq “

ż

h pt, γq dπ ptq “ Kππ pCq pF px0 ` γq ´ F px0 ´ γqq

ď K1γ. (5.63)

If X is positive recurrent, by Theorem 5.2.1,
T pnq
upnq

converges almost surely to a pos-

itive constant K2 ą 0. Moreover,
T pnq
upnq

ď 1 therefore, by the Dominated Conver-

gence Theorem we obtain that EλT pnq „ upnq
K2

. If X is β-null recurrent, by Lemma

3.3 in [67], EλT pnq „ upnq
Γp1`βq

, hence, for both positive and β-null recurrent chains,

we can �nd K2 and N , both independent of γ, such that EλT pnq ď K2u pnq for
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all n ě N . Using this with (5.62) and (5.63) we get,

EλZn pγq
u pnq γ

ď
Eλh pB0, γq

u pnq γ
`K1K2 @n ě N, @γ P p0, δs . (5.64)

Combining (5.64) with assumption (B3) and the fact that Zn p0q ” 0 we obtain

that there exist positive constants K3 and γ0 such that

EλZn pγq ď u pnq γ @n ě N, @γ P p0, γ0s .

Equation (5.38) now follows after taking expectation in (5.59). The proof of (5.39)

follows the same reasoning, but using

Sj pγq “ sup
yPIj

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt pIC tXt “ yuq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Proof of Lemma 5.6.7. a) If X is positive recurrent, Theorem 5.2.1 implies

that there exists a positive constant K such that
TnpCq
upnq

converges almost surely to

KπpCq, which is not zero by (A3).

On the other hand, if X is β-null recurrent, Theorem 5.2.1 and Slutsky’s The-

orem implies that there exists a constant K ą 0 such that
TnpCq
upnq

converges in

distribution to KMβp1q where Mβp1q denotes a Mittag-Le�er distribution with

parameter β. This distribution is continuous and strictly positive with probability

1, then, by the Continuous Mapping Theorem,
upnq
TnpCq

converges in distribution to a

multiple of
1
Mβ

, therefore,
upnq
TnpCq

is bounded in probability by Theorem 2.4 in [114].

b) Let X be positive recurrent, then, we can �nd Nη such that

P
ˆ
ˇ

ˇ

ˇ

ˇ

ˆ

Tn pCq

u pnq

˙α

´KαπpCqα
ˇ

ˇ

ˇ

ˇ

ď

ˆ

Kπ pCq

2

˙α˙

ě 1´ η, @n ě Nη.
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hence,

P
ˆˆ

Tn pCq

u pnq

˙α

P

„

KαπpCqα

2
,
3KαπpCqα

2

˙

ě 1´ η, @n ě Nη.

Now let X be β-null recurrent. Let Z “ pKMβ p1qq
α
, This random variable is

continuous and positive, therefore, we can �nd positive constants cη and cη such

that

P
`

Z P
“

cη, cη
‰˘

ě 1´
η

2
. (5.65)

By the Continuous Mapping Theorem,

´

TnpCq
upnq

¯α

converges in distribution to

Z , therefore, we can �nd Nη P N such that

ˇ

ˇ

ˇ

ˇ

P
ˆˆ

TnpCq

u pnq

˙α

P
“

cη, cη
‰

˙

´ P
`

Z P
“

cη, cη
‰˘

ˇ

ˇ

ˇ

ˇ

ď
η

2
, @n ě Nη, (5.66)

Combining (5.65) and (5.66) we obtain that

P
ˆˆ

TnpCq

u pnq

˙α

P
“

cη, cη
‰

˙

ě 1´ η, @n ě Nη. (5.67)

Proof of Lemma 5.6.8. Fix ε P p0, 1q small enough so that F 1 and |f 10| are

bounded from above and away from zero on rF´1pF px0q´2εq, F´1pF px0q`2εqs,

see the assumption (B2). Then, the proper inverse functions of F and f0 are well

de�ned on rF px0q ´ 2ε, F px0q ` 2εs and

rf0 ˝ F
´1
pF px0q ´ 2εq, f0 ˝ F

´1
pF px0q ` 2εqs

respectively. We denote the inverses on that intervals by F´1
and f´1

0 respectively.
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Let

Unpaq “ argmax

|p´F px0q|ďε

tΛnppq ´ apu (5.68)

where a “ f0px0q and where the supremum is restricted to p P rFnpY0q, FnpYmqs.

We will show below that

Unpaq “ F px0q `OP pu pnq
´1{3

q, (5.69)

as n Ñ 8. Combining (5.36) to Lemma 5.6.5 ensures that
pUnpaq coincides with

Unpaq with probability that tends to one as nÑ 8, so (5.40) follows from (5.69).

We turn to the proof of (5.69). Fix η ą 0 arbitrarily and let

γn “ K0u pnq
´1{3

(5.70)

for some K0 ě 1 su�ciently large so that

γn ě
1

a

u pnq
. (5.71)

Then, by part ii) of Lemma 5.6.7, we can �nd positive constants cη, c̄η and Nη such

that

P
´

TnpCq
2{3γnu pnq

´1{3
P rK0cη, K0c̄ηs

¯

ě 1´ η{2 @n ě Nη, (5.72)

Let c “ K0cη and c̄ “ K0cη. It follows from (5.23) that for su�ciently small ε ą 0,

we can �nd K1 ą 0 such that

P

˜

TnpCq sup
|p´F px0q|ď2ε

|F´1
n ppq ´ F´1

ppq|2 ď K1

¸

ě 1´ η{2
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for all n. Hence for n ě Nη,

PpEnq ě 1´ η,

where En denotes the intersection of the events

TnpCq
2{3γnu pnq

´1{3
P rc, c̄s (5.73)

and

TnpCq sup
|p´F px0q|ď2ε

|F´1
n ppq ´ F´1

ppq|2 ď K1. (5.74)

Combining equations (5.73) and (5.74), we obtain that, in En,

sup
|p´F px0q|ď2ε

ˇ

ˇF´1
n ppq ´ F´1

ppq
ˇ

ˇ

2
ď K2apnq

´1
(5.75)

where K2 “ K1

´

K0

c

¯3{2

is independent of n and K0.

By Lemma 5.6.3, we can assume without loss of generality that F px0q belongs

to rFnpY0q, FnpYmqs, since this occurs with probability that tends to one. Hence,

by (5.68), the event t|Unpaq ´ F px0q| ě γnu is contained in the event that there

exists p P rFnpY0q, FnpYmqs with |p´ F px0q| ď ε, |p´ F px0q| ě γn and

Λnppq ´ ap ě ΛnpF px0qq ´ aF px0q. (5.76)

Obviously, the probability is equal to zero if γn ą ε so we assume in the sequel

that γn ď ε. For all p P rF px0q ´ ε, F px0q ` εs de�ne

Λ ppq “

ż p

F px0q

f0 ˝ F
´1
puqdu.

Let c ą 0 such that |f 10|{F
1 ą 2c on the interval rF´1pF px0q´2εq, F´1pF px0q`
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2εqs. Since Λ1pF px0qq “ a and Λ2 “ f 10 ˝ F
´1{F 1 ˝ F´1

, it then follows from Tay-

lor’s expansion that

Λppq ´ ΛpF px0qq ď pp´ F px0qqa´ cpp´ F px0qq
2

for all p P rF px0q ´ ε, F px0q ` εs and therefore, (5.76) implies that

∆nppq ´∆npF px0qq ´ cpp´ F px0qq
2
ě 0

for all such p’s, where we set ∆n :“ Λn ´ Λ. Hence, for all n ě Nη,

P p|Un paq ´ F px0q| ě γnq

ď η ` P

˜

sup
|p´F px0q|Prγn,εs

t∆nppq ´∆npF px0qq ´ cpp´ F px0qq
2
u ě 0 and En

¸

ď η `
ÿ

j

P

˜

sup
|u|Prγn2j ,γn2j`1s

t∆npF px0q ` uq ´∆npF px0qqu ě cpγn2jq2 and En

¸

ď η `
ÿ

j

P

˜

sup
|u|ďγn2j`1

|∆npF px0q ` uq ´∆npF px0qq| ě cpγn2jq2 and En

¸

(5.77)

where the sums are taken over all integers j ě 0 such that γn2j ď ε. Recall that

we have (5.53) for all k P t0, . . . ,mu. Since Λn is piecewise-linear with knots at

FnpY0q, . . . , FnpYmq, by (5.27) and (5.28) we get that for every j in the above sum,

sup
|u|ďγn2j`1

|∆npF px0q ` uq ´∆npF px0qq|

ď sup
|u|ďγn2j`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F px0q`u
ż

F px0q

`

f0 ˝ F
´1
n pyq ´ f0 ˝ F

´1
pyq

˘

dy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` sup
|u|ďγn2j`1

|Mn pF px0q ` uq ´Mn pF px0qq| . (5.78)
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Moreover, |f 10| is bounded above on rF´1pF px0q ´ 2εq, F´1pF px0q ` 2εqs, so we

obtain that for every j with γn2j ď ε, the �rst term on the right-hand side of (5.78)

satis�es

sup
|u|ďγn2j`1

ˇ

ˇ

ˇ

ˇ

ˇ

ż F px0q`u

F px0q

`

f0 ˝ F
´1
n ppq ´ f0 ˝ F

´1
ppq

˘

dp

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż F px0q`γn2j`1

F px0q´γn2j`1

ˇ

ˇf0 ˝ F
´1
n ppq ´ f0 ˝ F

´1
ppq

ˇ

ˇ dp

ď K3γn2j sup
|p´F px0q|ď2ε

ˇ

ˇF´1
n ppq ´ F´1

ppq
ˇ

ˇ ,

for some K3 ą 0 that does not depend on n. Hence, it follows from the previous

display and (5.75) that

E

¨

˝ sup
|u|ďγn2j`1

ˇ

ˇ

ˇ

ˇ

ˇ

ż F px0q`u

F px0q

pf0 ˝ F
´1
n ppq ´ f0 ˝ F

´1
ppqdp

ˇ

ˇ

ˇ

ˇ

ˇ

2

IpEnq

˛

‚

ď K2
3γ

2
n22jE

˜

sup
|p´F px0q|ď2ε

|F´1
n ppq ´ F´1

ppq|2IpEnq

¸

ď K2
3γ

2
n22jK2u pnq

´1.

Hence, taking K4 “ K2
3K2 we get that for all j with γn2j ď ε ď 1.

E

¨

˝ sup
|u|ďγn2j`1

ˇ

ˇ

ˇ

ˇ

ˇ

ż F px0q`u

F px0q

pf0 ˝ F
´1
n ppq ´ f0 ˝ F

´1
ppqdp

ˇ

ˇ

ˇ

ˇ

ˇ

2

IpEnq

˛

‚ď K4γn2ju pnq´1 .

(5.79)

By equations (5.28) and (5.29) in Lemma 5.6.1, the second term on the right-hand

side of (5.78) satis�es,

sup
|u|ďγn2j`1

|Mn pF px0q ` uq ´Mn pF px0qq| ď In,j1 ` In,j2 , (5.80)
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where In,j1 and In,j2 are given by

In,j1 “
1

TnpCq
sup

|u|ďγn2j`1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt

´

ICtXt ď F´1
n pF px0q ` uqu ´ ICtXt ď F´1

n pF px0qqu

¯

ˇ

ˇ

ˇ

ˇ

ˇ

,

In,j2 “
2

Tn pCq
sup

|u|ďγn2j`1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt

´

IC
 

Xt “ F´1
n pF px0q ` uq

(

¯

ˇ

ˇ

ˇ

ˇ

ˇ

.

For In,j1 , it follows from the triangle inequality that

In,j1 ď
2

TnpCq
sup

|u|ďγn2j`1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt

`

ICtXt ď F´1
n pF px0q ` uqu ´ ICtXt ď x0u

˘

ˇ

ˇ

ˇ

ˇ

ˇ

.

Combining (5.75) and the fact that F´1
is Lipschitz in rF px0q´2ε, F px0q`2εswe

can �nd K5 “ max
`?

K2, sup pF´1q
˘

independent of n such that, on En,

sup
|p´F px0q|ď2ε

|F´1
n ppq ´ F´1

ppq| ď
K5

a

u pnq

and |F´1pF px0q ` uq ´ x| “ |F
´1pF px0q ` uq ´F

´1pF px0qq| ď K5|u|{2 for all u

with |u| ď 2ε. Hence, on En

In,j1 ď
2

TnpCq
sup

|y´x0|ďK5γn2j`K5{
?
upnq

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt pICtXt ď yu ´ ICtXt ď x0uq

ˇ

ˇ

ˇ

ˇ

ˇ

,

In,j2 ď
2

Tn pCq
sup

|y´x0|ďK5γn2j`K5{
?
upnq

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt

´

ICtXt “ yu
¯

ˇ

ˇ

ˇ

ˇ

ˇ

.

It follows from (5.71) that γn2j ě γn ě 1{
a

u pnq for all j ě 0, then, on En

In,j1 ď
2

TnpCq
sup

|y´x0|ď2K5γn2j

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt pICtXt ď yu ´ ICtXt ď x0uq

ˇ

ˇ

ˇ

ˇ

ˇ

,

In,j2 ď
2

Tn pCq
sup

|y´x0|ď2K5γn2j

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“0

Wt

´

ICtXt “ yu
¯

ˇ

ˇ

ˇ

ˇ

ˇ

.
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By Lemma 5.6.6, we conclude that there exists K6 ą 0 and N 1
η such that, for

n ě N 1
η

E
´

`

In,j1 ` In,j2

˘2 IpEnq
¯

ď K6γn2ju pnq´1
(5.81)

Combining (5.78), (5.79), (5.80) and (5.81), we conclude that there exists K7 ą 0,

independent of n and K0, such that for all n ě N 1
η and j ě 0 where γn2j ď ε, one

has

E

˜

sup
|u|ďγn2j`1

|∆npF px0q ` uq ´∆npF px0qq|
2IpEnq

¸

ď K7γn2ju pnq´1.

Combining this with (5.77) and the Markov inequality, we conclude that there exist

K8 ą 0 and N2
η , that do not depend on n nor K0, such that, for all n ě N2

η ,

P p|Unpaq ´ F px0q| ě γnq ď η `K8

ÿ

kě0

γn2ju pnq´1

pγn2jq4

ď η `K8γ
´3
n u pnq´1

ÿ

jě0

2´3j.

The sum on the last line is �nite, so there exists K ą 0, independent of n and K0,

such that for n bigger than N2
η

P p|Unpaq ´ F px0q| ě γnq ď η `Kγ´3
n u pnq´1

“ η `
K

K3
0

. (5.82)

The above probability can be made smaller than 2η by setting (5.70) for some suf-

�ciently large K0 independent of n. This proves (5.69) and completes the proof of

(5.40).

Now, we turn to the proof of (5.41). It follows from (5.35) combined to (5.37) and
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Lemma 5.5.3 that

pf´1
n pf0px0qq “ F´1

˝ pUnpf0px0qq ` TnpCq
´1{2OP p1q .

Hence, by Lemma 5.6.7 we have

pf´1
n pf0px0qq “ F´1

˝ pUnpf0px0qq `OP

´

u pnq´1{2
¯

.

Now, it follows from the assumption (B2) that F´1
has a bounded derivative in the

neighborhood of F px0q, to which
pUnpf0px0qq belongs with probability that tends

to one. Hence, it follows from Taylor’s expansion that

pf´1
n pf0px0qq “ F´1

˝ F px0q `O
´

|pUnpf0px0qq ´ F px0q|

¯

`OP

´

u pnq´1{2
¯

“ x`OP pu pnq
´1{3

q `OP

´

u pnq´1{2
¯

,

where we used (5.40) for the last equality. This proves (5.41) and completes the

proof of Lemma 5.6.8.

5.7.5 Proof of Theorem 5.4.1.

Inspecting the proof of Lemma 5.6.8, one can see that the convergences in (5.40)

and (5.41) hold in a uniform sense in the neighborhood of x0. More precisely, there

exists γ ą 0, independent on n, such that for all η ą 0 we can �nd K1 ą 0 such

that

sup
|a´f0px0q|ďγ

P
´
ˇ

ˇ

ˇ

pUnpaq ´ F ˝ f
´1
0 paq

ˇ

ˇ

ˇ
ą K1u pnq

´1{3
¯

ď η

and

sup
|a´f0px0q|ďγ

P
´
ˇ

ˇ

ˇ

pf´1
n paq ´ f

´1
0 paq

ˇ

ˇ

ˇ
ą K1u pnq

´1{3
¯

ď η.
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Let ε “ K1u pnq
´1{3

where K1 ą 0 does not depend on n, and recall (5.56) where

ν “ x ´ f´1
0 pf0px0q ` εq ą 0. It follows from the assumption (B2) that f´1

0 has

a derivative that is bounded in sup-norm away from zero in a neighborhood of

f0px0q. Hence, it follows from the Taylor expansion that there exists K2 ą 0 that

depends only on f0 such that ν ě K2ε, provided that n is su�ciently large to

ensure that f0px0q ` ε belongs to this neighborhood of f0px0q. Hence,

P
´

pfnpx0q ą f0px0q ` ε
¯

ď P
´

pf´1
n pf0px0q ` εq ě f´1

0 pf0px0q ` εq `K2ε
¯

.

ď sup
|a´f0px0q|ďγ

P
´
ˇ

ˇ

ˇ

pf´1
n paq ´ f

´1
0 paq

ˇ

ˇ

ˇ
ą K2K1u pnq

´1{3
¯

,

provided that n is su�ciently large to ensure that f0px0q ` ε belongs to the above

neighborhood of f0px0q, and that γ ě Cu pnq´1{3
. For �xed η ą 0 one can choose

K2 ą 0 such that the probability on the right-hand side of the previous display is

smaller than or equal to η and therefore,

lim
nÑ8

P
´

pfnpx0q ą f0px0q `K2u pnq
´1{3

¯

ď η.

Similarly, for all �xed η ą 0, one can �nd K3 that does not depend on n such that

lim
nÑ8

P
´

pfnpx0q ă f0px0q ´K3u pnq
´1{3

¯

ď η.

Hence, for all �xed η ą 0, there exists K ą 0 that independent of n such that

lim
nÑ8

P
´

| pfnpx0q ´ f0px0q| ą Ku pnq´1{3
¯

ď η.

This completes the proof of Theorem 5.4.1.
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