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Abstract

In the field of Markov chain theory, S-null recurrent Markov chains represent a
class of stochastic processes that exhibit challenging and peculiar properties. These
nonstationary chains possess infinite invariant measures, making the estimation
problems associated with them particularly intricate.

This thesis delves into several estimation problems in the context of -null re-
current Markov chains, providing new insights and methodologies to tackle these
challenges. Our first contribution is the proposal of a tail index estimator for gen-
eralized discrete Pareto distributions, which is then used to estimate the parameter
[ in atomic S-null recurrent Markov chains. The second contribution involves the
adaptation and validation of the Regeneration-based bootstrap and Regenerative
Block bootstrap methods for these types of chains. Lastly, we develop an estimator
for monotone functions in nonlinear cointegrated models, where the underlying

process is a Harris recurrent Markov chain (positive or S-null recurrent).

Keywords: Markov chains, Harris recurrence, null recurrence, tail-index esti-
mation, regenerative bootstrap, monotone regression, dependent data, nonstation-

ary data, nonlinear cointegration






Résumeé

Parmi chaines de Markov, les chaines de Markov -nulles récurrentes représentent
une classe de processus stochastiques aux propriétés complexes et particulieres.
Ces chaines non stationnaires possédent des mesures invariantes infinies, rendant
les problémes d’estimation associés particulierement délicats.

Cette these aborde plusieurs problemes d’estimation dans le contexte des chaines
de Markov (-nulles récurrentes, en apportant de nouvelles perspectives pour relever
ces défis. Notre premiére contribution est la proposition d'un estimateur d’indice
de queue pour les distributions de Pareto discrétes généralisées, qui est ensuite
utilisé pour estimer le parameétre /3 des chaines de Markov [-nulles récurrentes
atomiques. La deuxiéme contribution concerne 1’adaptation et la validation des
méthodes de bootstrap basées sur la régénération et le bootstrap par blocs régénératifs
pour ces types de chaines. Enfin, nous développons un estimateur pour les fonc-
tions monotones dans les modeéles de cointégration non linéaires, ou le processus

sous-jacent est une chaine de Markov récurrente de Harris (récurrente positive ou

[-nulle).

Mots-clés : chaines de Markov, récurrence de Harris, récurrence nulle, esti-
mation de I'indice de queue, bootstrap régénératif, régression monotone, données

dépendantes, données non stationnaires, cointégration non linéaire.
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Introduction et résumé (en Francais)

En 1898, Pavel Nekrasov, alors vice-président de la Société Mathématique de
Moscou, écrivit un article intitulé “Propriétés générales de nombreux événements
indépendants en relation avec le calcul approximatif des fonctions de tres grands
nombres”. Il y prétendait que l’indépendance est une condition nécessaire pour la
loi des grands nombres. Cette affirmation provoqua la colére d’Andrey Markov, qui
était convaincu que ce n’était pas le cas.

Pour prouver que Nekrasov a tort, Markov commence d’étudier certains types
de variables aléatoires dépendantes afin de relacher I'hypotheése d’indépendance.
Plus précisément, il étudie des variables X, X1, ..., X, dont la dépendance les
unes avec les autres diminue rapidement a mesure que leur distance mutuelle dans
le temps augmente. Cette construction le conduit a développer un nouveau modele
mathématique, qu’il appele une “chaine” - la désormais célébre chaine de Markov.

Selon les propres mots de Markov, les chaines de Markov' est

une séquence infinie Xo, X1, ..., Xn, Xpnt1, . . . devariables liées de telle
maniére que X,, .1 pour n’importe queln est indépendant de Xy, ..., X, 1,

dans le cas ou X,, est connu[84]

Il définit une chaine homogéne lorsque les distributions conditionnelles de X, | ;

Le terme chaine de Markov a été inventé par Bernstein dans son article de 1927 “Sur I’extension
du théoréme limite du calcul des probabilités aux sommes de quantités dépendantes”[13]. Pour une
histoire détaillée des premiers développements des chaines de Markov, voir [11].

X



étant donné X, sont indépendantes de n. Il considére également des chaines plus
complexes dans lesquelles “chaque nombre est directement lié non pas a un seul mais

a plusieurs nombres précédents” [11].

Le premiere application d’une chaine de Markov a été faite par Markov lui-
méme lorsqu’il I'utilise pour analyser la séquence des voyelles et des consonnes
dans le poéme "Eugene Onegin" d’Alexandre Pouchkine. Depuis, les chaines de
Markov ont rencontré de nombreuses applications en sciences et en ingénénie,
telles que la modélisation des phénomenes naturels ou génétiques, la simulation
des systemes complexes, la génération de données aléatoires, 'optimisation des

algorithmes et I’analyse des réseaux.

Une chaine de Markov homogéne X = {X},>¢, définie dans un espace proba-
bilisé (E, E,P) est déterminée de maniére unique par une mesure initiale A et un

noyau P, au sens ou

P(X,eA)=AP"(A) VAe&En=1.

Une chaine de Markov homogene est irréductible s’il existe une mesure o-finie
¢ sur (E, &) telle que pour tout © € F et tout A € £ avec ¢(A) > 0 nous
avons P"(z, A) > 0 pour un certain n > 1. Dans ce cas, il existe une mesure
d’irréductibilité maximale 1 (toutes les autres mesures d’irréductibilité sont absol-
ument continues par rapport a ¢). Dans la suite, toutes les chaines de Markov sont

supposées étre irréductibles avec une mesure d’irréductibilité maximale ).

Lorsqu’une mesure 7 vérifie 7P = m, on dit qu’elle est invariante pour la
chaine de Markov. Lorsque la mesure invariante est finie (et peut donc étre nor-
malisée en une probabilité), la chaine est dite récurrente positive, lorsqu’elle est

seulement o-finie, elle est dite récurrente nulle. Si la mesure initiale d’'une chaine



de Markov récurrente positive coincide avec la probabilité invariante, la chaine est
dite stationnaire puisque les marginales de chaine changent pas.

Les chaines de Markov irréductibles ont de nombreuses propriétés et peuvent
étre subdivisées en plusieurs groupes (que nous décrirons en détail au chapitre
2), parmi ceux-ci, on trouve les chaines de Markov récurrentes” et les chaines
de Markov récurrentes de Harris’. En termes simples, une chaine de Markov est
récurrente si le nombre attendu de visites a tout état accessible, quel que soit le
point de départ, est infini. La récurrence de Harris est une forme renforcée de
récurrence ou le nombre de fois ou la chaine visite tout état accessible est infini
avec probabilité 1.

Une chaine de Markov est atomique s’il existe un ensemble accessible* c tel que
P(x,A) = P(y,A) pour tous =,y € o, A € £. En termes plus simples, un atome
est un ensemble sur lequel toutes les probabilités de transition sont identiques.
Ainsi, chaque fois que la chaine de Markov atteint «, elle ignore son historique
précédent et recommence (elle se régéneére). Les chaines atomiques récurrentes
ont de nombreuses propriétés remarquables (voir section 2.2.7), les deux plus im-
portantes étant I’existence d’une mesure invariante (unique a une constante mul-
tiplicative prés) et la décomposition en blocs’, qui permet de diviser la chaine en
une série de blocs i.i.d. Le théoréme de Kac® indique qu’une chaine atomique est
récurrente positive si et seulement si E,7, < +00, ou 74 désigne le temps de re-
tour a I’atome. Le manque de moments pour les chaines récurrentes nulles est la
plus grande source de problémes lors de leur manipulation (voir le théoréme 4.8 et

I'explication qui suit).

%Section 2.2.5

3Section 2.2.9

“Un ensemble A est accessible si ¢ (A) > 0.
>Voir Théoréme 2.2.17

*Théoréme 2.2.16.



Une chaine de Markov vérifie la condition de minorisation M (my, s, v) si il
existe un entier my > 1, une fonction 0 < s(z) < 1 et une mesure v telle que
P™ (2, A) = s(x) v (A) pour tout € E et A € £. Lorsqu’une chaine de Markov
vérifie cette condition de minorisation, la fonction s et la mesure v sont appelées
petite fonction et petite mesure respectivement.

Dans un article fondateur, Nummelin [89] a développé une technique d’extension
(dite de "spliting") qui permet, pour toute chaine de Markov qui vérifie la condition
de minorisation M (my, s,v), d’étendre I'espace des probabilités de telle maniére
que extension de X dans le nouvel espace soit atomique. En utilisant cette exten-
sion, il a pu démontrer que chaque chaine de Markov récurrente de Harris admet
une mesure invariante unique (a une constante multiplicative pres). Cela implique
que chaque chaine récurrente de Harris est soit récurrente positive, soit récurrente
nulle.

La grande majorité des résultats dans la littérature se concentrent sur les chaines
récurrentes positives et traitent de I'estimation du noyau de transition ou de la
distribution stationnaire, du test de stationnarité ou de l'ordre de la chaine de
Markov. Cependant, seuls quelques articles (essentiellement de Tjostheim et ses
coauteurs) traitent des problemes d’estimation et de tests d’hypotheéses dans les
cas ou la chaine est récurrente nulle [49, 65, 67, 88, 112].

Dans cette thése, nous nous concentrons sur les chaines récurrentes nulles,
en particulier sur celles qui sont S-nulles récurrentes’, c’est-a-dire les chaines de
Markov récurrentes de Harris telles qu’il existe une petite fonction h, une mesure

initiale )\, une constante 3 € (0, 1) et une fonction a variation lente Ly, telle que

TLBLh (n)

¢ 1

"Voir la section 2.2.10



lorsque n tend vers +o0.
Lorsque X est atomique, alors X est S-nulle récurrente si et seulement s’il existe
une constante § € (0, 1) et une fonction a variation lente L telle que le temps de

retour dans I’atome ait une queue de type Pareto

1

P(Tq >n) ~ L)’

Cette caractérisation implique que § = sup {p = 0 : E, [72] < oo}.

Parmi les exemples les plus connus de chaines de Markov 3-nulles récurrentes,
on trouve les marches aléatoires dans R, qui sont 1/2-nulles récurrentes [64], les
marches aléatoires de Bessel [3], [36] et certains types de processus autorégressifs

a seuil (TAR) [49] et de processus autorégressifs vectoriels (VAR) [88].

0.1 Résultats principaux

Dans la section suivante, nous décrivons les motivations de nos travaux et les
principaux résultats obtenus dans chaque chapitre. Sauf indication contraire, nous
supposons que X est une chaine de Markov récurrente de Harris de mesure invari-

ante .

0.1.1 Théorie générale des chaines de Markov

Dans le Chapitre 2, nous donnons un apercu de la théorie des chaines de Markov
qui sera utilisée tout au long de la thése. Nous mettons un accent particulier sur
les propriétés des chaines de Markov récurrentes 3-nulles.

Bien que le chapitre soit principalement une récapitulation de la théorie actuelle,

nous y considérons également trois nouvelles extensions : ce sont les Théoremes



2.2.36,2.2.38 et 2.2.40. Le plus intéressant est le Théoreme 2.2.40, qui est une généralisation

fonctionnelle du Théoréme 2.3 de [28]. Nous le reproduisons ci-dessous.

Theorem 0.1.1 (page 73). Supposons que X soit une chaine de Markov récurrente
[-nulle qui satisfait la condition de minorisation M (1,s,v) et soit A\ une mesure

lnt] £ox.
initiale, si f € L' (E, ) et (f) # 0, alors si on pose S, ¢ (t) = % ona

D10, +w)

Sn’f Mﬁ’

ou Mgy est un processus de Mittag-Leffler de parameétre 3.

0.1.2 Estimation de I'indice de queue

Motivé par le besoin d’estimer le parameétre S pour une chaine de Markov
B-récurrente nulle, dans le Chapitre 3, nous abordons le probléme d’estimation
de l'indice de queue pour une distribution de Pareto discréte généralisée. Plus
précisément, nous considérons la distribution d’une variable aléatoire S' prenant

des valeurs dans N*, et dont la fonction de survie est la suivante :
P (S >n)=n""L(n) pour tout n > 1, (1)

ou L : R, — R est une fonction a variation lente. L’inférence statistique pour
les distributions discrétes a queue lourde n’a pas recu beaucoup d’attention dans
la littérature. La plupart des quelques méthodes dédiées dans la litérature traitent
soit de cas tres spécifiques comme dans e.g. [51], [85] ou [31], soit consistent a ap-
pliquer des techniques initialement congues pour les distributions a queue lourde
continues aux données discretes apreés une addition préliminaire d’un bruit uni-

forme indépendant, voir e.g. [116]. La grande majorité des estimateurs d’indice de



variation réguliere proposés dans la littérature, en particulier les estimateurs de
Hill ou Pickand (cf [56], [100]), sont basés sur les statistiques d’ordre, ce qui pose
des difficultés évidentes dans le cas discret en raison de la possible occurrence de

nombreuses répétitions dans 1’échantillon.

En revanche, I'estimateur que nous étudions dans le Chapitre 3 est basé sur
I’analyse de la probabilité des événements de queue séparés exponentiellement. I1
repose sur le fait que In(py) — In(pry1) = B + In(L(e*)/L(e* 1)), oup, = P(S >
e!) pour tout [ € N, et que L(ef*1)/L(e¥) est censé étre trés proche de 1 pour &
suffisamment grand. Une technique d’inférence naturelle (plug-in) peut alors étre

congue en remplacant les probabilités de queue p; par leurs versions empiriques

ﬁgn) = (1/n) > I{S; > €'} pour € N.
5.9 3) - 2. .

Nous démontrons que pour un choix approprié de ’'hyperparametre k& = k,, (typ-
iquement choisi de 'ordre de In n) I'estimateur (2) est fortement consistant (Théoréme
3.2.2) et asymptotiquement normal (Théoréme 3.2.3) lorsque n — +0. Des bornes
de confiance supérieures non asymptotiques pour les écarts absolus entre Bn (k)

et 3 sont également établies (Proposition 3.2.1).

Pour une chaine de Markov -récurrente nulle atomique, soit 7" (n) + 1 le nom-
bre de fois ol la chaine visite 'atome jusqu’au temps n et soit 7, ..., 7741 les
instants de ces visites. Dans le Théoréme 3.3.2, nous montrons que I’estimateur (3

reste fortement consistant lorsque nous considérons S; = 7,41 — 7; et ou T (n)



joue le role de n. Pour k,, = Inn, cet estimateur prend la forme

T(n)

A > I{S; > T (n)}
Brpy (0T (n)) =1n | = . 3)

T(n)

igl I{S; > eT (n)}

0.1.3 Bootstrap régénératif

Depuis son introduction par Efron dans [43] pour des donnéesi.i.d., les méthodes
de bootstrap ont connu d’importants développements, donnant naissance a divers
schémas de bootstrap adaptés aux contextes ii.d. et dépendants [71, 77]. Cela a
conduit a leur utilisation extensive dans une multitude d’applications statistiques.
Dans de nombreux cas, les techniques de bootstrap fournissent des approximations
plus précises des distributions statistiques, des probabilités de couverture des in-
tervalles de confiance et des probabilités de rejet des tests d’hypotheéses par rapport
a la théorie des distributions asymptotiques de premier ordre (pour une discussion

détaillée, voir [57]).

Dans le cas markovien, de nombreuses approches ont été proposées et développées.
Une idée originale est d’estimer la distribution marginale et la fonction de proba-
bilité de transition en utilisant des techniques d’estimation de fonctions non paramétriques,
puis de rééchantillonner a partir de ces estimations. Cette idée a été développée et
étendue, entre autres, dans [6, 57, 75, 94, 97, 105]. Pour une explication détaillée de

cette idée, voir la section 4 de [71].

Dans [6], une approche distincte de ce probleme a été proposée. Au lieu d’utiliser
des probabilités de transition estimées, les auteurs ont exploité les propriétés de
régénération d’une chaine de Markov lorsqu’un atome accessible est visité infini-

ment souvent. L’idée fondamentale de cette méthode est de diviser la chaine en un



nombre aléatoire de blocs de régénération i.i.d. puis de rééchantillonner un nom-
bre équivalent de blocs de régénération. Cette technique, connue sous le nom de
Bootstrap basé sur la régénération, a été démontrée comme étant valide pour les
chaines atomiques a états finis dans [6] et a été étendue aux chaines de Markov
atomiques récurrentes positives générales dans [34].

En s’appuyant sur le concept d’exploitation des propriétés régénératives des
chaines de Markov, le Bootstrap par Blocs Régénératifs (RBB) a été introduit dans
[15]. Cette méthode simule la structure de renouvellement de la chaine en échan-
tillonnant des blocs de données de régénération jusqu’a ce que la longueur de la
série de bootstrap réassemblée dépasse la longueur de la série de données origi-
nale n (notez le contraste avec le Bootstrap basé sur la régénération, ou le nombre
de blocs échantillonnés est égal au nombre de blocs de régénération dans la chaine
d’origine).

Il a été démontré dans [15] que pour les chaines de Markov atomiques récurrentes
positives, le RBB pour I'estimation de I'intégrale d’une fonction par rapport a la
probabilité invariante présente une vitesse de convergence uniforme de la distri-
bution de 'ordre Op (n™!), qui est la méme que celle dans le cas i.i.d.

Dans le Chapitre 4, nous adaptons a la fois le Bootstrap basé sur la régénération
et le Bootstrap par Blocs Régénératifs pour les chaines de Markov [-récurrentes
nulles et montrons que les deux sont asymptotiquement valides (Théoremes 4.3.1
et 4.4.1) pour 'estimation des intégrales par rapport a la mesure invariante lorsque
la chaine [3-récurrente nulle posseéde un atome accessible.

Sous-produit important de nos recherches, dans le Lemme 4.2.1, nous présentons
une généralisation du Théoréme Central Limite pour des séquences indexées aléatoirement
ou nous remplacons I'exigence usuelle du contrdle en probabilité de la séquence

d’indexation par I'existence d’une limite de la séquence vers un processus stochas-



tique. Ce résultat a été essentiel dans la preuve du Théoréme 4.3.1 qui valide I'utilisation

des techniques de regénération apres standadisation aléatoire adéquate.

0.1.4 Modéeles cointégrés non linéaires monotones

Dans le Chapitre 5, nous étudions les modeles cointégrés non linéaires tels que

Zy = fo(Xy) + Wh, (4)

ou fy est une fonction non linéaire, X; est une chaine de Markov récurrente de
Harris et W, est un processus inobservé avec F(W;|X;) = 0.

Le probléeme d’estimation de f; sous I’hypothése markovienne sur X; a été
étudié en utilisant 'estimateur de Nadaraya-Watson dans [23, 65], des estimateurs
linéaires de type M dans [24, 80] et en utilisant des concepts avancés tels que le
temps local et les transformations non linéaires de processus de type mouvement
brownien dans [117, 118, 119]. Un résumé complet sur les derniéres avancées sur
ce probléme se trouve dans [112].

A notre connaissance, I'estimation de fo, lorsqu’elle est soumise a des con-
traintes de forme, n’a pas été étudiée dans un cadre markovien. Dans un cadre
iid. ces estimateurs sont fortement non linéaires et présentent des défis théoriques
considérables. Ils s’adaptent mal au cadre dépendant car ils font intervenir une no-
tion d’ordre. Dans le contexte d’observations indépendantes, des contraintes telles
que la convexité, la concavité et la log-concavité sont connues pour étre encore
plus complexes que les contraintes de monotonie (voir [54, 109] et les références
correspondantes). Dans le Chapitre 5, nous nous concentrons sur le cas monotone
mais il seraient intéressant de considérer ultérieurement des extensions.

La construction de notre estimateur est la suivante:



Soit C' un ensemble dont l'intérieur contient notre point d’intérét z,. Ayant
observé {(Xy, Z;)}}_, nous notons par 7,,(C) le nombre de fois que X a visité C'
jusqu’au temps n et par o¢ (i) le temps de la i-iéme visite. Notre estimateur ﬁl est

alors I'estimateur non paramétrique défini comme le minimiseur de

Tn(C)

oY (Zoowy = F (Xoe))” (5)

i=1

sur I’ensemble des fonctions décroissantes. Cet estimateur peut étre calculé a I’aide
de simples algorithmes comme discuté dans [10]. De plus, contrairement aux esti-
mateurs a noyau avec parameétre de lissage, C' ne dépend pas de n et la vitesse de

convergence de I'estimateur ne dépend pas de C.

Dans le Théoréme 5.3.1, nous montrons que sous des hypotheéses trés générales,
7 (o) est un estimateur fortement consistant de f (), et avec des hypothéses
légerement plus restrictives, nous montrons dans le Théoréeme 5.4.1 que la vitesse
de convergence de o estu (n)™"%, ot u(n) = n si X est récurrente positive et
u (n) = n?L (n) si elle est récurrente nulle. Remarquons que dans le cas récurrent

1

positif, nous obtenons le méme taux, n~ /3, que dans le cas i.i.d. [53, Chapitre 2].

L’utilisation d’un estimateur localisé est due au fait que nous devons controler
le comportement de la chaine autour de z, et, pour ce faire, nous devons estimer
la "distribution" asymptotique de X dans un voisinage de z(. Pour les chaines de
Markov récurrentes de Harris, le comportement a long terme de la chaine est donné
par sa mesure invariante. Dans le cas récurrent positif, la mesure invariante est
finie et peut étre estimée en considérant simplement la fonction de répartition
empirique des X;, cependant, dans le cas récurrent nul, la mesure invariante est
seulement o-finie, d’ou la nécessité de localiser notre analyse dans un ensemble

suffisamment grand pour que la chaine le visite infiniment souvent, mais suffisam-



ment petit pour que la restriction de la mesure invariante a cet ensemble soit finie.
A cet égard, deux résultats de type Glivenko-Cantelli (Lemmes 5.5.1 et 5.5.3) ont
été obtenus pour les chaines de Markov récurrentes de Harris localisées. Nous
obtenons également un résultat (Lemme 5.5.2) qui permet de contrdler le nombre
de recouvrements d’une classe de fonctions définies sur des blocs localisés a partir
du nombre de recouvrements de la classe de départ, ce qui constitue en soit un

résultat nouveau et intéressant. .

0.2 Organisation de la thése

La thése est organisé comme suit :

+ Chapitre 2 : Nous donnons une vue d’emsemble de la théorie des chaines de
Markov, en mettant un accent particulier sur les propriétés et les particu-

larités des chaines de Markov [3-récurrentes nulles.

+ Chapitre 3 : Il est basé sur I'article [17]. Il se concentre sur ’estimation de
I'indice de queue d’une distribution de Pareto discrete généralisée. Nous
montrons que 1’estimateur proposé est fortement consistant et asympto-
tiquement normal dans le cas i.i.d. Dans le cas des chaines atomiques (-
récurrentes nulles, notre estimateur de /3 sur lequel il est basé est démontré

étre fortement consistant.

« Chapitre 4 : Il est basé sur l'article [47]. Il traite du bootstrap régénératif sur
les chaines de Markov [3-récurrentes nulles. Le bootstrap basé sur la régénération
et le bootstrap de blocs régénératifs sont démontrés étre valides pour estimer

I'intégrale par rapport a la mesure invariante dans le cas atomique.



« Chapitre 5 : Il est basé sur [41]. Il aborde le probléme de I’estimation d’une
fonction monotone dans un modele cointégré non linéaire, ou X; est une
chaine de Markov récurrente de Harris. L’estimateur est démontré étre forte-
ment consistant et nous obtenons sa vitesse de convergence dans les cas

récurrent positif et nul.

Apres lecture du Chapitre 2, les chapitres suivants peuvent étre lus dans n’importe
quel ordre, car sans dépendances de notation entre eux. Nous nous excusons par

avance pour les légeres redondances entre les chapitres.
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Chapter

Introduction

In 1898, Pavel Nekrasov, then vice president of the Moscow Mathematical So-
ciety, wrote a paper named “General properties of numerous independent events
in connection with approximate calculation of functions of very large numbers”.
There, he claimed that independence is a necessary condition for the law of large
numbers. This claim infuriated Andrey Markov, who was convinced that it was
not the case.

To prove Nekrasov wrong, Markov started studying certain types of depen-
dent random variables in order to relax the independence assumption. Specifically,
he studied variables Xy, X1, ..., X, whose dependence on one another quickly
lessens as their mutual distance increases. This observation led him to develop
a novel mathematical model, which he called a “chain” - the now well-known
Markov chain.

In Markov’s own words, a Markov chain'

an infinite sequence Xy, X1, ..., Xy, Xp41, - . . of variables connected in

such a way that X,, 1 for anyn is independent of Xy, ..., X,,_1, in case

The term Markov chain was coined by Bernstein in his 1927 paper “Sur I’extension du théoréme
limite du calcul des probabilités aux sommes de quantités dépendantes”[13]. For a detailed history
of the early developments of Markov chains see [11].



X, is known[84]

He called a chain homogeneous if the conditional distributions of X, given
X, were independent of n. He also considered complex chains in which ‘every

>

number is directly connected not with a single but with several preceding numbers’
[11].

The initial application of a Markov chain was done by Markov himself when
he used it to analyze the sequence of vowels and consonants in the poem "Eugene
Onegin" by Alexander Pushkin. After that, Markov chains have been encountered
many applications in science and engineering, such as modeling natural phenom-
ena, simulating complex systems, generating random data, optimizing algorithms
and analyzing networks.

Every homogeneous Markov chain X = {X};>, defined in a probability space
(E,&E,P) is uniquely determined by an initial measure \ and a kernel P, in the

sense that

P(X,eA) =AP"(A) VAe&n=1

An homogeneous Markov chain is irreducible if there exists a o-finite mea-
sure ¢ on (E, &) such that for all € F and all A € £ with ¢(A) > 0 we have
P"(z,A) > 0 for some n > 1. In this case, there exists a maximal irreducibil-
ity measure 1 (all other irreducibility measures are absolutely continuous with
respect to ). In the following, all Markov chains are supposed to be irreducible
with maximal irreducibility measure .

When a measure 7 satisfies 7P = 7, we say that it is invariant for the Markov
chain. When the invariant measure is finite (and hence can be normalized into
a probability), the chain is called positive recurrent, when is only o-finite is called

null-recurrent. If the initial measure of a positive recurrent Markov chain coincides
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with the invariant probability, the chain is called stationary.

Irreducible Markov chains have many properties and can be subdivided into
many groups (which we will describe in detail in Chapter 2), among those, we find
the recurrent”* Markov chains and Harris recurrent Markov chains®. Loosely speak-
ing a Markov chain is recurrent if the expected number of visits to any accessible
state, no matter the starting point, is infinite. Harris recurrence if a strengthened
form of recurrence where the number of times the chain visits any accessible state
is infinite with probability 1.

A Markov chain is atomic if there exists an accessible set* a such that P (z, A) =
P (y,A)forallz,y € a, A € €. Insimpler terms, an atom is a set where all the tran-
sition probabilities are identical. Hence, whenever the Markov chain reaches ¢, it
disregards its previous history and starts anew (regenerates). Recurrent atomic
chains have many remarkable properties (see Section 2.2.7), the two most impor-
tant being, the existence of an invariant measure (unique up to some multiplica-
tive constant) and the block decomposition®, which allows splitting the chain into
a series of i.i.d. blocks. Kac’s theorem® indicates that an atomic chain is positive
recurrent if and only E,7, < +0c0, where 7, denotes the time of first return to
the atom. This lack of moments for null recurrent chains is the biggest source of
problems when working with these chains (see Theorem 4.8 and the explanation
afterward).

A Markov chain satisfies the minorization condition M (my, s, v) if there ex-
ists an integer mo > 1, a function 0 < s(z) < 1 and a measure v such that

P (z,A) = s(x)v(A) forall x € F and A € £. When a Markov chain satis-

%Section 2.2.5

3Section 2.2.9

*A set A is accessible if ¢ (A) > 0.
See Theorem 2.2.17

*Theorem 2.2.16.



fies this minorization condition, the function s and the measure v are called small

function and small measure respectively.

In a seminal paper, Nummelin [89] developed a splitting technique that allows,
for any Markov chain that satisfies the minorization condition M (my, s, V), to ex-
tend the probability space in such a way that the extension of X into the new space
is atomic. Using this extension, he was able to show that every Harris recurrent
Markov chain admits a unique (up to some multiplicative constant) invariant mea-
sure. This implies that every Harris recurrent chain is either positive recurrent or

null recurrent.

The vast majority of results in the literature focus on positive recurrent chains,
and deal with the estimation of the transition kernel or the stationary distribution
or testing stationarity or the order of the Markov chain. However, only a few arti-
cles (essentially by Tjesheim and his coauthors) deal with estimation and hypoth-

esis testing issues in cases where the chain is null recurrent[49, 65, 67, 88, 112].

In this thesis, we put our focus on null recurrent chains, specifically in 5-null
recurrent ones’, that is, Harris recurrent Markov chains such that there exists a
small function A, an initial measure A, a constant $ € (0, 1) and a slowly varying

function L;, such that

Ex [Zh(Xt)] ~ ﬁnﬁfzh (n)

t=0
as n goes to +o0.

When X is atomic, then X is S-null recurrent if and only if there is a constant

See section 2.2.10
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B € (0,1) and a slowly varying function L such that

1

P(7q >n) ~ L)’

This characterization implies that 5 = sup {p > 0 : E, [72] < o0}.

Some of the most well-known examples of S-null recurrent Markov chain are
the random walks in R, which are 1/2-null recurrent [64], the Bessel random walks
[3], [36] and some types of threshold autoregressive (TAR) [49] and vector autore-

gressive processes (VAR) [88].

1.1 Main results

In this section, we describe the motivation and main results of each chapter.
Unless stated otherwise, we assume that X is a Harris recurrent Markov chain with

invariant measure 7.

1.1.1 General Markov chain theory

In Chapter 2 we provide an overview of the Markov chain theory that will be
used throughout the thesis. We make special emphasis on the properties of 5-null
recurrent Markov chains.

Although the chapter is mostly a recapitulation of the current theory, we have
added three new contributions: those are Theorems 2.2.36, 2.2.38 and 2.2.40. The
most interesting being Theorem 2.2.40 which is a functional generalization of The-

orem 2.3 in [28], we reproduce it below.

Theorem 1.1.1 (page 73). Assume X is a 3-null recurrent Markov chain that sat-

isfies the minorization condition M (1, s,v) and let \ be any initial measure, if f €
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L' (E,7) and 7 (f) # 0, then
Sn,f 9[0,+C)O) Mﬁ,

X0 S(X) o .
S L and Mpg is a Mittag-Leffler process with parameter [3.

where Sy, 5 (t) = TN

1.1.2 Tail index estimation

Motivated by the need to estimate the parameter J for a S-null recurrent Markov
chain, in Chapter 3, we address the problem of estimating the tail index for a gen-
eralized discrete Pareto distribution. Specifically, we consider the distribution of a

random variable S taking values in N*, and whose survival function is as follows:
P(S>n)=n"L(n) foralln > 1, (1.1)

where L : R, — R is a slowly varying function.

Statistical inference for discrete heavy-tailed distributions has not received
much attention in the literature. Most of the very few dedicated methods doc-
umented either deal with very specific cases as in e.g. [51], [85] or [31] or else
consists in applying techniques originally designed for continuous heavy-tailed
distributions to the discrete data after a preliminary addition of an independent
uniform noise, see e.g. [116]. The vast majority of the regular variation index es-
timators proposed in the literature, Hill’s or Pickand’s estimators in particular (cf
[56], [100]), are based on order statistics, which causes obvious difficulties in the
discrete case because of the possible occurrence of many ties.

In contrast, the estimator that we study in Chapter 3 is based on the analysis

of the probability of exponentially separated tail events. It relies on the fact that
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In(pr) — In(pry1) = B + In(L(e*)/L(e*1)), where p; = P(S > €') foralll € N,
and that L(e*™!)/L(e*) is expected to be very close to 1 for k sufficiently large.
A natural (plug-in) inference technique can be then devised by replacing the tail
probabilities p; with their empirical versions ﬁl(n) = (1/n) > I{S; > €'} for

[ € N. This yields the estimator
B (k) =1n (") = 1n (A) (12)

We prove that for an appropriate choice of the hyperparameter k£ = £, (typ-
ically chosen of order In(n)), the estimator (1.2) is strongly consistent (Theorem
3.2.2) and asymptotically normal (Theorem 3.2.3) as n — +0c0. Nonasymptotic up-
per confidence bounds for the absolute deviations between Bn (k) and 3 are also
established (Proposition 3.2.1).

For an atomic [-null recurrent Markov chain, let 7' (n) + 1 be the number of
times the chain visits the atom and denote by 71, ..., 7r(;)41 the times of those
visits. In Theorem 3.3.2, we show that the estimator 5 remains strongly consistent
when we consider S; = 7,1 — 7; and take n as T'(n). For k,, = Inn, this estimator

takes the form

) Y iis > 7 m)
Brpy (InT (n)) =In | =1 . (1.3)

T(n)

> I{S; > eT (n)}

i=1

1.1.3 Regenerative bootstrap

Since its inception by Efron in [43] for i.i.d. data, bootstrap methods have ad-
vanced, giving rise to various bootstrap schemes tailored for both i.i.d. and depen-

dent contexts [71, 77]. This has led to their extensive use in a multitude of statistical
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applications. In many cases, bootstrap techniques deliver more accurate approxi-
mations of statistical distributions, confidence interval coverage probabilities, and
hypothesis test rejection probabilities when compared to first-order asymptotic
distribution theory (for a detailed discussion, see [57]).

In the Markovian case, numerous approaches have been developed and exam-
ined. The original idea was to estimate the marginal distribution and the transition
probability function using nonparametric function estimation techniques and then
resample from those estimates. This idea was developed and expanded, among oth-
ers, in [6, 57, 75, 94, 97, 105]. For a detailed explanation of this idea, refer to Section
4in [71].

In [6], a distinct approach to this problem was proposed. Instead of employ-
ing estimated transition probabilities, the authors made use of the regeneration
properties of a Markov chain when an accessible atom is visited infinitely often.
The fundamental idea of this method is to split the chain into a random number of
ii.d. regeneration blocks and then resample an equivalent number of regeneration
blocks. This technique, known as the Regeneration based bootstrap, was demon-
strated to be valid for finite state atomic chains in [6] and was further extended to

general atomic positive recurrent Markov chains in [34].

Building on the concept of exploiting the regenerative properties of Markov
chains, the Regenerative Block bootstrap (RBB) was introduced in [15]. This method
simulates the renewal structure of the chain by sampling regeneration data blocks
until the length of the reassembled bootstrap series surpasses the original data
series length n (note the contrast with the Regeneration based bootstrap, where
the number of sampled blocks is equal to the number of regeneration blocks in
the original chain). It was demonstrated in [15] that for atomic positive recurrent

Markov chains, the RBB for estimating the integral of a function with respect to
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the invariant probability exhibits a uniform rate of convergence of order Op (n™1),
which is the same as in the i.i.d. case.

In Chapter 4, we adapt both Regeneration based-bootstrap and Regenerative
Block bootstrap for $-null recurrent Markov chains and show that both are valid
(Theorems 4.3.1 and 4.4.1) for the estimation of integrals with respect to the in-
variant measure when the S-null recurrent chain possesses an accessible atom.

As a byproduct of our research, in Lemma 4.2.1 we present a generalization of
the Central Limit Theorem for randomly indexed sequences where we replace the
requirement of the control in probability of the indexing sequence by the existence
of the limit of a stochastic process defined in terms of the said sequence. This result

was instrumental in the proof of Theorem 4.3.1.

1.1.4 Nonlinear monotone cointegrated models

In Chapter 5, we study nonlinear cointegrated models such that

Zy = fo(Xy) + W, (1.4)

where fj is a nonlinear function, X; is a Harris recurrent Markov chain and W} is
an unobserved process with E(W;| X;) = 0.

The problem of estimating f; under the Markovian assumption on X, has been
studied using Nadaraya-Watson estimator in [23, 65], linear M-type estimators in
[24, 80] and using advanced concepts like local time and nonlinear transformations
of Brownian motion-like processes in [117, 118, 119]. A comprehensive survey of
the latest advances in this problem can be found in [112].

To our knowledge, the estimation of fj, when it is subject to shape constraints

has not been explored under Markovian assumptions. These estimators are non-
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linear and present considerable theoretical challenges. In the context of indepen-
dent observations, constraints such as convexity, concavity, and log-concavity are
known to be even more intricate than monotonicity constraints (refer to [54, 109]
and the citations therein). Consequently, in Chapter 5 we focus on the monotone

case.
The construction of our estimator is as follows:

Let C be a set whose interior contains our point of interest xy. Having observed
{(X4, Z4)}7_, we denote by T, (C') the number of times that X visited C' up to time
nand by o¢ (i) the time of the i-th visit. Our estimator ﬁ is then the nonparametric

LSE defined as the minimizer of

fe Z (Zoety = f (Xooi)) (1.5)

over the set of non-increasing functions. This estimator can be computed using
simple algorithms as discussed in [10]. Moreover, contrary to the bandwidth in
kernel type estimators, C' does not depend on n, and the rate of convergence of

the estimator does not depend on C.

In Theorem 5.3.1 we show that under very general assumptions, fn (x0) is a
strongly consistent estimator f (x(), and with slightly more restrictive hypotheses,

_1/

we show in Theorem 5.4.1 that the rate of convergence of fn isu(n) 3 where

u (n) = nif X is positive recurrent and u (n) = n°L (n) if is null-recurrent. Notice

1/3

that in the positive recurrent, we obtain the same rate, n~"/°, as in the i.i.d. case

[53, Chapter 2].

The use of a localized estimator is due to the fact that we need to control the
behavior of the chain around xy, and, to do this, we need to estimate the asymp-

totic “distribution” of X in a vicinity of (. For Harris recurrent Markov chains,
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the long-term behavior of the chain is given by its invariant measure. In the posi-
tive recurrent case, the invariant measure is finite and it can be estimated by sim-
ply considering the empirical distribution function of the X, however, in the null
recurrent case, the invariant measure is only o-finite, hence, we need to local-
ize our analysis in a set big enough that the chain visits it infinitely often, but
small enough that the restriction of the invariant measure to it is finite. In this
regard, two Glivenko-Cantelli type results (Lemmas 5.5.1 and 5.5.3) were obtained
for localized Harris recurrent Markov chains, as well as a result (Lemma 5.5.2) that

allows controlling the covering number of a class of functions defined over the

localized blocks.

1.2 Outline

The rest of the thesis is organized as follows:

« Chapter 2: We provide a recapitulation of Markov chain theory, making spe-
cial emphasis on the properties and peculiarities of S-null recurrent Markov

chains.

« Chapter 3: Is based on [17]. It focuses on the estimation of the tail index of
a generalized discrete Pareto distribution. The proposed estimator is shown
to be strongly consistent and asymptotically normal in the i.i.d. case. In the

case of atomic S-null recurrent chains, it is shown to be strongly consistent.

« Chapter 4: Is based on [47]. Deals with the regenerative bootstrap on S-null
recurrent Markov chains. The Regeneration-based bootstrap and the Regen-
erative Block bootstrap are shown to be valid for estimating the integral with

respect to the invariant measure in the atomic case.

11
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« Chapter 5: Is based on [41]. It tackles the problem of estimating a monotone
function in a nonlinear cointegrated model, where X, is a Harris recurrent
Markov chain. The estimator is shown to be consistent and its rate of con-

vergence is obtained.

Upon completing Chapter 2, the remaining chapters can be read in any order,
as they function independently, with no notation dependencies between them. We

apologize in advance for the slight redundancies across chapters.

12



Chapter

Markov chains

In this chapter, we introduce the basic concepts that will be used throughout
the thesis. We will make special emphasis on the properties of Markov chains,
especially in null-recurrent ones.

Most of the definitions and results of this chapter are classic and can be found
in [5, 38, 87, 90, 108]. However, in subsection 2.2.10 we have added a few new

contributions in theorems 2.2.36, 2.2.38 and 2.2.40.

2.1 Kernels

Through this chapter (E, ) denotes a measurable space where the o-algebra
& is countably generated'?. The points of E are called states and (E, ) is called
the state space. With a slight abuse of notation, by £ we will also denote the set

of measurable functions from (E, &) to (ﬁ, B (E)), and we will use &£, for the

'A o-algebra & is countably generated if there exists a countable collection of subsets
{A4,}7% < Esuchthat £ = o ({An}:fl).

n=1 =
*This assumption is used in almost all literature about Markov chain theory because it removes
the possibility of extremely pathological examples known as “anormal” chains [37]. For a detailed
overview of the matter, see [37, 61] and pp. 91 in [107]. An example of an “anormal” chain is
provided in [22]. Furthermore, this assumption does not result in a significant loss of generality,
given that most of the time, £ = B (Rd), which is countably generated.

13
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collection of measurable functions from (E, ) to (EJF, B (ﬁJr)).
Definition 2.1.1 (Kernel on (E, £)). Function K : (E, &) — [0, +0] such that
i) For every x, the mapping A — K (x, A) is a measure on &.

ii) For every A € &, the mapping x — K(z, A) is a measurable function from

(B.€) 1o (R,,B (R,)).

A kernel is said to be o-finite if there exists a £ ® £-measurable function f that
is almost everywhere positive and such that { f (z,y) K (z,dy) < 40 Vz € E;

E

it is bounded if sup K (z, E) < +0o0; substochastic if K (z,F) < 1forallz in E
el

and stochastic (or markovian) if K (x, F) = 1 forall z in F.

Example 2.1.1 (Integral kernel). If \ is a o-finite measure on (FE,E) and k is a

non-negative £ ® £ measurable function, then, the function
K (o, A) = [ky) i
A
is a non-negative kernel. This kernel is often called an integral kernel with basis k

and density \.

The following example allows us to interpret any o-finite measure A on (E, £)

as a kernel over the same state space.

Example 2.1.2 (Measures seen as kernels). Taking k(x,y) = 1 in Example 2.1.1
we get that

K (z,A)=XA) VeeE Acf

is a kernel on (E | E). This kernel is stochastic if and only if A is a probability measure.
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Example 2.1.3 (Tensor product). If f is a non-negative £-measurable function, and
A is a o-finite measure on (E, ), we can define their tensor product f @ X as f ®
Az, A) = f(x) A(A). Taking k (z,y) = f (x) in 2.1.1 shows that f ® X is a kernel
on (E,E).

Another interesting application of Example 2.1.1 is when F is a countable set,

and £ = P (F) is the o-algebra of all the subsets of E.

Example 2.1.4 (Kernels on countable sets). If we take \ as the counting measure

on E we obtain that every kernel K defined on (E, P (E)) satisfies,

K (v,4) = Y K (2. {y})-

yeA

This shows that every kernel K on (E,P (E)) can be identified with the matrix
k(z,y) = K (z,{y}) Yo,y € E.

2.1.1 Operations with Kernels

Given a kernel K on (F, £) and a function f € £, we can define the function

Kf:E — R, as follows:

Kf@) = [ £ ) K (z.dy) @)
E
Notice that if K is stochastic, then | K f|| , < | f].
The following result shows that a K f is an additive operator on the space of

non-negative integrable functions over £.

Theorem 2.1.1. ° Let K be a kernel on (E,£) and define K : £, — &, asK (f) =
K f where K f is as in (2.1). Then

3Proposition 1.2.5 in [38].
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i) The function KC is an additive and positive homogeneous operator over &, .

ii) If { fn},eny < E+ is an increasing sequence of functions, then lim 1 K (f,) =
K <lim 1 fn>.
The following result establishes a converse

Theorem 2.1.2. * Let N : £, — &, be an additive and positively homogeneous
operator such that lim 1 N (f,) = N (hm 7 fn> for every increasing sequence

{fu}en € E+. Then,
i) The function N (x,A) = N (I4) (z),x € E,A€ &, isakernelon (E,£).
i) Nf = N (f) forall f € &,.

A kernel can also define an operator over the set of non-negative measures

M(X), as it is shown in the following result.

Theorem 2.1.3. ° For every non-negative measure \ € ./ (£), and every kernel K

on (E, &), the function \K : £ — R, defined as

AK (A) = JK(x,A) d\ (z),

is a measure on (E. E).

If K and K, are kernels on (E, £) we define their sum and the multiplications
by positive scalars in the typical way. We define their product (or convolution)

K1 K5 as follows

KlKQ ({E,A) :JKQ (y,A)Kl (x,dy) V:L’EE,AES (22)

E

“Proposition 1.2.6 in [38]
>Proposition 1.2.7 in [38].
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The following result shows that K K5 is indeed a kernel on (E, £)

Theorem 2.1.4. °[Product of kernels] If K1 and K5 are kernels on (E, ), then, the
function K, K, defined in (2.2) is a kernel on (E,E). Furthermore, this product is

associative and for every function f € £, we have K1 K5 (f) = K; (Ksyf) .

Example 2.1.5 (Identity kernel). The kernel I, defined as

0, =z¢A
I(:L’,A) =14 ([I)) =
1, zeA

satisfies that, for every kernel K on (E, &), f € &, and A € M (£)
IK (2, A) = JK(y,A)déx () = K (2, 4) Voee B AcE,
B
KT (2, A) JI(y,A)K(x,dy) _K(z,A) VeeE,Aek,

If(x) = | f(y)doa(y) = f(z) Veek,

A (A)

o — W —

La(2)d)\ (z) = A(A) VAe€.

Therefore, IK = KI = K, If = f and A\I = ). This explains why [ is called the

identity kernel.

The iterates K™ of a kernel K are defined by setting K = I, and iteratively,
K™ = K K™ . Henceforth, we’ll assume that all iterates of K are o-finite. Notice
that if K is substochastic, all the iterates are substochastic.

An immediate consequence of the associativity of the product of kernels is the

celebrated Chapman-Kolmogorov equation.

®Proposition 1.2.8 in [38]
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Theorem 2.1.5 (Chapman-Kolmogorov equation). Let K be a kernelon (E, ). For

any m with) < m < n, we have
K" (2, A) = f K" (z,dy) K™ (y, A) (2.3)
E

Definition 2.1.2 (Potential kernel). If K is a kernel on (E, £), the potential kernel
+00

of K is defined as G = Y, K". The n-partial sum of the potential is denoted by
n=0

G =3 K.

It can happen that G is not o-finite, since is possible that G only admits the
values 0 and +0. For example, this happens if we take K = I.

The following result resumes the main properties of the potential kernel.
Theorem 2.1.6. Let K be a kernel, then, for anyn > 1
n—1 ' n—1 .
G=)> K +K'G=) K +GK"
j=0 J=0

and forany f € £,
lim | K"Gf(z) =0, Vexe{ye F:Gf(y) < w}.

Proof. This is Proposition 2.1 in [90]. [

Closely related to the potential kernel, in the markovian scenario, are the P.-

resolvent kernels.

Definition 2.1.3. [P.-resolvent of K | Given a markovian kernel P, for every ¢ €

(0,1), the P.-resolvent kernel is defined as

o0
P.(z,A) = (1—¢) ) e'P'(z,A), zeE Ack.

1=0
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The existence of a kernel K on (E, £) allows us to establish a communication

relation in £ x & as follows:

r—>A<edn=1: K"(z,A) > 0. (2.4)

When © — A, we say that A is accessible from the point z. If B is a set and
x — Afor every x € B, then we say that A is accessible from B. When B = F, we
say that is accessible. In the following two sections, we study the structure induced

by this relation.

2.1.2 Closed sets for a Kernel

A closed set will be defined as a set whose complement is not accessible from

any point in A.

Definition 2.1.4 (Closed set). Non-empty set A € & such that K (z, A°) = 0 for all
re A

We say that a set A is absorbing if K (x,A) = K (z,F) = 1forallz € E.
Lemma 2.1.1. If K is a kernel defined in (E, £), then

i) Aset A is closed for K if and only if x 4 A° forallx € E.

ii) An absorbing set is always closed.

Definition 2.1.5 (Indecomposable set). Set A € &£ such that are not two disjoint

closed sets By, By < A.

When B € £ is closed, we denote by K | g the restriction of K to (B n E, € n B).

Not surprisingly, K |p is itself a kernel which is called the restriction of K to the

19
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closed set B. The following Lemma contains the main results concerning the re-

striction of kernels.
Lemma 2.1.2. Let K be a kernel in (E, ) and B € £ a closed set for K, then
i) K|pisakernelin(Bn E,En B).
ii) (K|g)" = (K™|p) foralln.
iii) If B is absorbing, the kernel K|p is markovian.

iv) K

pe is a kernel in (B° n E, € n B°) and (K

ge)" = (K"|ge) foralln.

2.1.3 Irreducibility

Irreducibility is the idea that all big enough parts of the space can be reached,
no matter the starting point. In this section, we formalize this concept.

Let ¢ be a o-finite measure on (£, £). We say that a set A € & is p-positive if
¢ (A) > 0. Lastly, for any set B, define BY = Bu{z € E: x — B} = {Glz > 0}.

Definition 2.1.6 (p-communicating set for K). Set B such that every @-positive

subset A < B is accessible from B.

A kernel is @-irreducible if the whole space is p-communicating. In this case,
the measure ¢ is called an irreducible measure for K. Notice that, if K is ¢-irreducible,

then AT = F for all A € £ such that ¢ (A) > 0.
Lemma 2.1.3. 7 Let K be a kernel and B a measurable set
i) The set B is either closed of empty.

ii) Every p-communicating set is indecomposable.

"Proposition 2.3 and pp. 12-13 in [90].
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iii) If B is o-communicating then K|+ is @l g-irreducible.

iv) Any measure 1) which is absolutely continuous with respect to an irreducibility

measure is itself an irreducibility measure.

The p-irreducibility assumption eliminates several forms of reducible behavior.
The definition ensures that the chain will reach "big" sets (as defined by ) with
positive probability from any starting point, preventing the chain from dividing
into separate parts. However, to achieve certain objectives, it’s necessary to know
that "negligible" sets (B, where p(B) = 0) are avoided with certainty from most

starting points.

Definition 2.1.7 (Maximal irreducibility measure for K). Irreducibility measure ¢

such that all other irreducibility measures of K are absolutely continuous with respect

to ).

Notice that, by definition, if a maximal irreducibility measure exists for a kernel
K, it is unique up to the equivalence of measures. The following result shows that,
for every (-irreducible kernel, there exists a maximal irreducible measure 1) and

that accessible sets are precisely the 1-positive sets.
Theorem 2.1.7. ® Suppose that K is ¢ irreducible
i) There exists a maximal irreducibility measure for K.
ii) If is a maximal irreducibility measure and 1) (B) = 0, then ) (B*) = 0.

When K is irreducible with maximal irreducibility measure 1), we will de-

note by £ the subset of all non-negative measurable functions in &£, that are

Y-positives, i.e. ET = {f € £, 1 ¥ (f) > 0} where ¢ (f) = {, f (x) d¥ ().

8Proposition 2.4 in [90].
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2.1.4 Small functions and small sets

Let K be a kernel with maximal irreducibility measure ). We say that K satis-
fies the minorization condition M (my, (3, s, v) if there exists mg € N, f > 0,s € £T
and a positive non-trivial measure v such that K™ (z, A) > (s (z) v (A) for all

x € F and A € &, or, using the tensor product defined in Example 2.1.3,
K™ > (Bs® . (2.5)

Example 2.1.6. ° Let f : R — R be an integrable function with respect to the
Lebesgue measure in R, such that f is bounded on every compact set. Let g : R — R,
be a density function such that 0 < inf,cc g (x) on every compact set C. Consider

the markovian kernel P defined as,

P(x,A) =Jg(y—f(a:))dy reR,AeB(R)

Fix a compact set C, define the function p (y) = inf,ec g(y — f (), then

P(z,A) >]Ic(x)fp(y)dy, VeeC,Ae B(R).

Hence, the kernel P satisfies the minorization condition M (1, 1,1¢, j1) where 1 is the

measure defined by 11 (A) = § p (y) dy.
A

A function s € £7 is called a small (for the kernel K), if there exist my, 3 and
v such that the kernel K satisfies M (mq, 3, s, ). We will denote by .t be the

class of all small functions for K. A closely related concept is the following:

“Example 3.1 in [67]
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Definition 2.1.8 (Small set). Positive set C' € £ such that its indicator function, I,

is small.

A small function remains small if multiplied by a constant, hence, there is no

loss of generality in assuming 3 = 1. Moreover, if K is a markovian kernel that

satisfies M (mq, f3, s, V), then v is a finite measure and ﬁV%E) > s(x) = 0, there-

fore, K satisfies the condition M <mo, L, pr (E)s, ﬁ) This means that, in the
markovian case, the minorization condition (2.5) is equivalent to the existence of
mo € N such that

K™ >s®u, (2.6)

where 0 < s(x) < 1 and v is a probability measure. In these cases, we will say
that the markovian kernel P satisfies the minorization condition M (my, s, ) and
if mg = 1, we will call the pair (s, ) an atom for the kernel K. This condition will

be crucial in section 2.2.8.

Remark 2.1.1. In Example 2.1.6, we have that (s,v) is an atom for the kernel P,

where s(z) = Klc andv = £ with K = § p(y) dy.
E

Notice that if a markovian kernel P satisfies the minorization condition M (my, s, v),

then, foralle € (0,1),z € F and A € £ we have
P.(z,A) = (1—¢g)e™P™ (z,A) = (1 —¢g)e™s(x)v (A),

from where the next result follows immediately.

Theorem 2.1.8. Suppose a markovian kernel P satisfies the minorization condition
M (mg, s,v), then for any e € (0,1), the pair ((1 — &) e™s,v) is an atom for the

P._-resolvent.

23
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From its definition, it is not evident that small functions exist. However, the
following theorem shows not only that they exist for any irreducible kernel, but

also that there are plenty of them.

Theorem 2.1.9. '°[Existence of small functions and sets] If K is an irreducible kernel

with maximal irreducibility measure 1), then

i) ST #

ii) Forevery A € £ such that ) (A) > 0, there exists C = A, such that C' is small.

Corollary 2.1.1. If P is an irreducible markovian kernel, then, every P.-resolvent

satisfies the minorization condition M (1, s.,v), where v does not depend on €.

2.1.5 Invariant measures

By Theorem 2.1.3, a kernel K defines an operator in .# (&) , . The fixed points

for this operator, if they exist, are called invariant measures.

Definition 2.1.9 (Invariant measure for kernel K). o-finite measure w € .4 (&),

such that tK = .

The following result shows that the sets of invariant measures for a markovian

kernel coincide with the set of invariant measures of any of its e-resolvents.

Theorem 2.1.10. '' Let P be a markovian kernel. For every ¢ € (0, 1) a measure 7

is invariant for P if and only if it is invariant for the resolvent P..

Ppart i is Theorem 2.1 in [90], part ii is Proposition 2.6 of the same book.
UTheorem 10.4.3 in [87]
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2.2 Markov chains

This section is devoted to giving a general overview of the theory of Markov
chains that will be used in this thesis. It is organized as follows: we will start with
the concept of stochastic process, which will allow us to define a homogeneous
Markov chain in subsection 2.2.2 and we will see some examples in subsection
2.2.3. In subsections 2.2.4 through 2.2.6, we will study the concepts of stopping
times, recurrence, transience and aperiodicity of Markov chains and in 2.2.7 we
will see the main properties of atomic chains. Subsection 2.2.8 is dedicated to the
construction of the split chain, while in subsection 2.2.9 we will study the Har-
ris recurrent Markov chains. Finally, in subsection 2.2.10 we introduce the S-null

recurrent Markov chains.

2.2.1 Stochastic process

Let (€2, F,P) be a probability space, (F,E) a measurable space and T a set.
A collection of E-valued random variables indexed by a totally ordered set 7’ is
called a E-valued stochastic process.

If X is an F-valued random variable, we’ll denote by L (X) its probability
distribution (or its law), defined as the probability measure induced by X in (F, &)
ie. L(X)(A)=P(X e A)forall Aeé.

A collection of o-algebras F; of F such that F; < F; for s < ¢ is called a
filtration. A filtered probability space, denoted by (2, F, { F;},.r , P), is a probability

space equipped with a filtration.

Definition 2.2.1 (Stochastic process adapted to the filtration F). Stochastic process
{Xi},or such that X, is F;-measurable for each t € T. The notation {X,, Fi}, 1

indicates that the stochastic process {X;},_ is adapted to the filtration {F;}, 1.

25



2.2. MARKOV CHAINS

26

The o-field F; can be interpreted as the information available at time ¢. When
a process is adapted, it means that the probability of events related to X; can be
computed using solely the information available at time ¢.

Every stochastic process {X;}, ;. is trivially adapted to the filtration {F;* } -

where ;X = o (X, s < t). This filtration is named the internal history.

Remark 2.2.1. When T is countable, an adapted stochastic process { Xy, Fi},or

can be viewed as an element of Vy = | [, . E, measurable with respect to G =

o (UteT f;‘/)

2.2.2 Homogeneous Markov chains

Loosely speaking, a Markov Chain is a stochastic process that it is forgetful of

all but its most immediate past. The formal definition is as follows:

Definition 2.2.2 (Markov Chain). Let (2, F, {F,} IP) be a filtered probability

neN»

space. An adapted Stochastic process { X,,, F,,}, . is a Markov Chain if for alln € N
andallAe &

P(Xpi1€ AlF,) =P (X1 € AX,) P—as. 2.7)

The distribution L (Xg) of X is called the initial distribution of the chain.

A Markov Chain is said to be homogeneous if the transition probabilities in (2.7)

can be expressed with a Markovian kernel.

Definition 2.2.3 (Homogeneous Markov Chain). Let (2, F, {F,}, .y, P) be a fil-
tered probability space. A Markov Chain {X,,, F,,}, .y is called homogeneous with

kernel P and initial measure |1 if there exists a Markovian kernel P and a probability
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measure i, both defined on (E, E) such that for alln € N and all A € £

P(Xn41 € AlF,) = P(X,,A) P—a.s. (2.8)

£(Xo) = . (2.9)

Remark 2.2.2. If{X,,, F,,}, .y is a homogeneous Markov Chain, then, { X,,, ff}neN
is a homogeneous Markov Chain as well. From now on, we will always consider ho-
mogeneous Markov Chains adapted to its internal history, and we will write X instead

of { X, FX} _ to ease the notation.

If the kernel of a homogeneous Markov chain is p-irreducible we will say that
the chain X is ¢-irreducible and that ¢ is an irreducibility measure for X. When
we do not need to specify the irreducibility measure, we will just say that X is
irreducible. Similarly, we will say that a set A € £ is accessible from B if A is ac-
cessible from B given the communication relation induced by the kernel (see (2.4)),
and we will say that A is accessible if is accessible from E. When X is irreducible
with maximal irreducibility measure 1, accessible sets are precisely the sets A € £
such that ¢ (A) > 0.

From the definition of a homogeneous Markov Chain, two questions arise: is
a homogeneous Markov Chain uniquely determined by its initial distribution and
its Kernel? and, given an initial probability measure and a Kernel, does there ex-
ist a homogeneous Markov Chain such that (2.8) and (2.9) holds? The answer to
both questions is Yes and it is resumed in the following theorem, which combines

Theorem 3.4.1 in [87] and Theorem 1.3.4 in [38].

Theorem 2.2.1. Given a Markovian kernel P and a probability measure i, both

defined on (E,E), a E-valued stochastic process {X,} is a homogeneous Markov
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Chain with kernel P and initial measure j1 if and only if,

P(Xoer,XleAl,...,XnEAn)

- d Plzo,dey)... | P(rn 1 de,). (@
JAOM( :L'O)JA1 (xo, dzy) Jn (Tp_1,dzy) (2.10)

foralln =0, Ay, ..., A, € E. Moreover, for every 1. and P there exists a probability

space containing a homogeneous Markov Chain with kernel P and initial measure .

If we take A; = E,i=1,...,n — 1in (2.10), we obtain,

P (X, ¢ A) f (dxo) f xo,da:1)...jEP(xn_z,dxn_l)LP(xn_l,dxn)
J (dxo) P" (29, A)
P(A), (2.11)

for any A € &, therefore, £ (X,,) = pP". Similarly, taking p = J, in (2.10) for a

fixed x € F, we get that

P(X,e Al Xo=2)=P"(z,A) Vn=1Ac& e k. (2.12)

Conditioning on X = x, we will write P,(X,, € A) instead of P (X, € A| X, = z),
and for a measurable function f, we will write E, f (X,) instead of E [ f (X,) | X = z].
The equality (2.10), known as the Markov property'?, has the following equiv-

alent in terms of expectations.

Theorem 2.2.2. "*[Markov property for expectations] If X is a homogeneous Markov

Chain with initial measure ji and f : ¥ — R is a bounded and measurable function,

12See pp 62 in [87].
BThis is Proposition 3.4.3 in [87].
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then
E[f (Xont1, Xns2, - ) [ Xo, Xa, oo, Xy Xy = 2] = E [f (X3, Xo,..0)] (2.13)

Applying Chapman Kolmogorov equation to (2.12) we get, for any m with 0 <

m<n,

P, (X, A) = [ P"(aidy) P (3.

E

_ f B, (X, € dy) P, (X € A).
E

This can be understood as follows: as X transitions from x to A in n steps, at
any intermediate step m it must take a value y € E. As a Markov chain, it forgets
its past at that time m and continues the remaining n — m steps based on the
appropriate law starting at .

The m-step kernel is a transition kernel by itself, therefore it describes the
Markov Chain X" = {X,,,,} with transition laws P, (X,,,, € A) = P" (z, A).

This chain X" has a special name.

Definition 2.2.4 (m-skeleton of the chain X). Given a Markov Chain X with ini-
tial distribution (1 and kernel P, its m-skeleton is the Markov Chain X™ with initial

distribution |1 and kernel P™.

Recall from Definition 2.1.3 that, for every ¢ € (0, 1), the P.-resolvent of P is
the kernel

P.(1,A) = (1—¢) ) e'P'(z,4), zeE Ack. (2.14)

i=0
A Markov chain with the same initial distribution as X and with kernel P. is

called the P.-chain of X. The following example shows how to extract a subchain
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of X with kernel P..

Example 2.2.1. [P.-chain] Let X be a Markov chain with kernel P and ¢ € (0,1)
arbitrary but fixed. Define an i.i.d. sequence {ay}, -, of Bernoulli random variables,

independent of X, such thatP (o = 1) = 1—e. Lastly, consider the renewal sequence

{'7(19)};@0 deﬁned as:
v(0)=0, ~y(k)=inf{m>~y(k—1): ap, =1} fork > 1. (2.15)

The sequence {7y (k) —~ (k — 1)}, is i.id. with geometric distribution given by
P(y(1) = k) = (1 — €) &*. By equation (5.9) in [35] (and pp.19 in [28]) the random

sequence {Xv(n) }@0 is a Markov chain with kernel P..

As stated in Remark 2.2.1, an adapted Markov Chain can be viewed as an ele-
ment in the space Wy = [ [, £, measurable with respectto G = o (UnZO ]-"n).

The shift operator 6 : ¥ — U is defined as
0 ({xo, 1, .., xp,...}) ={x1, 20, ..., 2p,...}
and its iterations are defined inductively by
0t =0, 1 =000% k=>1.
When H is a random variable in (U, G, P), 6* acts over H as
(0"H) (w) = H 0 0" (w),

therefore, X,, 0 0% (w) = X,,;. Then, if H = h (Xy, X1, ...), where h is a measur-

able function on Wz, we have 0*H = h (X}, X}, 1, ...). Because E, H is a measur-
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able function on F, it follows that Ex H is a random variable on (VU g, G, P) for
any initial distribution. Then, the Markov property (2.13) can be written succinctly

as

E,|[0"H|F)]| =Ex, [H] P, a.s. (2.16)

for any bounded and measurable function / and fixed n.

2.2.3 Examples

In this section, we give some examples of time-homogeneous Markov Chains.

Example 2.2.2 (Countable space Markov Chain). '* Suppose that the space E is
discrete and £ is the o-algebra of all the subsets of E. Let X be a homogeneous Markov
Chain with initial distribution p and kernel P.

The initial probability y satisfies j (A) = >, .4 it ({z}) and the kernel P can be

identified with the transition matrix M

de
M (2,9) TP (Xp1 = y|X, = 2) = P(2,{y}) @,y E,n>0,

and satisfying M™ (x,y) = P" (z,{y}), where M™ is the usual power of matrices.

From (2.11) and (2.12) we obtain, forallz,y € E,;n >0

]P)(Xﬂ = y‘XO = 'T) = M" (ﬂf,y),

P(X, =y) =), n(x) M" (z,y).

zelR

For our next example, consider a scenario where a person plays a series of
rounds of a game in a gambling house. On each round, a game is played and an

amount is won or lost, with the successive totals of the amounts representing the

“4Example 1.2 in [90]
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fluctuations in the gambler’s fortune. It is reasonable to assume, that if the same
game is played each time, then the winnings Z,, at each time n are i.i.d. In this

context, the total winnings or losings at time n can be represented by X,, where
Xn+1 = Xn + Zn+1 n= 1

This stochastic process is called a random walk and is, perhaps, the most well-
known instance of a Markov chain. In the following example, we give its formal

definition and the form of its kernel.

Example 2.2.3. [Random walk in R]" Let {Z,} _. be a sequence of i.i.d. random

neN

variables with common distribution Z and X is a random variable, independent of

{Zn} pen such that L (Xo) = p. The process X = { X}, defined by
Xn+1 = Xn + Zn+1 n = 17

is a Markov chain in (R, B (R)) with initial measure A\ = L (X,) and kernel P given

by,
P(x,A)=P(Z+xe€A) VreR AeB(R).

Example 2.2.4 (Simple symmetric random walk). Random walks can also be de-
fined over Z. A well-known example in this scenario is the simple symmetric random

walk. Defined as in Example 2.2.3, but with

1

This random walk and its variation has been widely studied. See [107] for an excellent

5Example 2.1.1, pp. 28 in [38]
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compendium of the theory.

In a queuing system, let s, be the time of service of the n-th customer and
take ¢,, as the arrival epoch of the n-th customer. The waiting time, X,, of the n-th

customer before service is then,

X1:0

Xpy1 = max (Xn + Sp — (tn+1 - tn) ,0) n> 1.

If we assume that sy, ... are i.i.d. and 1,5 — t1, ... are also i.i.d. and indepen-
dent of {s,},,, then, the sequence of random variables {s,, 1 — (t, — tn—1)},5;

is i.i.d. and the process X,, is a Markov chain as the following example shows.

Example 2.2.5 (Random walk on a half line). ' Let X, and {Z,}, y be as in Ex-

ample 2.2.3, define X, iteratively as follows

Xpy1 = max (X, + Z,41,0) n>1.

In section 3.5.1 of [87], it is shown that this process is a Markov chain in (R, B (R)).

Its kernel P is defined as follows: For any A € B (R,) such that A < (0, +0)

P(x,A)=P(Z+xze€A) VYz=0,

whilst,

P(z,{0) =P(Z < —2).

The chain X follows the path of a random walk but is restricted to stay at zero when-

18Example RWHL1 in [87]. Also, example 1.2 d) in [90].
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ever the underlying random walk drops below zero. It leaves 0 only when the next

positive value in the sequence {Z,,} is encountered.

For our last example, suppose we are interested in modeling the exchange rate
X,, between two currencies. This can be represented as a function of its past several
values X,,_1, ..., X,,_,, modified by the volatility of the market which is incorpo-
rated as a disturbance term Z,, (see pp.4 in [87]). The auto-regressive model shown

below describes the essential behavior of such a system.

Example 2.2.6 (Auto-regressive process: AR(p)). ' Let o« = v, ..., be real
numbers, {Z,,}, _ a sequence of i.i.d. real-valued random variables with finite vari-
ance and X, X_1, ..., X_p41 random variables independent of { Z,,}, .. Forn > 0,

define X,, as

Xn = Oéan_l + OéQXn_Q + -+ Oéan_p + Zn

Assume that the roots of the polynomial 1 — .,z — o2

— -+« —a,a? are all outside
the unit circle. Then, the vector process X = {(Xn, Xo1,... ,Xn,pﬂ)t}mo, known
as a causal AR(p) process, is a Markov chain in (RP, B (RP)). This process can be

written in matrix form as

X, =aX, 1+ BZna

where
ar Qg ... 1
1 0 0 0
a = , B=
0 1 0 0

7Example 2.1.2 in [38]
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The kernel of this process is

P(x,A) =P(ax+ BZye A) xR’ AecB(R").

2.2.4 Hitting, stopping times and the strong Markov prop-

erty
Definition 2.2.5 (Occupation time). Number of visits by X to the set A.
o0
T(A) = > I{X, € A}. (2.17)
n=0
We will write T}, (A) for number of visits to A up to time n. This sequence is

called the occupation time sequence.

Definition 2.2.6 (Hitting times and return times). For A € &, the time of first visit

o4 and the time of first return T4 by the Markov Chain X to the set A are defined by

oa=1inf{n >0:X, e A}. (2.18)

Ta=1inf{n>1:X, € A}. (2.19)

where we use the convention that inf (J = +c0. The subsequent return times 74 (k),

k > 1 are defined inductively as follows

TA(l)ZTA

Ta (k) =min{n > 714 (k—1): X, € A} (2.20)

For any set A € £, T (A), 74 and 0 4 are measurable functions from ) to Z, .
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Let U(x, A) = E,T (A) and denote by Gp the potential kernel of P, by Theo-

rem 2.1.6, we obtain,
+00
U(z, A) = E,T (A) = Y. P"(z,A) = GpP (z,A).
n=1

An analysis of the number of visits to a given set often requires consideration
of the behavior after the first visit to the set, rather than the behavior after fixed
times. Markov chain theory is noteworthy for its "forgetfulness" properties holding

for stopping times, which are random interruptions, as well as for fixed times n.

Definition 2.2.7 (Stopping time). A function ¢ : Q0 — Z, is a stopping time for
the Markov Chain X, if for any initial distribution ju, the event {C = n} € F-X for all

n = 0.

Notice that

n—1
foa=n} =) {X, ¢ A J{Xae 4},
i=0
and {T =n} = N/ {X, ¢ A} |J{X, € A}, therefore, for any A € &, both 4
and 74 are stopping times for X.

The following result expresses the distribution of 74 and 04 conditioned to the

starting point in terms of the kernel P.

Theorem 2.2.3. Forallzr € E, A€ €,

P, (4 = k) = (Pl4)" ' P (z, A), (2.21)

Moreover, if v € A°



CHAPTER 2. MARKOV CHAINS

From (2.21) we obtain that the probability that the chain ever returns to a A

starting from the state x is
o]
P, (X ever visits A) Z Pl ) ' P (2, A).

The Markov Property holds for any bounded, measurable function and any
fixed time n, the strong Markov Property allows us to extend it to random stopping
times. Before stating this fundamental property, we need some definitions.

Let ¢ be a stopping time. Then XC_1 (A) = Ufzo{{Xgl (A)} n{¢ = n}} for
any A € &, hence, X, is a random variable.

Define FX = {A € F : {¢ = n} n A€ FX Vn > 0}, which represents the his-
tory of the chain until the stopping time . Finally, if H = h (X,, Xy, ...) isaran-
dom variable, define the shift 6¢ as 6°H = h (X, X¢41,...) on the set {¢ < o0}.

Then,

Theorem 2.2.4 (Strong Markov property). '® Let X be a Markov chain. For any
initial distribution p, any real-valued bounded measurable function h on Vg and

any stopping time (, it holds that
E,[0°H|FX]| = Ex [H] P, a.s. (2.22)
on the set { < o0}.

The strong Markov property tells us that the process { X}, restricted to
{¢ < w0}, is a Markov chain with the same kernel as the original chain and in-

dependent of the chain’s history up to 7.

Pproposition 3.4.6 in [87].
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2.2.5 Recurrence and transience

In this section, we will delve into the fundamental concepts of recurrence and
transience in the context of Markov chains, which are very important in order to

understand the long-term behavior of a Markov chain.

Definition 2.2.8 (Recurrence). A set A € & is said to be recurrent if U (x, A) =
o for all x € A. A Markov chain is recurrent if its kernel is irreducible and every

accessible set is recurrent.
Closely related to this is the concept of transience.

Definition 2.2.9 (Uniformly transient set). Set A € & such thatsup,., U (z, A) <

a0

Definition 2.2.10 (Transient set). Set A € £ such that A = | J_, A, where A, is

uniformly transient for all n.

Definition 2.2.11 (Transient Markov chain). Irreducible Markov chain X such that

FE is transient.

The next result shows that irreducible chains are either recurrent or transient

and this property is inherited by its P. chains.

Theorem 2.2.5. If X is an irreducible Markov chain, then X is recurrent or tran-
sient. Moreover, X is recurrent (transient) if and only if each P.-chain is recurrent

(transient).

In Theorem 2.2.26 we will see that if a chain is irreducible and recurrent it
admits an invariant measure. Then, we will subdivide the class of recurrent irre-
ducible Markov chains into two classes: the ones that admit an invariant probabil-

ity and the ones that do not.
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Definition 2.2.12 (Positive Markov chain). Recurrent and irreducible Markov chain

that admits and invariant probability measure 7.

Definition 2.2.13 (Null recurrent Markov chains). Recurrent and irreducible Markov

chain that does not admit an invariant probability measure.

2.2.6 Aperiodicity

A key concept in Markov chains is aperiodicity, which refers to the property of
a state having a finite number of steps before returning to the same state. In other
words, aperiodicity describes the pattern of repeating states in a Markov chain.
This section is formalize this concept.

Let X be a v-irreducible Markov chain, by Theorem 2.1.9, there exists a small

such that v (C') > 0

set C' € £, i.e. there exists mg € N and a measure v € .Z (&),

and

P™ (z,A)>v(A) VeeC, Acf.

Then, if the chain starts in C, there is a non-zero probability that the chain will
return to C' at time mg. Define E- as the set of natural numbers m such that P

satisfies the minorization condition M (m, I, v,,v) for some 7,, € R, i.e.

Ec ={meN: 3y, € R, such that P" (z,A) = v, v (A) VreC Aec&}.

The set E¢ is closed under addition and the greatest common divisor of the ele-
ments of Fx belongs to E¢. The following Theorem shows that this greatest com-
mon divisor is a property of the whole chain X, and is independent of the particular

small set chosen.

Theorem 2.2.6. Suppose X is an irreducible Markov chain with maximal irreducibil-
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ity measure ). Let C € £ be a small set and denote by d the greatest common divisor
of the set Ec.. Then, there exists disjoint sets Dy, ..., Dy € £ (called a d-cycle) such

that
i) forxe D;, P(x,D;y1) =1, i=0,...,d—1 ( mod d).
ii) the set N — (Uf;g Di)c is -null

Moreover, the d-cycle is maximal in the sense that for any other collection {D(), cee D&/—1}
satisfying i) and it), we have that d' divides d, and if d = d’, then, by reordering the

indexes if necessary, D; = D, 1) — a.e.

From this, we can define the period of a i/-irreducible Markov chain as the size

of the largest d-cycle.

Definition 2.2.14 (Aperiodic Markov chain). Irreducible Markov chain whose pe-

riod is 1.

Most of the results that we obtain in this thesis assume that the chain is aperi-

odic. In practice this is not greatly restrictive, since

Theorem 2.2.7. Let X be a -irreducible Markov chain with period d and d-cycle
{D7,...,Dgy}. Then, each of the sets D; is an absorbing 1 -irreducible set for the chain

X corresponding to the transition kernel PY. X? on each D; is aperiodic.

Notice that if for a small set C' there exist > 0 and a measure v € .Z (&)
such that the minorization condition M (1, Sl¢, v) is satisfied, then the chain is

automatically aperiodic. These types of chains are called strongly aperiodic.

Theorem 2.2.8. "’ If X is an irreducible Markov chain, then every P.-chain is strongly

aperiodic forall) < e < 1.

YThis is part ii) of Proposition 5.4.5 in [87]
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The final result of this section, which is a direct consequence of Theorem 2.1.9,
shows that if a chain is aperiodic we can find a m-skeleton that is strongly aperi-

odic.

Theorem 2.2.9. Suppose that X is 1 -irreducible, aperiodic chain, then, every skele-
ton of X is 1-irreducible and aperiodic and there exists m such that the m-skeleton is

strongly aperiodic.

2.2.7 Atoms

Definition 2.2.15 (Atom for X). Set a € &£ such that
P(x,A)=v(A), zea,

for some measure v on E. If X is p-irreducible, and ¢ (o) > 0 then « is called an

accessible atom. A Markov chain with an accessible atom is named an atomic chain.

If o is an atom for X, with a slight abuse of notation we will write P («, ®) to
represent the measure v.
A simple consequence of the existence of atoms is the irreducibility of the chain

under mild conditions. In effect, by (2.3), forany z € F, A € £ and n > 1, we have

P2, A) > J

a

P (2, dy) P (y, A) = j P (2,dy) P (e, A)

a

> P"(r,a) P (e, A),
then, U (z,A) > v (A) U (2, ). Hence, if U (z, ) > O for all x € X, any set A
such that v (A) > 0 will be accessible, which shows that X is v-irreducible.

Theorem 2.2.10. Suppose there is an atom o in X such that U (z, o) > 0 for all
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x € E. Then X is v-irreducible, withv = P (a, ®) and « is an accessible atom.

Remark 2.2.3. In section 2.1.8 we defined an atom for a kernel P as a pair (s, v),where
s € EY andv is a probability measure, that satisfies P > s®uv. Notice that if X has an
accessible atom «, then, P satisfies the minorization condition M (1,1, P (a, e)),

therefore, the pair (1o, P (ct,®)) is an atom for the kernel P and o is a small set.

Moreover,

(P-Io®P(a,e))(x,A) =g (x) P(x,A) VreFE Acf.

Theorem 2.2.11. *’[Atomic maximum principle] If the Markov chain X has an ac-

cessible atom o, then,

U(r,a) =P, (0o <0)U (a,x) VzeFE.

An important property of an accessible atom is that it can be used to charac-
terize accessible sets. Essentially, a measurable set is accessible if and only if it can

be accessed from the atom, in a finite time, with non-zero probability.

Theorem 2.2.12. ?'Let X be an atomic Markov chain with accessible atom o and

A€ &, then
i) A is accessible if and only if P, (14 < o0) > 0.
ii) If A is not accessible, then A° is accessible.

The following result indicates that atoms are either recurrent or transient. Fur-
thermore, it shows that, in any atomic chain, accessible atoms are either all recur-

rent or all transient.

NLemma 6.1.3 in [38]
ALemma 6.1.4 in [38]
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Theorem 2.2.13. *Let X be a Markov chain with an atom c.

i) « is recurrent if any of the following equivalent properties is satisfied
(@) Py (1o < 0) =1,
(b) Pal(T (a) = ) = 1,
(c) Ula,x) = o0

ii) o is transient if any of the following equivalent properties is satisfied
(@) Py (1o < 0) < 1,
(b) Po(T (o) < 0) =1,

() U(a,ax) <0

iii) If o is accessible and recurrent, any atom 3 satisfying Po, (173 < o0) > 0 is

accessible and recurrent and P, (T' (8) = ) = Pg (T (o) = o0) = 1.
iv) If o is recurrent and there exists an accessible atom (3, then « is accessible.

From parts iii and iv of Theorem 2.2.13, we have that accessible atoms are ei-
ther all recurrent or all transient. The next result shows that, in the atomic chain
scenario, the recurrence or transience of an accessible atom characterizes the re-

currence or transience of the chain.

Theorem 2.2.14. ** Suppose X is an atomic Markov chain with accessible atom .

Then it holds:

i) X is recurrent if and only « is recurrent.

ii) X is transient if and only « is transient.

22Theorem 6.2.2 and Proposition 6.2.4 in [38].
2Theorem 6.2.7 in [38]
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For an atom o in X, define a measure 7, as follows:

Ta (A) = Eq Za La{Xi} |- (2.23)
k=1

The following theorem shows that a is recurrent if and only if 7,, is invariant

for the kernel.

Theorem 2.2.15. *[Existence of an invariant measure] Let X be an atomic Markov

chain with kernel P possessing and accessible atom cv. Then,
i) If o is recurrent, then 7y, is invariant for P.
ii) If mo is invariant for P, then o is recurrent.

iii) If o is recurrent, then every other invariant measure 7 is proportional to mg,

satisfiesm (o) < w and 7 (B) =1 () 7o (B) VB e€.

Part iii) of the previous result tells us that an atomic Markov chain has a unique,
up to a multiplicative constant, invariant measure. The celebrated Kac’s theorem

uses this to characterize the positivity of irreducible atomic chains.

Theorem 2.2.16. [Kac’s Theorem[*> Suppose that v is a recurrent atom for the atomic

Markov chain X with kernel P. Then, X is positive recurrent if and only if E, T, < o0;

Y-
EaTa”

and if 7 is the invariant probability measure for X, then m =

The following construction, presented in [88], allows us to construct, given a

random variable Z, an atomic Markov chain where £ (7,) = £ (| Z]).

Example 2.2.7. Let Z,, be a sequence of i.i.d. random variables. Define X,, as

%4Theorem 6.4.2 in [38].
Theorem 10.2.2 in [87]
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Xn—l — 1, ian—l > 1,
X, =
Zn, ian,1 € [O, 1] .

Then, X,, is an irreducible Markov Chain and the interval [0, 1] is an atom for

the chain. Moreover, P, (011 > n) = P (|Z1] > n).

We have saved for last what is perhaps the most important property of atomic
chains: the Block decomposition. This property enables us to partition an atomic
chain into independent blocks, which facilitates the study of this type of Markov

chain, making it comparable to the i.i.d. case.

Theorem 2.2.17 (Block decomposition). * Let X be an atomic Markov chain with

an accessible atom av. Then, for any initial measure A € # (E) , suchthatP) (1o < ®0) =

+
1 the following random blocks
BO = (X07 X17 SR 7X7'a(1))
Bi = (Xrasr s Xra(2)
B, = (XTa(n)+17 s 7X7'a(n+1))
are independent, and among them, {B,.}, ., arei.i.d. with common law Lp,, (XO, Xi,... ,XTa(l)).

As an application of Theorem 2.2.17 we will show how it can be used to study
the sums of the values of a function over X.

Let f be a function defined over F and define the random variables f (By) =

%Corollary 2.3 in [29].
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Z;—io f (X]) and for n > 1,

The next result is an immediate consequence of Theorem 2.2.17.

Theorem 2.2.18 (Independence of the excursions). If X is an atomic Markov chain

with a recurrent atom «, then, under P, the sequence { f (B,,)} is i.i.d. Moreover,

nEZ+

for every initial measure A\ € #(E). such that Py (7o < ©) = 1, the random

+

variables f (B,,) ,n € Z, are independent and forn > 1 they are i.i.d.

For any measurable function f defined on F we will denote by S, (f) the par-

tial sums of f over the chain, that is

S, =3 F(X). (22

For a fixed atom, Theorem 2.2.18 allow us to express S,, (f) as a sum of inde-

pendent random variables as follows:

T(n) n
Sa(f)=FBo)+ X, FBY+ >, f(X), (2.25)
7=1 i=Ta(T(n)+1)+1

where T (n) = T, (&) — 1 counts the number of i.i.d. blocks up to time n. This
term is called number of regenerations up to time n.

The following random Law of Large Numbers follows from (2.25), Theorem 6.8.1
in [55] and the fact that E [ f (B;)] = 7, (f) fori > 1.

Theorem 2.2.19. ¥’ Let X be an atomic Markov chain with an accessible atom o

and let f be a 7, -integrable function. Then, for every initial distribution . such that

?Lemma 6.6.1 in [38]
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P, (Ta <) =1,

This random Law of Large Numbers suggests that if we standardize by the
number of complete blocks, we can derive a version of the Central Limit Theorem.
In the positive recurrent scenario, the following result confirms the validity of this
approach. In the null recurrent case, it is also true provided that the time of return
to the atom does not have an excessively heavy tail. Before stating the theorem,

we need a definition.

Definition 2.2.16 (Slowly varying functions). Measurable and positive function L,

defined in [a, +0) for some a = 0, that satisfies

L (xt
lim (x>=1 vVt > a.
T—>+00 L (l’)
Two slowly varying functions are said to be equivalent if lim,_, o, % =1A

fundamental result in the theory of slowly varying functions® indicates that if L is
a slowly varying function then, for every a > 0, there exists an equivalent version
L, of L such that x“L,, (z) is strictly increasing and continuous in [z, +] for

some z, > 0. These L, are called normalizations of L.

Remark 2.2.4. Throughout this thesis, all slowly varying functions are unique up-to

equivalence and, without loss of generality, we always use normalized versions.

Theorem 2.2.20. [CLT with random number of terms] Suppose X is an atomic, pos-

itive recurrent Markov chain with an accessible atom cv. Let f € L' (E, 7o) such that

28Proposition 1.3.4 and Theorem 1.5.5 in [21]
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Var,, [f (B1)] is finite, then,

T(n) )
) (W - <f>> LN Var[f(B]). (226

and

VIO (Fl - mn) S vovals @), e

Moreover, if X is null recurrent and satisfies

1

LD (2.28)

P (7o > n) ~

where 0 < [ < 1 and L is slowly varying, then (2.26) holds, and, if in addition
E[(|f| (B1))?] < +oo then (2.27) also holds.

The proof of Theorem 2.2.20 relies on being able to control the behavior of
T (n) in such a way that the convergence in distribution of /n (w — 7o (f ))
does not change when we replace n by 7' (n).

For positive recurrent chains, this is achieved thanks to Anscombe’s Theo-

rem,” using the fact that O] 2%, EaTa- The details of the proof can be found in

section 6.7 of [38].%°

In the null recurrent case, Anscombe’s Theorem approach does not work be-
cause, even with the tail condition (2.28), 7' (n) can only be controlled in distribu-
tion. Hence, in this scenario, the proof'is based on the functional convergence of the
stochastic processes /n <w — Ta (f)) and % (see Theorem 2.2.39),

and a deep result by [68] that implies the functional convergence of the joint pro-

2The original theorem appeared in [4]. See Theorem E.4.5 in [38] for a more modern formula-
tion.

30Equation (2.26) appears as an intermediate result in the proof of their Theorem 6.7.1 and (2.27)
is a direct consequence of their equation (6.7.6).
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cess. The full proof can be found in [9]. *

In the positive recurrent case, Theorem 2.2.20 can be improved to have a for-
mulation very similar to the CLT for i.i.d. data. In effect, assume that X is positive
recurrent with invariant probability measure 7 and f satisfies the conditions of

Theorem 2.2.20. Define the function f = f—m(f), then

Mo (F) = o (f =7 (f) = 7a () = 7a (B) 7 (f)

which equals 0 by Kac’s theorem. Applying (2.27) to fand using Slutsky’s Theo-

rem*” to replace T' (n) by n, we get the following result:

Theorem 2.2.21. **[CLT for atomic positive recurrent Markov chains] If X is an
atomic, positive recurrent Markov chain with an accessible atom o and invariant

probability measure T and f € L' (E, 7y is such that Var,, [ f (B1)] is finite, then,

n=3 i (f(Xk)—w(f)) 4N 0,% , (2.29)
where ,
Var [J?(Bl)] = Fqs (Za: (f (Xg) = (f)))

Observe that the only dissimilarity between (2.29) and the CLT for i.i.d. data

lies in the form of the variance.

Remark 2.2.5. In the null-recurrent case, due to the fact that 7 is o-finite but not

finite, if f is such that 7 (f) # 0, then there is no deterministic recentering.

Atomic chains are not rare, for example, when £ is countable (Example 2.2.2)

31See page 1140 for (2.26) and their equation (6) for (2.27).
32Theorem 5.11.4, pp 248 in [55].
3Theorem 6.7.1 in [38].
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every singleton (set with only one element) is an atom, and if the chain is irre-
ducible, then every singleton is an accessible atom. In the case of the Random
Walk on a half line, as described in Example 2.2.3, the set {0} is an accessible atom
if P(Z < 0) > 0°*. However, the reason for studying atoms is not just because
of the existence of accessible singletons in some models, but rather the ability to
artificially construct sets with an atomic structure by extending the probabilistic
structure of the chain in the irreducible case. This permits the application of de-
composition of the chain into separate, identical parts (via Theorem 2.2.17) which

serve as building blocks in subsequent analysis.

2.2.8 Splitting

In this section, we will show how to "construct" atomic chains from irreducible
chains. The idea is to construct a split chain X in a split space £ = Ey U E; where

E; are "copies", in a specific sense, of the original space F, in such a way that:

i) The original chain X is a marginal chain of X, in the sense that for all initial
distribution A\, A € £ and n > 0 we have AP" (A) = AP (/1), where P, \
and A are respectively a kernel, an initial probability and a measurable set

defined in the split space.
ii) E; is an accessible atom for X.

Let us assume, for the moment, that X is a y-irreducible Markov chain and
its kernel P satisfies the minorization condition M (1, s, v), that is, there exist a
small function s, taking values in the interval [0, 1], and a non-trivial probability
measure v such that

P>s®u. (2.30)

34See Example 6.1.2 in [38] for a proof of this result
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The minorization condition (2.30) allows us to define the following sub-stochastic

kernel in (£, £),

(1=s(@) ' [Pz, A) —s@v(A)] , s() <1
Q(z,A) = (2.31)
I () , s(x) =1

By using (), we can break down P into two parts:
P(x,A)=s(x)v(A)+ [l —s(2)]Q(z,A). (2.32)

Remark 2.2.6. Consider thesetC' = {r € E : s(z) = 1}.Ifo(C) > 0, thenC is a
small set®, therefore, P (1, A) = v (A) forallz € C and A € &, which implies that
C' is an accessible atom for X and P (z, A) = v (A) Vre C,Ae &E*.

The decomposition (2.32) indicates that a transition starting from any state x in
E can be thought of as happening in two steps. First, a coin is flipped with the prob-
ability of landing on "head" equal to s (x). If "head" comes up, the Markov chain
moves based on the probability law of v, otherwise, it moves based on @ (z, e).
The most important aspect here is that getting "head" results in a transition law
that is independent of the state x.

To properly formalize this heuristic, we will work on the space (E € ) defined
as the product of the measurable spaces (E, ) and ({0,1},P ({0,1})). We will
use the term split space to refer to both the set £ and the measurable space (E € )

Forall z € E/, A € £ we denote

1'0:(1',0), 33'1=<33',1>,

35Remark 2.1-iv, pp. 16 of [90]
%See pp. 191 of [38].
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Ay = A x {0}, Ay = A x {1}, A=Ax{0,1}.

In the following, we identify each set A € £ with its corresponding set A € &, as
defined in the previous paragraph. Thus, the o-algebra £ can be viewed as a subset
of £. For any measure \ € .Z () +» we can define its extension \to .4 ((‘j ) . by

setting its values on the sets A; (where A € £ and i = 0, 1) as follows:

A (Ao) zf(l—s(x))dk (2) . A(A) zfs(q:)d)\(a:).

A A

A £-measurable function f, is extended to a £-measurable function by setting

[ (x0) = f (x1) = f (z). With these definitions, for every £-measurable function

f and every measure \ € . (), we have § f (v) d\ (z) = { f (z) d\ (2).
E E

Now the final and most subtle step in the construction of the split chain is to
build a kernel P in (E € ) that expresses the heuristic we described before. For

z € E and A € € define the following kernel®” on the split space

3 1)(/1) , xe{s(x)=1},

where () (, o) is defined as the extension to (E € ) of the measure Q) (z, o).

Let X = {(Xn, an) }n>0 be a Markov chain (defined in the split space) with

initial measure A and kernel P. It was shown in pp.61 of [90] that, for any = €

37See pp.311 in [89].
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E, A € £ the random variables X, and Y, satisfy

<

=
=
s

m
=
3

I
&

I
s
&
=

The following theorem shows that the bivariate process X is an atomic Markov
chain and the distribution of its first component is identical to the distribution of

our original chain.

Theorem 2.2.22. ** The split chain X is an atomic Markov chain and the set I}, =
E x {1} is an accessible atom. Moreover, for any probability measure \ on (E,E),
the marginal distribution of the first component {Xn} of the split chain X and the

distribution of the original chain X are identical. In particular,
AP" (A) = AP"(A) VAe&.

In the following, we will identify the original chain with X,, and we will write
X, instead of X,,. We will denote by & the atom E; and we will write Py for
the probability measure defined on o < UnenFX ) and corresponding to the initial
state Yo = 1,i.e. Py = L (Xn, Y, n> 1Yy = 1). Similarly, for any x € F, we will

denote by P, the probability measure corresponding to the initial state Xy = x.
Theorem 2.2.23. *° The split kernel P satisfies

i) PP (a,A) =P4 (X, e A) =vP" ' (A) VYAe& n>1.

38This result appears as Theorems 1 and 2 in [89] and as Theorem 4.2 in [90].
39Equation (4.19) in [90]
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ii) P(z,&) =P, (Y, =1) =E,[s(X,)] = P"s(z) VxeE,n=>0.

Theorem 2.2.24. “'Let 04 and 74 be the hitting and return times of the atom & in

the split chain, then
i) Po (o =n) =v(P—s®u)" s forn > 1.
ii) P, (06 =n) = (P—5s®v)"s(z) forw € E andn > 0.
iii) Pg (Xpr1€Anta=2n+1)=v(P—s®v)"(A) forall Ae £.

Remark 2.2.7. If X has an atom o, remark 2.2.3 shows that it satisfies the minoriza-
tion condition M (1,1, P (a,®)) and P — [, ® P (ax,®) = 1 P. In this case, the
auxiliary process Y is defined as Y, = 1, (X,,) and all the results in this subsection

hold.

At the beginning of this section, we assumed that the kernel P satisfied the
minorization condition M (1, s, v). This assumption is not too strict, because, by
Corollary 2.1.1 and Theorem 2.1.9, we have that if X is ¢-irreducible with kernel
P, then the P.-chains are strongly aperiodic and there exists m such that the mi-
norization condition M (1, s, v) is satisfied for P™. Therefore, we can apply The-
orem 2.2.22 to the P.-chains (and to some m-skeleton chain) and construct a split

chain. A typical proof of a property P for X using this technique is as follows:
Step 1 Prove P for atomic chains.

Step 2 Apply Theorem 2.2.22 to construct the split chain X. Show that if P holds
for X it also holds for X. Then, by step 1, P holds for chains that satisfy the

minorization condition with mqy = 1.

“0Equations (4.20), (4.21) and (4.22) in [90].
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Step 3 Show that if P holds for the P.-chains (or for some m-skeleton) then it holds
for the original chain. Hence, the result follows by applying step 2 to the P.-
chains (or to the m-skeleton that satisfy the minorization condition with

mo = 1)

As a demonstration, we use this technique to prove the following result, which,
as a direct corollary shows that every irreducible Markov chain admits a unique

(up to a multiplicative constant) invariant measure.

Theorem 2.2.25. “'If X is irreducible, aperiodic and satisfies the minorization con-

dition M (my, s, ), then, the measure 7 defined as

+o0
T(A) =v ) (P™—s®v)"(A) AecE, (2.33)

n=0

is an invariant measure for the chain X.
Proof. As promised, the proof will be divided in three steps:

Step 1 If X is atomic, the existence of the invariant measure 7, and its representa-

tion is given by (2.23). By Fubini’s Theorem,

+00
Ta(A) = ) Po(Xy€ AN T = n)
n=1
By part iii of Proposition 4.4 in [90], Pa(X, € AN 7o =n) = v ([qeP)" "
where [P is the kernel defined by (I, P) (z, A) = Iy (z) P (2, A) and
v = P(a, o). Because X is atomic, remark 2.2.3 shows that it satisfies the
minorization condition M (1,1, P (a,e)) and P — I, ® P (c, ¢) = I, P.

Hence, the theorem holds for atomic chains.

“ICorollary 5.2 in [90]
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Step 2 Now assume that X satisfies the minorization condition M (1, s, v). By The-
orem 2.2.22, we can construct the split chain X with an accessible atom cv.
By Step 1, this chain admits an invariant measure 74 and the form of this

measure is given by (2.23).

When restricted to X, this measure is invariant for X, as was shown in (5.7)
of [90]. A simple application of Fubini’s Theorem and part iii of Theorem

2.2.24 shows that, for A € €
Téx 400
7 (A) = Eq (Z T4 {Xk}> —v Y (P=s®@v)"(A) = vG,, (A),
k=1 n=0

where G, = >"% (P — s ® v)". Therefore, the result holds for chains that

n=0

satisfy the minorization condition M (1, s,v).

Step 3 Given that X satisfies the minorization condition M (my, s, /), the my-skeleton
chain, satisfies the same condition but with m = 1, therefore, by step 2 7
is an invariant measure for the mg-skeleton. By Theorem 10.4.5 in [87], 7 is

also invariant for X, which completes the proof. 0

The following result is an extension of Theorem 2.2.25. Its proof is an example

of the technique we described. It can be found as Theorem 10.4.9 in [87].

Theorem 2.2.26. Let X be a 1-irreducible recurrent chain with transition kernel P.

Then, X admits a non-zero invariant measure 7 that satisfies
i) T is unique up to a multiplicative constant.

ii) m(C) < oo for every small set C.
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iii) For any accesible set A and B € &,
TA
7 (B) = f E, <ZH{Xk e B})dw(y).
A k=1

iv) T is equivalent to 1.

The splitting technique shown in this section is one of the pillars of the modern
Markov chain Theory. It was discovered almost simultaneously, but by slightly dif-
ferent methods, by Nummelin [89, 90] and Athreya and Ney [7]. The construction
presented in this thesis follows the approach introduced by Nummelin, which is

the most widely used in the literature.

2.2.9 Harris recurrent Markov chain

For atomic chains, we have seen in part b of Theorem 2.2.13, that recurrence
of an atom is equivalent to the property that the number of visits to the atom is
almost surely infinite when starting from the atom. In the general case, this no

longer holds, as the following example shows.

Example 2.2.8. * Define a Markov chain X in N, such that if X,, = k, then, the

chain moves to k+ 1 with probability e nz or jumps back to zero where it is absorbed.

The kernel is as follows:
P0,0)=1 , Pk+1l)=e® , Pk0)=1—c, k=1

The Markov chain in question is irreducible and contains an absorbing set comprising

only the state 0. As a consequence, 0, is a maximal irreducibility measure and every

“2Example 10.2.3 in [38]
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accessible set must necessarily include the absorbing state 0. For k > 1, the Markov

property implies that

Raa
Py (10 = +0) = exp _ZF <1,

j=k

therefore, 0 < Py (10 = +0) < 1. Consider an accessible set A, such that k > 1 is
in A. Then, Py, (T (A) = +0) = Py, (70 = +00), which implies that E,T (A) = +0,
and hence the recurrence of the chain. On the other hand, if A is finite, P, (T (A) = +0)
equals Py, (1o = +0) < 1 hence, the probability of returning to A infinitely often is

not 1.

In order to handle situations like the one described in the previous example,

we need to define a stronger type of recurrence.

Definition 2.2.17 (Harris recurrence). An irreducible Markov Chain X with max-
imal irreducibility measure ) is said to be Harris recurrent if for all x € E and all

A € & such that 1) (A) > 0 we have P, (X visits A infinitely often) = 1.

In other words, X is Harris recurrent if P, (7' (A) = ) = 1 for all z € E and
all ¢-positive sets A. The following result shows that Harris recurrence can be

analyzed by looking at the P.-chains.

Theorem 2.2.27. ** X is Harris recurrent if and only if for some € (and then for all)

the P_-chain is Harris recurrent.

Recall from (2.24) that if f is a function defined on E, then S,, (f) = >,_, f (Xx).
The next theorem shows that, under Harris recurrence, the order of .S, (f) is the

same for every measurable function f such that § fdr # 0, where  is an invariant

#3Proposition 8.2.13 in [40]
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measure for X. Moreover, it shows that this property characterizes Harris recur-

rence.

Theorem 2.2.28. ** The following propositions are equivalent when a o-finite in-

variant measure 7 exists for X

1. Forevery f,g € L* () with { gdm # 0

lim Sn ) _ 7). (2.34)

n—w S, (9) (g

2. The invariant o-field > is P, trivial for allx € E.
3. X is Harris recurrent.

The following result provides a similar ratio limit result as (2.34) but for expec-
tations. It is important to notice that in the null recurrent case, it only applies to

small functions.

Theorem 2.2.29. “If X is Harris recurrent with invariant measure , then, for every

initial measures \, p € A (E) . and small functions s, h such that (h) # 0, we have

O ENXrgs(X)] . AGMs  w(s)

where G is the n-partial sum of the potential kernel of P*°. If X is positive recurrent,

then h, s can be taken as elements of L' (7).

Equation (2.34), known as the Ratio Limit Theorem, allows us to obtain strong

convergence results for S, (f).

“Theorem 17.3.2 in [87]

#Both statements appear in pp. 130 of [90]. It is worth pointing out that a small function is a
special function.

*See Definition 2.1.2
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Theorem 2.2.30. Let X be a Harris recurrent Markov chain with invariant measure

7 and initial probability \. Let [ be a finite 7 integrable function.

i) If X is positive recurrent and 7 is the unique invariant probability measure,

then

Sulf)

" n(f) P,a.s. (2.36)

ii) If X is null recurrent, then

Sn (f)

—0 P,as. (2.37)
n

From the previous theorem, we see that when X is positive recurrent the be-
havior of S, (f) is similar to the i.i.d. case, however, (2.37) indicates that the null
recurrent scenario is a whole different story. In order to properly study this case,

we need a few new tools.

Let D be a small set and \ an initial measure. Define a (t)
2]
a(t)=m (D)™ Y AP*(D) = (D)~ MG (1) (2.38)
k=1

Remark 2.2.8. This non-negative and increasing function is called the truncated
Green function. By (2.35) the asymptotic order of a (t) (whent — +0) depends only

on the transition kernel of the Markov chain.

Example 2.2.9. “'[Truncated Green function for random walks in R] Consider a

random walk as the ones defined in example 2.2.3, withEZ, = 0 and EZ? < +o0. It

47See Section 6 in [28].
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was shown in [28] that the truncated Green function of this chain satisfies

2t
E (Z7)

a(t) ~

ast goes to +0.

The following two results, presented in [28], show that the behavior of \S,, (f)

when n goes to 40 is closely related with a (n).

Theorem 2.2.31. **Let X be a Harris recurrent Markov chain with invariant measure
7. Then, for every nonnegative function f € L' (E,m) with w (f) > 0 and every

initial distribution \ both the sequences

() Y,

are bounded in probability, where the random variables in the second term are allowed

to take the value 0.

Theorem 2.2.32. “’Under the same hypothesis of Theorem 2.2.31, there exists a pos-

itive constant K such that

lim su Sn (f)
vn () H @ ()

- Kff (z)dr (z) a.s.

where H (z) = log log (max {z, e°}).
In [30], a version of Theorem 2.2.32 is given for the case que when 7 (f) =0

Theorem 2.2.33. °° Let X be a Harris recurrent Markov chain with invariant mea-

sure  and kernel P and f be a measurable function satisfying:

“Theorem 2.1 in [28]
“Theorem 2.2 in [28]
Theorem 1.1 in [30]
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i) {f(x)dn(z)=0 , (f*(z)dr(x) < w;
ii) SUPp<a<1 S ’Z;ﬁi akf (I> Pkf ‘dﬂ- <+,

then, there exists a constant Ay > 0 such that

lim sup Su (/) =A; as.

" o (i ) H (a ()
Further, if in addition to i and ii the following two conditions also hold
ii’) 3542 f (x) (PFf) (w) € L' (B, 7),

i) op = § f2(x)dr (x) + 22X, f (x) P*f (z)dr () > 0.

Then Ay > 0.

2.2.10 (-null recurrent Markov chains

With the objective of finding the exact limit distribution of S” ) in the null

recurrent case, the concept of regularly varying Markov chain was introduced in
[28]. Before stating this concept, we need a few definitions.

A positive and measurable function g, defined in [a, +0), where a > 0, is
regularly varying at infinity if lim,_, , o, % exists for all ¢ > a. Theorem 1.4.1.
n [21] shows that g is regularly varying at infinity if and only if there exists a
real constant 3 and a slowly varying function L such that g (t) = t°L (¢). The
number f is called index of regular variation and it is unique for the function, i.e.
if there exists 3, 3, and L, L, such that g (t) = t°L (t) = t"'L, (t) then 3 = /3
and L = L;.

We will say that a Markov chain X is regularly varying if its truncated Green

function is regularly varying. Thanks to the uniqueness of the index of regular
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variation 3 we now introduce the concept of -regular Markov chain.

Definition 2.2.18 (3-regular Markov chain). -irreducible, Harris recurrent Markov

chain X such that its truncated Green function is regularly varying with index 5.

Remark 2.2.9. Aswas pointed out in [28], every irreducible, positive recurrent Markov
chain is 1-regular, and if X is null recurrent and [3-regular, then 0 < 3 < 1. Therefore,

for any B-regular chain, 8 € [0, 1].

The notation used in the literature regarding S-regular chains differs a little

between papers. In order to use the same notation in all of our results, define

a(t), pe{0,1}

rl+p)a(t), 0<p<l1

where I' is the Gamma function.

Sn(f)
a(n)

in probability. The following result describes the asymptotic limits assuming (-

is bounded

In Theorem 2.2.31, we saw that under Harris recurrence,

regularity.

Theorem 2.2.34. *'Let X be a 3-regular Markov chain with kernel P and invariant

measure 7. Then, for every non-negative function f € L' (E, ), and every initial

distribution \,the sequence of random variables Snlf) converges weakly (for f < 1).

Moreover, the limit distributions are as follows:

i) When 8 = 0, the limit distribution is the exponential distribution with param-

eter { f (x) drm (z).

>ITheorem 2.3 in [28]
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ii) If0 < B < 1, the limit distribution is
My (1) [ £ () (),
where Mg (1) is a Mittag-Leffler distribution with parameter (3.

iii) When 3 =1,

Sn (f)

— f f(z)dm (z) in probability.

Remark 2.2.10. The Mittag-Leffler distribution with parameter [3 is a non-negative

continuous distribution, whose moments are given by

m)!

E(Mgl(l)) = m m = 0.
By (3.39) in [67], its Laplace transform is
E [exp (—sMp (1))] = io i 5= 0. (2.39)
=T (1+ kD)

Remark 2.2.11. In the original formulation of Theorem 2.2.34 (Theorem 2.3 in [28]),
the normalization sequence is a (n) and the limit distribution when 0 < < 1 is

written as Ggﬁ § f (z) dr (z), where G is a stable random variable with Laplace

transform
E(—tG v

—tGg) =exp [ ————— | .

) Xp( P(ﬁ+1))
Notice that Gy = —Y— where Y has Laplace transform exp (—sﬁ). Let F' be the

L(1+8)7
cumulative distribution function of Y. Then, P <G;B < [L’) =1-F <M) .
B
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By Example b, pp 453 of [46], this implies that the Laplace transform ofGE’B

2 L(1+5) ) s =0,

I'(1+EkpB)

which coincides with the Laplace transform of I' (1 + ) M3 (1) by (2.39).

The equivalent theorem, but for the case when 7 (f) = 0 was presented in [30]

and is as follows:

Theorem 2.2.35. Let X be a 3-regular Harris recurrent Markov chain. Under con-

ditions i and ii’ of Theorem 2.2.33 we have

S

9 o7/DsU (2.40)

S 3
S=

where U and Dj are independent random variables, U ~ N (0, 1), and the distribu-

tion of Dy depends on 3 as follows:
i) When 8 = 0, Dy is an exponential distribution with parameter 1.
ii) When 3 =1, D; = 1.
iii) When0 < 3 < 1, Dg = Mg (1) with Mg (1) defined as in Remark 2.2.10.

Similarly to remark 2.2.11, when 0 < 3 < 1, the original formulation of Theo-
1
rem 2.2.35 (Theorem 2.4 in [30]) uses a (n) instead of u (n) and has that D is a

stable distribution with Laplace transform

B o (<10, )| = o (_mt—iﬁ)) | (2.41)

_1
By the same argument used in remark 2.2.11 (considering Gg = Dy ?), we have

1
that the distribution of D ” equals the distribution of ' (1 + 3) Mp (1).
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With the objective of developing a non-parametric estimation theory in null-
recurrent scenario, the concept of 3-null recurrent Markov chain was introduced

in [67].

Definition 2.2.19 (5-null recurrent Markov Chain). Markov chain X such that is
Y-irreducible and there exists a small function h, an initial measure )\, a constant

p € (0,1) and a slowly varying function Ly, such that

E\ [;h(){t)] ~ ﬁn%h (n). (2.42)

asn goes to +0.

Remark 2.2.12. A condition similar to (2.42) was introduced as Hypothesis (C) in
page 147 of [113], with the objective of finding a law of the iterated logarithm for ad-
ditive functionals over X which are close to square integrable martingales with respect
to the invariant measure of the chain. The main difference between both conditions is

that in [113], the function h is not required to be a small function.

The most widely known example of S-null recurrent processes are the random
walks defined in Example 2.2.3. In effect, if the distribution Z is continuous, cen-
tered, and has a finite variance, then the random walk is %—null recurrent (see [64]
and pp.8 of [88] for the form the slowly varying function).

Lemma 3.11in [67] shows that, if X satisfies the minorization condition M (1, s, v),
and for some (3, h, A condition (2.42) is fulfilled, then it is fulfilled for every small
function, which implies that 5 does not depend on the small function nor on the
initial measure, and therefore is a global parameter of the chain X. In Theorem

2.2.36 we remove the M (1, s, v) assumption.
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Theorem 2.2.36. Assume X is 3-null recurrent, and let 7w be a fixed invariant mea-

sure. Then we can find a slowly varying function L such that condition (2.42) holds

with Ly, = m (h) L for every small function h.

Before proving the theorem, we need a few preliminary results that will be

useful in the sequel.

For a measure A € .7 (£), and a measurable function h define,

t=0

2]
g(h, A\, z) = AG1=D (h) = E, [2 h (Xt)] . (2.43)

For ¢ € (0,1), let {XW(")}n>o be the P.-chain defined in example 2.2.1, with

initial measure \ and kernel P.. Define g. (h, A, z) as in (2.43) but for the P.-chain.

Lemma 2.2.1. For any measurable function h and any initial measure A € . (€) ,,

when x goes to +0:

g (h A, z) ~ (1—5)g(h,>\,1f€) Ve e (0,1). (2.44)

And, if X is B-null recurrent, then

ge (A ) ~ g (h A\ 2) (1—e)"" Vee(0,1). (2.45)

Proof. Let X be the P.-chain described in Example 2.2.1. Let n = |z| and F: =

o ({ak}Z(ﬁf A (j)}?zo) Notice that,

v(n)

D0 (Xym) = D axh (Xy). (2.46)
k=1 k=1

The expectation of the left hand side of (2.46) is g. (h, A, n). For the right-hand
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side, we have

v(n) 7(n)

k=1 k=1

v(n)
.FZ)] = E)\ [Z CkkE)\h (Xk)] 5

k=1

Using the fact that y (n) is a stopping time for the sequence {ay } and Wald’s equal-

ity , we get

v(n) v(n)
E, [Z akEAh(Xk)] — (1—¢)Ey [EA (Z h (Xk))] — (1—&)Erg (R, A,y (n)).

k=1 k=1

By the Law of Large Numbers, @ converges to (1 — &?)_1 almost surely and in ev-
ery L-norm, then, Exg (h, A,y (n)) ~ Exg (h, A, 1), which completes the proof
of (2.44).

When X is #-null recurrent, we have

~

n nﬁ ‘L(T%;) g(h7A7n)
o (105 )”u_&-)ﬁrmm 1—ep

where the last equivalence holds due to the slow variation of L at infinity. Equation

(2.45) now follows immediately. [

Corollary 2.2.1. A Harris recurrent Markov chain is 3-null recurrent if and only if

all of its P.-chains are S-null recurrent.

Proof. If X is $-null recurrent, there is a small function h that satisfies (2.42) for
some 3. By Theorem 2.1.8 the function £ is small for all the F.-resolvents, and by
(2.45) it satisfies condition (2.42) for the P.-chains.

For the converse, suppose that for some ¢ the P.-chain is S-null recurrent. Let

h be a small function for the original chain X, by Theorem 2.1.8, / is also small

>2Theorem 14.14.3 in [55].
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for the P.-chain, hence, ¢g. ()\, h, 1—28) ~ % and the result follows from

(2.44). O

For the proof of Theorem 2.2.36 we will follow a similar approach as the one
used to prove 2.2.25, with the detail that we only need to take care of Step 3, because

Steps 1 and 2 were handled by Lemma 3.1 in [67].

Proof of Theorem 2.2.36. Take ¢ € (0, 1) fixed. Let h and A satisfy condition (2.42)
for X. By Lemma 2.2.1, h and A satisfy the condition (2.42) for the P.-chain, there-
fore, the P.-chain is S-null recurrent.

By Theorem 2.2.8, the P.-chain satisfies the minorization condition M (1, s, v)
for some (s, ). Let 7; be the measure defined by (2.33). This measure is invariant
for both X and the F.-chain by Theorem 2.1.10. These conditions allow us to apply
Lemma 3.1 in [67], obtaining that there exists a slowly varying function L, such

that, for any small function f, condition (2.42) is satisfied with Ly = m, (f) Ls,

therefore, g (h, A\,n) ~ %. By the uniqueness of the invariant measure,
there exists a constant K such that 7, = K, hence g (h,\,n) ~ %
where L (n) = KsLg (n). O

The next result shows under null recurrence, there is no distinction between

B-regular and S-null recurrent

Theorem 2.2.37. If X is null recurrent, the concepts of 5-regular and [3-null recur-

rent coincide.

Proof. In effect, notice that

AG D (Ip) "
a(t) = D) and g (h,\t) =E, [2 h(Xg)

k=0

=G (n)  (2.47)

Then, by (2.35), both functions are of the same order. O]

69



2.2. MARKOV CHAINS

70

Theorem 3.1 in [67] characterizes 5-null recurrent chains that satisfy the mi-
norization condition M (1, s,r) in terms of the tail of the time of return to the
pseudo atom. Here, we present a small extension of that result, where we charac-
terize $-null recurrent chains in terms of the time of return to the pseudo-atom of
the P.-chains. This result is a direct consequence of Corollary 2.2.1 and the afore-

mentioned Theorem 3.1 in [67].

Theorem 2.2.38. Assume X is Harris recurrent and ¢ is an atom for the split chain

of the P.-chain. Then, X is $-null recurrent if and only if

1
T(1—B)nPL (n)

P4 (74 > n) = (I+o0(1)). (2.48)

where L is as in Theorem 2.2.36.

Moreover, if X is 3-null recurrent, then 5 = sup {p = 0 : E4 [75] < o0}.

When the chain is atomic, (2.48) implies that is equivalent to the condition
(2.28) that we had to impose to null recurrent chains in order to get a Central
Limit Theorem. Incidentally, Theorem 2.2.38 also implies that the atomic X is -
null recurrent if and only if 7, belongs to the domain of attraction of a stable law

with index /3.

Remark 2.2.13. A strengthened version of (2.48) was used in [32] to obtain a strong

invariance result in the null-recurrent case.

Using this characterization of S-null recurrence and the construction outlined
in Example 2.2.7, it is possible to create $-null recurrent processes for any value of
f3 in the range of (0, 1) as well as null recurrent processes that are not -null recur-
rent. Aside from these constructions, there are many examples of -null recurrent

Markov chains in the literature. Bellow we show a couple of examples.

»See pp.3 of [28]
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Example 2.2.10 (Bessel random walks). A Bessel random walk is a stochastic pro-
cess defined onZ,. = {0, 1,2, ...}, reflecting at 0, with steps +1 and transition prob-

abilities of the form

1 )
]P)(XnH:x—i—l\Xn:x):px:§<1—%+h(x)) r =1,

PXppi=2z—-1|X,=2)=1—p, =1,

P(Xp =1|X, =0)=1,

where h (z) = 0 () asz — +o0.

The parameter 0 is named the drift parameter. A Bessel random walk is recurrent
if 6 > —1, positive recurrent if 0 > 1 and transient if 0 = —1; for 6 = 1 recurrence
of transience depends on the function h(x). In the null recurrent case, the chain is 3-
regular with 8 = 112 and P (19 > n) ~ n='% L* (n) where L* is a slowly varying
function (see Theorem 2.1 in [3]). For 6 = 0 and h = 0 this process corresponds with
a reflected random walk with p = %

Bessel random walks are widely used in statistical physics, see for example [3],

[36] and the references therein.

Example 2.2.11 (TAR model). Let
X = X, I{X, 1 € S} + X i I{X,1 € S} + 2, Xo=0

where v is a real constant, S is a compact set in R, SC is its complement and x,, is
an i.i.d sequence of random variables such that Ex,, = 0, Emfl < o0, its distribution
function is absolutely continuous with respect to the Lebesgue measure with density
function fo such that inf,cc, fo (x) > 0 for all compact sets Cy.

In Section 4.5 of [49], this model is used to study the relationship between the
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logarithm of the British pound/American dollar real exchange rate and the Consumer
Price Index. In that same paper, it was proven that the index of this model is % This

shows that having index % does not characterize random walks.

Assume for the moment that X satisfies the minorization condition M (1, s, /)
and take ¢v as an atom in split chain X. Define 7" (n) = T, (&) — 1 as in (2.25) and

let u (n) = nPL, (n) where L, is as in (2.48) and let v (n) be its inverse.

Define the following stochastic processes:

[t
) = LAt gy o (ra (k) ~7a (k= 1)). @49

u(n) v(n)

Consider the space of cadlag functions defined on the interval [0, 4+c0), denoted
by Z|o,+)- This space consists of the real functions that are right-continuous with
left limits and defined over [0, +c0). More precisely, a function g € Zjg .« if and
only if g is right-continuous, has left limits at all points ¢ > 0, and lim; o g(t) =
9(0). The space %o+« is equipped with the Skorokhod™ topology, making it a
completely separable metric space. We will use Z049), 16 denote weak conver-
gence in this space, and 5, for convergence of finite-dimensional laws.

Z10,40)

It is proven in [68] that C;, ——— S where Sj is the one-sided stable Levy

process’ defined by the marginal characteristics
E [exp (isCs (1))] = exp (is”t) s e R, t € [0, +0].

The Mittag-Leffler process with parameter 3 is defined as the inverse of Sp. It

%4See Chapter 6 of [60] or Chapter 3 in [20] for more details about this space.
A Levy process is a stochastic process with stationary, independent increments and sample
paths in Zjg ;).
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is an increasing continuous stochastic process defined as

My (t) = t°My (1), E(Mp (1)) = F(+‘mﬁ) m > 0.

Theorem 2.2.39. *° Assume X is a 3-null recurrent Markov chain that satisfies the

minorization condition M (1, s,v) and let A be any initial measure. Then

@[0,+<ﬂ)

T, 222, M,

=3
3
S
—
<

Moreover, if C is a small set, then, the process T¢,, (t) = W)f@) also converges

weakly to Mg in Do o).

Using Theorem 2.2.39 we are able to show the following functional generaliza-

tion of Theorem 2.2.34

Theorem 2.2.40. Under the same assumptions of Theorem 2.2.39, if f € L' (E, )
and w (f) # 0, then

Do, 400
Sn.p = Mp, (2.50)

Slnt) (f)
m(fu(n)’

where S, ¢ (t) =
Proof. °7 Let C be a fixed small set. Without loss of generality, let us assume
7 (C) = 1. By Theorem 2.2.39, T, converges weakly to the process Mp, there-
fore, if we show that D,, = Sf,, — T, converges to the 0 process, then (2.50) will
follow by Lemma 3.31 in [60] and the identity Sy, = (St — Tcn) + Ton.

By Lemma 3.30 in [60], we just need to show that

sup |D, (t)| =0,(1) VM > 0. (2.51)

t<M

%Theorem 3.2 and Lemma 3.6 in [67]
>"This proof follows the line of the proof of Lemma 3.6 in [67].

73



2.2. MARKOV CHAINS

Take 0 < § < 1 and define ng = n~ (=9, then

o1 D1 (0] S gy s | — Tl
< 1 Sn‘s(f) n6
<o (2 + 7o )

Sins (1) +TC(n5)

Notice that,

Sins)(IF1) Spusy(1f) w (n) — Spsy(1£) L (n°)

u(n) u(n®)  wu(n) u(nd) L (n)nfl-0)"
6
By Theorem 2.2.34, s e 5| ) is bounded in probability. On the other hand, ( ) is
a slowly varying function, therefore % — 0 by Proposition 1.3.6-v in [21].
! nd
Hence, il (JTE‘) ) = 0p(1). The same argument proves that Ti((n)) = 0,(1). Then,

SUDt<ny |Dn (1)] = 0p(1).

For ng <t < M we have

To (Int]) | Sy (f)
S 1D < sup SO T 1‘
<Ton (M) swp |- <S>WJ ((fl) J>_1‘
< Ton (M) sup %‘1\

which is 0,(1) thanks to the boundness in probability of T, (M) (by Theorem

2.2.39) and the almost sure convergence of 7 S )) to 7 (f) (consequence of (2.34)).

]

The following result is a functional generalization of Theorem 2.2.35. It appears

as Lemma A.2 in [49]
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Theorem 2.2.41. Suppose X is a 3-null recurrent Markov chain that satisfies the
minorization condition M (1,s,v) and f is such such that E|f (By) — m (f)|"™ is

finite for some m > 1, then

Sjat) (f) = 7 (N T (Int) T) D05, (B o My M
( it e

where B is a standard Brownian motion independent of My and oy = Var(f (B1)).

Remark 2.2.14. When (f) = 0 andt = 1 the limit of the first component in Theo-

rem 2.2.41is B (Mg (1)). Because for each s, % has a standard normal distribution

B(Ms()
Mg (1)

bution and is independent of Mg (1)°°. Hence, we can write B (Mg (1)) as+/ Mz (1)U

and B and Mgy are independent, then U = also has standard normal distri-

which coincides with the form of the limit in Theorem 2.2.35.

Under random normalization, a Central Limit Theorem was proved in Lemma

A3 of [49].

Theorem 2.2.42 (Central Limit Theorem). Under the same hypothesis of Theorem

2.2.41. For any small set C,

8See Theorem A.1 in [67]
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Chapter

Tail Index Estimation for Discrete

Heavy-Tailed Distributions

The content of this chapter is based in [17]. It is the result of a collaboration

with Patrice Bertail' and Stephan Clemencon®.

Abstract: It is the purpose of this paper to investigate the issue of estimat-
ing the regularity index 5 > 0 of a discrete heavy-tailed r.v. Z, namely a random
value. Z valued in N* such that P{Z > n} = L(n) - n=" for all n > 1, where
L : R% — R, isaslowly varying function. Such discrete probability laws, referred
to as generalized Zipf’s laws sometimes, are commonly used to model rank-size
distributions after a preliminary range segmentation in a wide variety of areas,
ranging from quantitative linguistics to social sciences through information the-
ory. As a first go, we consider the situation where inference is based on indepen-
dent copies 71, ..., Z, of the generic r.v. Z. Just like the popular Hill estimator

in the continuous heavy-tail situation, the estimator B we propose can be derived

IMODAL’X, UMR 9023 - Université Paris Nanterre, CNRS, UPL, 200 ave de la République, F92000
Nanterre.
2LTCI, Telecom Paris, Institut Polytechnique de Paris.
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by means of a suitable reformulation of the regularly varying condition, replacing
Z’s survivor function with its empirical counterpart. Under mild assumptions, a
nonasymptotic bound for the deviation between B and [ is established, as well as
limit results (consistency and asymptotic normality). Beyond the i.i.d. case, the in-
ference method proposed is extended to the estimation of the regularity index of an
atomic [-null recurrent Markov chain. Since the parameter 3 can be then viewed
as the tail index of the (regularly varying) distribution of the return time of the
chain X to any atom, the estimator is constructed from the successive regenera-
tion times. We prove that in this case, the consistency of the estimator promoted
is preserved. In addition to the theoretical analysis carried out, simulation results

provide empirical evidence of the relevance of the inference technique proposed.

3.1 Introduction

This article is devoted to the study of the problem of estimating the regularity
index 3 > 0 of a generalized discrete Pareto distribution, namely the probability
distribution of a random variable S defined on a probability space (2, F, P),

taking its values in N* and such that:
P(S>n)=n"L(n) foralln > 1, (3.1)

where L : R, — R is a slowly varying function, i.e. such that L(\z)/L(z) — +1
as z — 4o for any A > 0, see [21]. Such discrete power law probability distribu-
tions also referred to as generalized Zipf’s laws are often used to model the distri-
bution of discrete data exhibiting a specific rank-frequency relationship, namely

when the logarithm of the frequency and that of the rank order are nearly pro-
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portional. Such a phenomenon has been empirically observed in many ranking
systems: in quantitative linguistics (i.e. when analyzing word frequency law in
natural language, refer to e.g. [83]) in the first place, as well as in a very wide va-
riety of situations, too numerous to be exhaustively listed here (see [1], [78] or
[121] among many others). In this paper, we first consider the issue of estimating
the parameter 3 involved in (3.1) (supposedly unknown, like the function L) in
the classic (asymptotic) i.i.d. statistical setting, i.e. based on an increasing num-
ber n > 1 of independent copies S, ..., S, of the generic r.v. S. Statistical
inference for discrete heavy-tailed distributions has not received much attention
in the literature. Most of the very few dedicated methods documented either deal
with very specific cases as in e.g. [51], [85] or [31] or else consists in applying tech-
niques originally designed for continuous heavy-tailed distributions to the discrete
data after a preliminary addition of an independent uniform noise, see e.g. [116].
The vast majority of the regular variation index estimators proposed in the lit-
erature, Hill’s or Pickand’s estimators in particular (c¢f [56], [100]), are based on
order statistics, which causes obvious difficulties in the discrete case because of
the possible occurrence of many ties. In contrast, the estimator under study here
is based on the analysis of the probability of exponentially separated tail events. It
simply rests on the fact that, as can be immediately deduced from (3.1), we have
In(px) — In(prs1) = B + In(L(e*)/L(ek*1)), where In(z) denotes the natural log-
arithm of any real number x > 0 and p; = P(S > ¢!) for all | € N, and that
L(e*™1)/L(e*) is expected to be very close to 1 for k € N chosen sufficiently large.
A natural (plug-in) inference technique can be then devised by replacing the tail
probabilities p; with their empirical versions ﬁl(n) = (1/n) X I{S; > €'} for

[ € N, where I{£} denotes the indicator function of the event £. This yields the
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estimator
B (k) = 1 () —mn (51 (2)

provided that ﬁgi)l > 0. We point out that it has exactly the same form as that
proposed and analyzed in [25] in a different context, that of (continuous) approxi-
mately Pareto distributions’ namely. In the discrete generalized Pareto framework,
we prove that for an appropriate choice of the hyperparameter k£ = k,, (typically
chosen of order In(n)), the estimator (3.2) is strongly consistent and asymptotically
normal as n — +00. Nonasymptotic upper confidence bounds for the absolute de-

viations between Bn (k) and 3 are also established here.

As explained in [28, 30, 67], for S-null recurrent Markov chains, the regularity
index /3 € (0, 1) controls the (sublinear) rate at which the number of visits to any
given Harris set increases with observation time n, no matter the initial distribu-
tion. In the regenerative case (i.e. when the chain X possesses an accessible atom,
a Harris set on which the transition probability is constant), the distribution of
the regenerative time, the return time to the atom, is a discrete generalized Pareto
(3.1) and the parameter [ is its tail index. Due to the non-standard behavior of tra-
ditional estimators in this context, statistical inference for null-recurrent Markov
chains is very poorly documented in the literature (see for instance [49, 66, 67, 88])
and, to the best of our knowledge, estimation of the key quantity J has not been
considered besides the estimator described in [67, Remark 3.7], which is of limited
practical use due to its slow convergence (see Section 3.3.3 for a more precise for-
mulation of this statement). Hence, it is also the goal of this article to extend the

use of the estimator (3.2) to the case where the S;’s are the successive durations

3The distribution of a real-valued r.v. X is said to be approximately Pareto with tail index 3 > 0
iff its survivor function is of the form: Yo > 0, P(X > z) = L(z)x~#, where L is asymptotically
constant at infinity, i.e. there exists C' € (0, o) s.t. L(z) — C as  — +o0.
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between the consecutive regeneration times up to time n. The main difficulty nat-
urally arises from the fact that the number 7" (n) of regeneration times (and thus
the number of durations) is now random and the variables S, ..., Sy, are not
independent anymore (in particular, their sum is less than 7 by construction). We
show that the strong consistency of the estimator is preserved. For illustration pur-
poses, numerical experiments have been carried out, providing empirical evidence

of the relevance of the estimation method promoted.

The paper is organized as follows. A thorough analysis of the behavior of the
estimator (3.2) in the ii.d. case is first carried out in section 3.2. The asymptotic
results thus established are next extended in section 3.3.3 to the regenerative [3-
null recurrent Markovian setup, when the estimator is computed based on a single
finite-length trajectory of the atomic chain. Illustrative numerical results are pre-

sented in section 3.4, while technical proofs are deferred to Section 3.5.

3.2 Tail Index Estimation - The Discrete Heavy-

Tailed i.i.d. Case

Throughout this section, Sy, ..., S, are independent copies of a generic dis-
crete generalized Pareto r.v. S, i.e. a random variable S with survivor function of
type 3.1, where the parameter 5 > 0 and the slowly varying function L are suppos-
edly unknown. As a first go, we start to investigate the behavior of the estimator
(3.2) in this basic general framework and next develop the analysis in specific sit-

uations, i.e. for particular choices of the function L.
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3.2.1 Main Results - Confidence Bounds and Limit Theorems

As explained in the Introduction section, the estimator (3.2) can be viewed as

an empirical counterpart of the quantity

ek
B(k) = I(pe) — n(psr) = 6 + In ( fékﬁl)) | (53)

see (3.1), which tends to 3 as k — oo by virtue of the slow variation property of L.
As previously emphasized, unless the function L is supposed to be asymptotically
constant (i.e. there exists C' > 0 s.t. L(z) — C as & — +00), the discrete general-
ized Pareto model (3.1) is not a discrete version of the (continuous) approximately
[-Pareto model considered in [25] and, consequently, the validity framework es-
tablished therein does not apply here.

The proposition below provides an upper confidence bound for the absolute

deviations between (3.2) and [ (respectively, between (3.2) and (k) ).

Proposition 3.2.1. Let 0 € (0, 1/2) and set u,,(0) = In(2/9)/n foralln > 1. If

k = 1 is such that px,1 = 16u,(0), then, with probability at least 1 — 26, we have:

O D

The bound (3.4) reveals some sort of "bias-variance’ trade-off, ruled by the hy-
perparameter £ > (. The second term on the right-hand side can be viewed as
the bias of the inference method, insofar as the estimator (3.2) can be seen as an
empirical version of the approximant (3.3). It decays to 0 as k increases towards
infinity, while the first term, whose presence is due to the random nature of the es-
timator, tends to +00. We point out that second-order slow variation conditions (see

[50]) are required to bound the (vanishing) bias term in (3.4), as shall be explained
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in subsection 3.2.2. The following result reveals that for an appropriate choice of

k = k,, the estimator (3.2) is strongly consistent.

Theorem 3.2.2 (Strong consistency). Suppose that, asn — +c0, we havek,, — +

so that (Inn) exp(k,f3)/n = o(L(exp(k,)). Then, we have:
Bn(kn) — 3 almost surely, asn — +0.

In particular, as stated below, strong consistency is guaranteed when k,, is of

logarithmic order.

Corollary 3.2.1. Let 0 < A < 1/f3. Then, we have:

~

Bn(Aln(n)) — B almost surely, asn — +0.

Now the following results establish the asymptotic normality of the deviation

between (3.2) and ((k,, ), when appropriately normalized.

Theorem 3.2.3 (Asymptotic normality). Suppose that k,, satisfies the conditions of

Theorem 3.2.2 and k,, = o(n) asn — +0.

(i) Then, asn — +00, we have the convergence in distribution:

~

/WPk,, (671(]%) - B(kn)> =N (07 e’ — 1) .

(ii) In addition, asymptotic normality holds true for the ’standardized’ deviation:

A/ nﬁﬁ) (B\n (kn) - p (kn)>

ebBnlkn) — 1

N (0, 1), asn — +oo.
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The asymptotic normality results above can be extended to the deviation be-
tween (3.2) and f3, provided that the bias term 3(k,,) — 0 vanishes at an appropriate

rate, as stated below.

Corollary 3.2.2. Suppose that the conditions of Theorem 3.2.3 are fulfilled. In addi-

tion, assume that k,, is such that

W(l—ﬂ>—>0 asn — +oo (3.5)
e L (ebn 1) ’ ' :

(i) Then, we have the convergence in distribution

~

/NP, (ﬁn (k) — ﬁ) = N(0, ¢’ — 1) asn — +oo.

(ii) In addition, the ’studentized’ version is asymptotically normal:

np (Bu(kn) = )
eBnlkn) — 1

= N(0,1) asn — +oo.

Of course, the condition (3.5) on k,, can be hardly checked in practice. This is a
classic issue in tail estimation and in the statistical analysis of extreme values more
generally. The choice of the hyperparameter k£ somehow rules the (asymptotic)
bias-variance trade-off: the estimator (3.2) is expected to be of large variance when
k is large and to have a large bias if £ is too small. As depicted in Fig. 3.1, to choose
k, one may use the same approach as that originally proposed for the Hill estimator
(see e.g. [106]), which consists in plotting the values of (3.2) for a range of values

of k and choosing £ in a region where a certain degree of stability is exhibited.

Averaged versions. Rather than picking a single value for £, another natural ap-

proach would consist in averaging the estimators (3.2) over a range of values for
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i,., (k) for different values of £
0.20 I

0.10 T T T T T
] 10 20 a0 it

Iiu'

Figure 3.1: Behaviour of Bn(k:) for different values of £, to estimate the parameter

3 = 0.15 based on a dataset of 10° independent realizations of a Zeta distribution
with parameter a = 3 — 1 (see section 3.4 for its definition).

the hyperparameter. Let £ and m such that £ > m and define

8 (k,m) = 2m1+ PRIES (3.6)
By (kym) = 2m+ Z (k+ 7). (3.7)

One may easily check that

1 L(e™)

The nonasymptotic result in Proposition 3.2.1 can be extended to (3.7), as re-
vealed by the bound stated below, which suggests that a more favorable balance

between bias and variance could be attained by means of an adequate choice of
the range defined by k and m.

Proposition 3.2.4. Let k and m such that k > m and let § € (0, 1/(2(1 + 2m)).

Then, as soon as pgm+1 = 16u,(0), we have with probability larger than 1 — 26(1 +
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2m):
Uy, (9) 1
Pk+m+1  2m+1

B (ko) = 8

<6

L)
(L) o

3.2.2 Refined Bias Analysis - Examples

We now consider several specific cases of distributions of type (3.1) (i.e. several
instances of the slowly varying functions L) to explicit the asymptotic order of
magnitude of the terms 1/, /npy;1 and | In(L(e*)/L(e**1))| involved in the bound

(3.4), when k, is picked as in Corollary 3.2.1: k,, = Alnn with0 < A < 1/.

e The logarithmic case. Suppose that L(n) = C'lnn, where C' > 0. In this
situation, we have |In(L(ef")/L(e®"*1))| ~ 1/(Alnn) as n — +o0, whereas

1/\/nprs1 = O(1/v/n1=4% Inn).

e The inversely logarithmic case. Consider now the situation where L(n) =

C'/Innwith C' > 0. Then, we still have we have | In(L(e*")/L(e**1))| ~ 1/(Alnn),

while 1/, /npr11 = O(y/(Inn)/n'=4%) as n — +oo.

We point out that, in the two examples above, the conditions of Corollary 3.2.2

are not met, the bias being too big to get asymptotic normality (centered at 3).

e The asymptotically constant case. Suppose that L(n) = e“°(1 + £(n)) where
In(L(e®)/L(e**1)| = O(e(n?))
and 1/./nprr1 = O(1/v/n'=48). Hence, if |¢(n?)| = O(n™") for some A > 0,

Co > 0ande(n) — 0asn — +o0. In this case,

then the conditions of Corollary 3.2.2 are satisfied with k, = Alnn such that

max{(1 — 2))/8, 0} < A < 1/8.

e Slow variation with a remainder (S R2). Consider the case where the slowly

varying function satisfies the condition S R2 introduced in [21]: there exist two
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real-valued functions k£ and g defined on R such that, for all A > 0,

L(\x)
L(x)

—1~k(N)g(z), asz — +0, (3.9)

where x(\) = ch 0°=1df, ¢ > 0 and g is regularly varying with index p < 0,
ie g(x) = xPU(x) where U is a slowly varying function. Under the additional
assumption that g has positive decrease, Corollary 3.12.3 in [21] gives the following

representation:

L(z) = C(1—clp| 'g(z) + o(g(2))), as x — +o0, (3.10)

where C'is a finite constant. The result below provides a precise control of the

bias of the estimation method in this case.

Lemma 3.2.1. Suppose that conditions (3.9) and (3.10) are fulfilled. Then, as n —

+00, we have:

In (II:((;;))) = —c|p|tn A (U (n?) - e Pl (en)) + o (n*A“)'U (n?)).

In this situation, the bias of the method is thus of order O(n~4I*!), while 1/, /mppi1
is of order O(n~(1=4%)/2) Hence, if 1/(8+2|p|) < A < 1/, satisfies the conditions

of Corollary 3.2.2 are satisfied with k, = Alnn.
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3.3 Regular Null-Recurrent Chains - Regularity In-

dex Estimation

We start by setting out the notations used throughout this section and listing
first the properties satisfied by the class of Markov chains under study. One may
refer to [87] for an excellent account of the Markov chain theory. The concept
of [-regularity for describing how fast a Harris chain returns to Harris sets is
then recalled, together with related asymptotic results, invoked in the subsequent

statistical analysis, for clarity’s sake.

3.3.1 Harris recurrent Markov chains

Here and throughout, X = (X,,),en denotes a time-homogeneous Markov
chain, with state space F, equipped with a countably generated o-field £, and tran-
sition probability P(z, dy). For any probability distribution A on E, we denote by
[P, the probability distribution on the underlying space such that Xy ~ (dz) and
by E,[.] the corresponding expectation. For notational convenience, we shall write
P, and E,[.] when A is the Dirac mass at z € E.

We suppose that the chain X is 1-irreducible, meaning that there exists some
o-finite measure ¥ on (F, £) such that any measurable set B — E, weighted by 1,
can be reached by the chain with positive probability in a finite number of steps, i.e.
> ins1 P"(z, B) > 0, no matter the starting point z € E, denoting by P"(z, dy) the
n-th iterate of the transition probability P(x, dy). An irreducibility measure is said
to be maximal if it dominates any other irreducibility measure. A measurable set
A € & is called accessibleif 1) (A) > 0. An irreducible chain possesses an accessible

atom, and hence is called atomic, if there is an accessible set a € £ such that for
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allz,yina: P(x,e) = P (y,e).

If X is ¢-irreducible, there is d’ € N* and disjoints sets D1, ..., Dy Dy1 = D,
weighted by ) such that ¢)(E\ Ui<i<a D;) = 0 and Vx € D;, P(z, D;11) = 1. The
g.c.d. d of such integers is called the period of the chain. X is said to be aperiodic if
d=1.

For any set A € £ denote by 1" (A) the total number of visits of X to A. Similarly,

denote by T), (A) the number of visits X to A up to time n, i.e.

n

T.(A) = Y I{X; € A}, (3.11)

i=1

this sequence is called the occupation time sequence.

An irreducible Markov chain is Harris recurrent if it visits any accessible set

infinitely often with probability one, no matter the starting point, i.e.
P, (T(A)=w)=1 VrekE.

Every Harris recurrent chain admits a nonzero invariant measure, that is, a
measure 7 such that { _ 7(dz)P (x,A) = w(A) for all A € . This measure
is unique up to a multiplicative constant and it is also a maximal irreducibility
measure for X. Measurable sets weighted by 7 are said to be Harris. When the
measure 7(dz) is finite, the chain is said to be positive recurrent otherwise, is called

null recurrent.

For Harris recurrent chains, the following strong ratio limit theorem holds: as

n — oo,
SN e A} n(A)
i {Xie B} w(B)

IPy-almost-surely, (3.12)

for any initial distribution A and any measurable sets A and B such that 7(B) > 0.
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90

3.3.2 [(-null recurrent Markov Chains

For a wide class of Harris Markov chains, the regularity index describes how
fast the occupation time related to a Harris set C' (i.e. the number of visits to )
increases with time n. When X is positive recurrent, it follows from the Strong
Law of Large Numbers for Markov chains that occupation times of Harris sets

(3.11) grow in a linear fashion with the observation time: as n — o0,

T,.(C) ~ m(C)n P,-almost surely.

Dealing with null recurrent chains is considerably more challenging, given that
a comprehensive theory of non-parametric estimation for this type of chain does
not exist. To tackle this problem, Karlsen and Tjgstheim developed in [67] the con-
cept of a S-null recurrent Markov chain (called S-regular Markov chains in [28]),
which establishes a regularity condition that makes the issue more manageable.

Before formulating it, we need a few definitions.

Denote by £ the class of nonnegative measurable functions with positive 1
support. A function s € £7 is called small if there exists an integer mg > 1 and a

measure v € .# (&), such that

P™(x,A) =z s(x)v(A) VreE Aef. (3.13)

When a chain possesses a small function s, we say that it satisfies the minorization
inequality M (myg, s,v). As pointed out in [90], there is no loss of generality in
assuming that 0 < s (z) < 1 and {, s(z)dv(x) > 0.

A set A € £ is said to be small if the function [ 4 is small. Similarly, a measure

v is small if there exist my, and s that satisfy (3.13). By Theorem 2.1 in [90], every
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irreducible Markov chain possesses a small function and Proposition 2.6 of the
same book shows that every accessible set contains a small set. Moreover, if 7 is
an invariant measure and A is a small set, then 0 < 7 (4) < +00 [90, Proposition

5.6, pp. 72].

We will say that an irreducible and Harris recurrent Markov chain X is S-null
recurrent (or [3-regular) if there exists a small function A, an initial measure )\, a

constant 3 € (0, 1) and a slowly varying function L, such that

E, [Z h (Xt)] ~ ﬁnﬁLh (n). (3.14)

t=0

as n goes to +o0. Here ['(z) = St>0 t*~le~'dt denotes the Gamma function.

Lemma 3.1 in [67] shows that the parameter J is a global parameter of the
chain, following [28], we will call this parameter the regularity index of the chain.
Furthermore, the lemma shows that the function L;, in (3.14) is essentially unique
up to a multiplicative constant. This means that if a small function A satisfies (3.14),

then for any small function f, there exists a constant K such that f satisfies

(3.14) with Lf = Kﬁth.

When particularized to functions of the form I 4 where A is a small set, (3.14)
shows that under $-null recurrence, the expectation of the growth of the occupa-

tion time of small sets is sublinear

1

R X(E7)

nﬂLc (n) .

The following theorem, which is the particularization of Theorem 3.2 and
Lemma 3.6 of [67] to the atomic case, shows that when X is atomic, 5-null recur-

rence is characterized by the fact that the time of the first return to the atom has
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a generalized Pareto distribution. The theorem also provides the limit distribution

for the occupation time of small sets.

Theorem 3.3.1. Assume X is a 3-null recurrent atomic Markov chain with accessible

atom o Let 7, = min{n > 1: X,, € a}. Then,

i) There exists a slowly varying function L, such that

1
P, (7o, ~ : 3.15
7= 1 B L) 19
ii) For any small set C, there is a constant K, ¢ > 0 such that
T, (C
@) 4 Mj(1) (3.16)

P L (n) Kac
where M(1) is a Mittag-Leffler* distribution of index 5.
The class of S-null recurrent Markov chains contains many stochastic pro-
cesses widely used in probabilistic modeling.

Bessel random walks

A Bessel random walk is a stochastic process defined on Z, = {0,1,2,...},
reflecting at 0, with steps +1 and transition probabilities of the form
1 )
P(Xn+1=x+1|Xn=x)=px=§ 1—2—+h(x) x =1,
x

P(Xn-&-l:x_l’Xn:x):l_px x =1,

“The Mittag-Leffler distribution with index 3 is a non-negative continuous distribution, whose

moments are given by

m!
E (Mg (1)) = T+ mA) m = 0.

See (3.39) in [67] for more details.
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P (X =1]X, =0) =1,

where h (z) = 0 (1) asz — +oo.

The parameter ¢ is named the drift parameter. A Bessel random walk is recur-
rent if 0 > —1, positive recurrent if § > 1 and transient if ) < —1;ford = —1
recurrence of transience depends on the function A(x). In the null recurrent case,
the chain is S-regular with 3 = 2 and P (19 > n) ~ n~"%" L* (n) where L* is a

slowly varying function (see Theorem 2.1 in [3]). For 6 = 0 and h = 0 this process

corresponds with a reflected random walk with p = %

TAR model

Let

Xp =1 Xp1l{X 1€ S} + X, 1 I{X,.1€ S} + 2, Xo=0

where a4, is a real constant, S is a compact set in R, S C is its complement and x,,
is an i.i.d sequence of random variables such that Ex,, = 0, Ex? < oo, its distribu-
tion function is absolutely continuous with respect to the Lebesgue measure with

density function fy such that inf,cc, fo () > 0 for all compact sets Cj.

In Section 4.5 of [49], this model is used to study the relationship between
the logarithm of the British pound/American dollar real exchange rate and the
Consumer Price Index. In that same paper, it was proven that the index of this

model is % This shows that having index % does not characterize random walks.
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Null recurrent, but not 5-regular

The following construction, presented in [88], allows us to construct S-null
recurrent chains for a given value of  and also null recurrent chains that are not
[-regular.

Let 7,, be a sequence of i.i.d. random variables. Let’s define X, as

Xn—l — 1, ian—l > 1,
X, =

Mns if Xn—l € [07 1] .

Then, X, is an irreducible Markov Chain and the interval [0, 1] is an atom for
the chain. Moreover, P, (7'[071] > n) = P (|m] > n), therefore, X,, is null recurrent

if and only if E|7;| = o0 and is S-null recurrent if and only if

P (|m] >n) ~n7"L(n)

for some slowly varying function L(n).

3.3.3 Regularity Index of a Regular Chain - Statistical Infer-

ence

The estimation of the regularity index /5 has not received much attention in

the literature. To our knowledge, the only consistent estimator of this parameter

InT,(C)
Inn

is where C'is a small set. This estimator was proposed in Remark 3.7 of [67],
where it was shown to be strongly consistent for 5-null recurrent chains where the
minorization condition M (1, s, v) is satisfied. It was pointed out by the authors
that this estimator is of limited practical use due to its slow convergence. To make

this statement more clear, consider the simplest case, where X is atomic and L,
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is constant. By part ii of Theorem 3.3.1, we can find a constant K, - such that

T’ZZ(BC ) converges in distribution to K «.c Mgz (1). Then, by the Continuous Mapping

Theorem,

e 5) L (KL oM (1)),
which shows that the rate of convergence, in this case, is of order 1/In n.

In this section, we will show that in the atomic case, we can use the estimator
proposed in Section 3.2 to consistently estimate f.

Assume that we observe the first n points of an atomic S-null recurrent ho-
mogeneous Markov Chain. Let T}, () be the number of times the chain visits the
atom up to time n, and denote by 74, ..., 77, (o) the times of those visits. By the
Strong Markov property, the random variables S; = 7,,1 — 7; are i.i.d. and by (3.15)
their survival function has the form of (3.1) (with L = ﬁ)

The recurrence of the chain implies that 7'(n) = T, (o) — 1 converges almost
surely to 400, then, by Theorem 8.1 in page 302 of [55], we can replace n by T'(n)

on the strong consistency results we presented on section 3.2, to obtain equivalent

results for the sequence S ..., St(,).

Theorem 3.3.2. Ifk, is a sequence that satisfy the hypothesis of Theorem 3.2.2, then

3T(n) (kr(n)) converges almost surely to 3.

From this result, we get that if we chose k, = Inn, then the estimator is

strongly consistent and takes the form

A Yus.> 7
Braw (InT (n)) =In | 7= . (3.17)
> I{S; > eT (n)}

i=1

Theorem 3.3.3. BT(N) (InT (n)) is a strongly consistent estimator of 3.
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The following result is the application of Theorem 3.5.1 to the Markovian case.

Theorem 3.3.4. Let k,, and m,, be sequences that satisfy the hypothesis of Theorem

3.5.1, then BT(,L) (k:T(n), mT(n)) — (3 almost surely.

Lastly, if we take k,, = Inn, m,, = |2 | and replace n by InT (n) we get that

T(n)

InT (n) ] P I {Sl- < oI (n)}
|> 2 {@J +1 Tf)ﬂ{& ] GLWJHT(H)}

’ (3.18)

is a strongly consistent estimator of /.

Theorem 3.3.5. Ifl is a positive number such that | > %, then

Brny (th(n), {@D — 3 as.

Remark 3.3.1. Due to the impossibility of controlling the sequence T, (o) (and
hence T (n)) by a deterministic quantity in probability (part ii of Theorem 3.3.1),
we have not been able to extend to the markovian case the asymptotic normality
results of Theorem 3.2.3 and Corollary 3.2.2. Heuristically, if in Theorem 3.2.3 we
take k, = InT (n) and replace T (n) by its approximate expectation n° L, (n) [67,

Lemma 3.3], we would get a convergence rate of order n ?1=9/2L_ 5 (n), where

La(nf Lo (n))

La,s (n) is the slowly varying function given by /== )17

. This suggest a con-
vergence rate of order n=?(1=%)/2 \when L., is asymptotically constant. However, we

have not been able to prove this result.
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3.4 Illustrative Numerical Experiments

In order to test the accuracy of the estimators proposed in this paper, we first
consider the following simulation framework: for different values of 3 we generate
64 samples of 10° points from a Zeta distribution® with parameter o = 3 — 1. For
each sample, we estimate (3. Table 3.1 contains the mean squared error for each
value of 3.

For comparison, we have also estimated ( using the implementation of the
Hill estimator provided in [116], where they add a small uniform noise to each
sample in order to improve the stability of the estimator for discrete data and use a
double bootstrap method [33, 104] to find the order statistic that provides the best
estimator. These changes make the Hill estimator more precise, but considerably

slower, especially for small values of 3.

Table 3.1: Mean squared error

64 Hill B (Inn) B (Inn, 22)
0.1 1.7x107 3.47x1073  3.04x1073
0.2 103860 1.09x1072  8.71x107*
0.35 398 3.5x107% 1.63x10~%

0.4 281x107° 581x107% 1.25x107¢
0.5 409%x107°  2.18x1073  4.59x10°4
0.75 3.05x107°  8.48x1072  1.84x1072

SA discrete random variable S follows a Zeta distribution with parameter /3 if

k—(!
¢(a)

where ( is the Riemann zeta function. The cumulative distribution function of a Zeta distribution
satisfies (see Lemma 9.1 in [120])

P(S=k) =

ka+1
C(a) (a+1)

This distribution is also known as Zipf’s distribution due to its relationship with Zipf’s law.

P(S>k)~
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Using the same methodology, we have generated different S-null recurrent

Markov Chains (each one with 10° points) and we have estimated the value of

B.
Table 3.2: Mean squared error
Markov chain T(n) Hil B (Inn) I5; (ln n, 1“7”)
Random walk (3 = 0.5) 2187  5.2x1073 3.57x1072  1.92x1072
Bessel random walk with § = 0.35 148 1.4x1072 3.78x107%2  1.73x1072
Bessel random walk with 5 = 0.4 833 4.19x1073 1.83x1072 1.39x 1072
Bessel random walk with 5 = 0.7 7722 8.64x107%  4.95x107?2 3.26x1072
3.5 Technical Proofs
3.5.1 Proof of Proposition 3.2.1
Lemma 3.5.1. Let 6 > 0 and k such that py1 = 16u,(9), then
~ Uy (0
Bu(k) — Bk < 6y "), 5.19)
Pr+1

with probability larger than 1 — 20.

Proof. In order to prove this result, we need the following lemma, proved in the

supplementary material of [25].

Lemma 3.5.2. Bernstein’s inequality for Bernoulli random variables Let X1, ..., X,

be i.i.d. samples from a distribution F', and we definep, = 1—F(e*),pp = 1 3 I {X; > €*}
i=1

and u, (§) = %. Let 6 > 0 and also let n large enough so that py, = 4u,, (), then

with probability 1 — ¢,

D — Pl < 24/ prun(0).
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Because py, = 16u,, () we can apply the previous lemma, then with probability

greater than 1 — § we have

taking the log in the previous equation we get

1Hpk+1n<1—2 un(6)><lnﬁ;§<1npk+ln<1+2 u"(5)>

Pk Dk
1nG—23ﬁQ><mm—mm<m(uﬁ %wv
Pk Dk
—3Eﬂ9<mm—mm<2 %wx (3.20)
Pk Pk

where the last pair of inequalities is obtained by using In (1 + z) < z and

In(l-z)=>-%(x<1/2).

Inequality (3.20) implies that

4]
Inpy —Inpg| <3 n(9) (3.21)
Dk
with probability bigger that 1-0.
Applying (3.21) for k£ + 1 we get with probability bigger that 1-0
Uy (0
‘lnﬁlzﬂ — 1npk+1| <3 L (3.22)
Dk+1

Combining the triangular inequality and the equations 3.21 and 3.22 we get
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with probability bigger than 1 — 26

Bn(k) — < |Inpy —Inpy| + ’1npk+1 In p1

Pk+1
<6y —=
pk-+1

Pn(k) = B(K) |+

Bulk) — 8| <

|B(k) — B| and applying equation (3.3) and lemma 3.5.1.

Finally, Theorem 3.2.1 follows after noticing that

3.5.2 Proof of Theorem 3.2.2

Lemma 3.5.3.

Jm fk) = 5.
Proof. Because L is an slowly varying function, lim,_,, LL((’\;;) = 1 (see 1.2.1 of

[21]) for all A > 0, therefore e ki)l) = LL((ee:k)) — 1 and the result follows by taking

limits in (3.3). [

Let € > 0. Because k,, — o0, Lemma 3.5.3 implies that 5(k,) — (3, therefore

we can find V; € N such that

Yn = Ny, (3.23)

Let’s take 6 = % then u, (J) = 2122,

Because L is slowly varying, L (¢*»™) ~ L ("), then e¥»# 122 = o (L (er*1))
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and we can find N5 € N such that

_ L(eFt) - 32Inn
Pentr = “imm = 7,

therefore, we can apply Lemma 3.5.1, obtaining that, with probability bigger

than 1 — %

Vn = No, (3.24)

Combining triangular inequality with equations (3.23) and (3.24) we have that

for all n > max (Ny, Ns)

Bulln) = 8] < |Bulha) = Blkn)| + 1B(ka) = B
6 2lnn + = (3.25)
NPk,+1 2

with probability bigger than 1 — %.

Plugging py, +1 = % in the first term of right hand side of (3.25), we get

¢ 2Inn 6 2Inn elkntB o Inn  elkn)8
NPk, +1 n  L(ek*1) n  L(ekn+1)

The assumption that eknﬂlnT” =0 (L (ek"“)) implies the above equality con-

verges to 0 therefore we can find N3 € N such that ’64 / %

< 5 foralln > Ns.

Then, for all n > max (NVq, Na, N3)

with probability bigger than 1 — %. Because this is valid for all ¢ > 0, it implies

4

that Bn(kn) converges in probability to 3. Moreover, because )} - converges,

101



3.5. TECHNICAL PROOFS

102

Borell-Cantelli lemma implies that Bn(kn) — (3 almost surely.

3.5.3 Proof of Corollary 3.2.1

If we take k, = Alnn, we have e*» = n4? then

. Inn . nY¥lnn Inn
ime™ =lim ———— =lim ———~
n nL(ek)  n nL(nA) n nl=A8L(nA)
1 1
— lim —— " =0.

n n(=A8)2 (=AB)/2 [ (nA)

For the last limit we have used that if L is slowly varying, then L(n") is also
slowly varying and that lim,, n” L(n) — +o0 for v > 0 and L slowly varying [21,

Proposition 1.3.6.v]. Theorem 3.2.1 now follows by Theorem 3.2.2.

3.5.4 Proof of Theorem 3.2.3 and Corollary 3.2.2

Lemma 3.5.4. Let X, be a sequence of positive random variables and a,, and b,, two
positive sequences such that a, > 0, Z—Z — 0. If there exists a random variable Y
with continuous distribution function F' such that

X, —a,
b, d Y

then,

o (lan — lnan) Ly
by, d

Proof. Let x € R be fixed. Because @ 7 Y, we have

P (X, < an +byz) — F(z).
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Using that a,, + b,z = a, (1 + Z—Zm) and taking logs we get

P <lan <Ina, +1In (1 + b—”x)) — F(x).

Qn

bu 0 implies that 22z — 0, therefore, for n big enough,
an an

b, b, b
In{l+—2)=—z+0(—|.
Qy, Qy, o
Then,

P (lan —Ina, < b—"a:+0 <b—n>) — F(x)
an ap

In X, —Ina,
P(annb—na<x+o(1)) = F(2)

and the result follows from the continuity of F'.

Lemma 3.5.5. If k,, satisfies the hypothesis of Theorem 3.2.2, then,

Proof. By Lemma 3.5.2, for any 0 > 0 such that p;, > 4u, () we have that, with

probability bigger than 1 — ¢,

D — Pl < 24/ prun(0),

then,

Pk

g

“-~n
@—1‘@ “”@) >1-6.
Pk

As in the proof of Theorem 3.2.2, let § = %, 50 u,(0) = 2n

n

(3.26)

. The condition
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erPn — o (L (ebn*1)) = o (L (e*)) implies that we can find N; € N such that

D, = 81% for all n > Ny, therefore, by equation (3.26),

N
2lnn 2
P pkn—1'<2 >1-= Vnz= N
Dk, NPk, n
Let £ > 0. Notice that ng‘k’; = ne—ki{éz(ekn) = 1‘;(5():::)6 and this goes to 0 as n

goes to +0, therefore, we can find Vs such that 2 2lnn < o foralln = N, then

NPl
(

and the Lemma follows by Borel-Cantelli’s Lemma. O]

Dh 2
ke —1‘<5) 21——2 Vanax(Nl,Ng),
Pk, n

The following lemma can be obtained using the same arguments of Example

11 on [39].

Lemma 3.5.6. Let X, be a sequence of i.i.d. random variables with survival function
(3.1), 1 and @2 bounded functions and u,, an increasing sequence of real numbers

such that u,, — +00. Define

Xni= &H{& > 1}, v, =P (X,;#0) and
Up | Up
~ 1 &
201600 = = D300 (%)~ B (Xa).

If there exists a sequence r,, such that
(A1) r, = o(n).
(A2) r,v, — 0.

(A3) nv, — +0.
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. 4
m E<Z " <Xm~>) = O(rvn) k=12
=1

T T

(43) im 5 33 50 F (0 (X) 61 (X)) = on

TnUn !
7

then (Zn (qﬁk)) converges weakly to a centered normal distribution with co-
1<k<2

variance matrix (O1); <) j<o-

)

Let k,, satisfy the conditions of Theorem 3.2.2, take u,, = e*, ¢, () = T{z > 1}

and ¢y () = I{x > e}. With this notation

A [Cae R o
-t ()] o f -

Let w, = F (euy), A, = %%ﬁf% — & (notice that A, — €”) and y,, = /72,

nEy (Xni) + 2 {01 (Xni) — Ed1 (X))}
- i=1
nEgy (Xpi) + 23 {d2 (Xni) — Ega (Xo4)}
=1
5 {61(Xni)—Eé1(Xn,i)}
E¢1(Xp,i) iz ' ' E¢1(Xn,i) > Tn
_ E¢2(Xn7l) + - ?’LE(]SQ(XTL’Z') _ Ed)Q(Xn,z) + Zn (¢1) nwn2
i {02(Xn,i)—E¢2(Xn,i)} 14+ Z, (¢2) nzjnz
1 + i=1 n

nE¢2(Xn,i)
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I+ zn (¢2) Yn

(3.27)

To apply Lemma 3.5.6, let’s take r, = k, and assume that r,, = o(n). For

condition (A2) we have:

kn kn
limr,v, = limk,F (ek") = lim % = lim ]::ﬁ L (kenﬁ ) = 0.
n n n e ez ez

knBlnn
n

Because e =0 (L (e )) and L is slowly varying, we can write e"” =% =

L (€*n) e (n) where £ (n) — 0 and this implies (A3).

For (A4), note that Zn] ¢1(X,;) follows a binomial distribution with parame-
i=1

i=1
variables polynomial of degree 3 such that the degree of r,, on each monomial is

Tn 4
ters r,, and v,,, then, E< o (Xm)) = r,v, (1 — h (ry,v,)), where h is a two

always greater or equal than the degree of v,,. Condition (A2), and the fact that

Tn 4
v, — 0 implies F ( o1 (Xm-)) = O (r,v,). With a similar argument and us-

i=1

Tn 4
ing the fact that o e~ B, it can be shown that E(Z o (Xm)> = O (ryvy)

=1
and therefore condition (A4) is fulfilled.

For (A5), first, notice that

Un , 7 J
UHQ 9 Z #]
Wy, 5 7

E(¢1 (Xny) 92 (X)) = 3

E (¢ (Xni) 92 (X j)) = 4

Wy, 1 #J



CHAPTER 3. TAIL INDEX ESTIMATION FOR DISCRETE HEAVY-TAILED DISTRIBUTIONS

therefore,
T™m Tn 2
. Uy +1rp(rp—1)v
oy = lim ZZE d1 (X)) ¢1 (X)) = lim nlr=Don” _
n Tn'Uni 1j=1 n T'nUn
T T
) Sk . Wy + Ty (ry — 1) vyw _
=t $ 8 50 (0,08 () =ty T D
n rnvni 1j=1 n T'nUn
™ Tn 2
. TpWy Ty (ry — 1w _
7 =l 3V B (6 (X 63 (X)) = tim 2 E U DO oy
o TpUn i~ 1j=1 n T'nUn
By Lemma 3.5.6, (Zn (gbk)) converges to a centered normal distribution
1<k<2

with covariance matrix (o), <k1<o- Taking into account that y,, ~ \/eTﬁT, it follows

that

b= (2o ) (1= 2o +or (=)
o (Za(6) = Mo (00) + on (

)

Then, \/nv, (/):n — )\n> converges weakly to a centered normal distribution
with variance ¢2? (011 + €209y — 2¢°515) = €*’ (¢ — 1). This can be resumed in

the following lemma.

Lemma 3.5.7. Let X,, and u,, be as in Lemma 3.5.6, if k,, satisfies the conditions of

Theorem 3.2.2 and k,, = o(n), then

EH{X T

i I{X; > eknt1} F (eknt1)

nk (ekn)

converges weakly to a centered normal distribution with variance *° (6'3 — 1).

Lemmas 3.5.3, 3.5.4 and 3.5.7 combined with equation (3.3) imply the first part
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of Theorem 3.2.3, the second part follows from Lemma 3.5.5 and Slutsky’s Theorem

(pp. 248 in [55]). Corollary 3.2.2 follows immediately.

3.5.5 Averaged Estimators

Here we collect some remarks and results related to the averaged estimator
(3.7). First, we detail how to get the expression (3.2.1) from (3.3). Let £ > 0 be

fixed, we have:

L k+j
5(74?757'):54‘1“(%), 7,

so that

m 1 m 1 m L(€k+j)
2m+ _Z Bt = i ._Zm/3+2m+1 ,_zmln <m>
k+])
:B+2m+1 - L €k+]+1
1 L(ek—m)
=p+ T— In <L(ek+m+1)> )

The result below establishes the strong consistency of the estimator (3.7).

The following results show that, for well-chosen k,, and m,,, the estimator

Bn(k:n, m,,) is strongly consistent.
Theorem 3.5.1 (Strong consistency). Let k,, and m,, such that
i k, —m, — +o0.
ii Z_] 2% (1 = 2m,,) is convergent.
jii e tmn)BIn — o ([ (ghntmn))

n
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then, [3, (kn,my) converges almost surely to 3.

Corollary 3.5.1. Let A, be a positive numbers such that | > 1 and % > w

then
Alnn

Bn (Alnn, > — [0 a.s.

3.5.6 Proof of Theorem 3.2.4

The following lemma provides us a bound for the difference between 3 (k,m)—

Bk, m).

Lemma 3.5.8. Let & > 0 and k and m such that py 1,1 = 16u,(0), then

Bullesm) = Bk, m)| < 6 , (3.28)
Pr+m+1

with probability larger than 1 — 20 (1 — 2m).
Proof. For the left hand side of equation (3.28) we have

Bk, m) — Bk, m)| = - > (Ba G+ 3) = Bk + 7))

n Y Y 2m + 1 J:_m n
1 2m R

then,

~ 1 2

Bull.m) = Blk,m)| < -— 120 Bulk=m+ )= Bk —m+j)| (29

Because pyimi1 = 16u,(0), we have that py_,,4 541 = 16u,(5) for all j be-
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tween 0 and 2m, therefore, we can apply Lemma 3.5.1 obtaining that, for each j

Bn(k—m+j)—5(k—m+j))<6 “"—@7 (3.30)
Prk—m+j+1

with probability bigger than 1 — 24. The probability that inequality (3.30) is
true for all j between 0 and 2m is bigger than (2m + 1) (1 —20) —2m = 1 —

20 (1 — 2m), therefore, with at least that probability, equation (3.29) becomes,
- 1 2m n 5 n 6
6n(k,m)—ﬂ(k,m))< 26 un(0) <6 un(0) .

2m + 1 =0\ Pe-mejt1 Dk+m+1

Similarly to the proof of Theorem 3.2.1, Theorem 3.2.4 now follows by trian-

]

gular inequality, equation (3.6) and Lemma 3.5.8.

3.5.7 Proof of Theorem 3.5.1

Lemma 3.5.9. Let o, k,, and b,, be sequences such that, o,, — «, k, — 400 and

k, — b, — +c0. Then,
b

1 n

.7=_bn
brn,
Proof. Let \,, = %nﬁ >, g, +j, then
jzf n
1 bn 1 2

Take ¢ > 0 fixed, by the convergence of «,, there exists N; such that, for

alln > Ny,

a, —a| < e. Because k,, — b, — +0o0, we can find N, such that

k, — b, = Ny, forall n > N,, then,

Qp—bp+j — | < € forall n > N, and all
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j € N. This implies that for all n > N,

1 2b,, 1 by,
An —al < 5527 2 l0k0es — ol < 2bn+1z8 - c
7=0 7=0
[l
Lemma 3.5.9 shows that if k,, — m,, — +0o0, then
6 (km mn) - 6 (3.31)

Theorem 3.5.1 follows by the same argument used to prove Theorem 3.2.2,

using (3.31) instead of Lemma 3.5.3 and Lemma 3.5.8 instead of Lemma 3.5.1.

3.5.8 Proof of Corollary 3.5.1

We just need to show that sequences k, = Alnn and m, = # satisfy

conditions i, ii and iii in Theorem 3.5.1. The first two are trivially satisfied, for the

third one, notice that

' e(AlnrH-Allnn)ﬁ nn ‘ n(1+%)A5 nn . nn
lim = lim - = lim - -
nor <6A1nn+w> n nor (n(1+7)A> n no o 1-(1+1)4s <n(1+7)A>
i 1 Inn
= lim

n nl—(l-;%)AﬁL (n(1+%)A) nl—(l_;%)Aﬁ -

The condition % > A(l;r ) implies that 1 — (1 + %) Ap > 0, therefore,
1 |
lim =0 and lim B 0,
n 1—(1+%)A,8 Ll n 1—(1+%>A[3
n— = L (n( +7)> n 2z

which shows that k,, and m,, satisfy condition iii in Theorem 3.5.1.
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3.5.9 Proof of Lemma 3.2.1

The representation is a direct application of Lemma 3.5.10 and the fact that g

is a regularly varying function of index p.

Lemma 3.5.10. Assume that L satisfies SRR2, has positive decrease and x is big

enough such that representation the (3.10) holds, then

L(x) —1
1 () =~ alo) - g +olale). 63

Proof. Let’s denote A(z) = cp~'g(x) + 0 (g (z)). By (3.10) we have

() = (enan) = (75 o)

=Iln(l+A(z)) —In(l + A(\x)). (3.33)

Applying the first order expansion for In(1 + A(x)) we have that

In(1+ A(w)) = cp~g(x) + 0 (g (x)) + 0 (cp™'g(x) + 0(g (2)))

ol9(x)
=cplg(x) +o(g(z)). (3.34)
Applying (3.34) to Az we get
In(1+A\x) =cp tgAz) +o(g(x)), (3.35)

where we have used that if ¢ is regularly varying then o (g (Az)) = 0(g (x)).

The result now follows by plugging (3.34) and (3.35) into (3.33). O

112



Chapter I

Regenerative bootstrap for S-null

recurrent Markov chains

The content of this chapter is based on [47].

Abstract: Two regeneration-based bootstrap methods, namely, the Regenera-
tion based-bootstrap [6, 34] and the Regenerative Block bootstrap [15] are shown to
be valid for the problem of estimating the integral of a function with respect to the
invariant measure in a -null recurrent Markov chain with an accessible atom. An
extension of the Central Limit Theorem for randomly indexed sequences is also

presented.

4.1 Introduction

In [43], Bradley Efron introduced the Bootstrap as a way to overcome some
limitations of classical methods that often relied on strong assumptions about the
data’s underlying distribution or the model’s form. Since then, these techniques,

first studied in the i.i.d. case, have been developed and extended to time-series
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(see [77] for an extensive survey of methods) and applied to a wide range of prob-
lems in various fields such as signal processing [122, 123], soil science [111] and
econometrics [58, 82]. They can handle any level of complexity in data or models
from fully parametric to completely nonparametric cases. These methods are easy
to implement with modern computing power and can provide more accurate and

reliable inferences than traditional methods in many situations.

Although originally designed for i.i.d. sampling, there has been significant in-
terest in adapting the bootstrap to situations where the data is dependent. Several
resampling methods have been proposed for time series data: these include the
autoregressive-sieve bootstrap [74], block bootstrap [76] , circular bootstrap [101],
the stationary bootstrap [102], continuous-path block bootstrap [93], tapered block
bootstrap [95], frequency-domain bootstrap [72, 92], and local bootstrap [96]. For
detailed reviews and comparisons of these methods see [27, 48, 71, 73] and the
references therein.

In the Markovian case, numerous approaches have been developed and exam-
ined. In [75], the authors proposed a block resampling scheme that consists in
resampling from a nonparametric estimate of the one-step transition matrix of a
finite state Markov chain. This method was extended to the countable case in [6].
Extensions of this method have been proposed for the case where the state space
is Euclidean, as seen in [105], [94, 97] and [57]. The general concept is to estimate
the marginal distribution and the transition probability function using a nonpara-
metric function estimation technique and then resample from those estimates. For
a detailed explanation of this approach, refer to Section 4 in [71].

A completely new approach to this problem was introduced in [6]. Instead of
using estimated transition probabilities, they exploit the regeneration properties

of a Markov chain when an accessible atom is visited infinitely often. The main
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idea underlying this method consists in dividing the chain into a random number
of i.i.d. regeneration blocks and then resampling the same number of regeneration
blocks. This method, named Regeneration based bootstrap, was proved to be valid
for finite state atomic chains in [6], and it was extended to general atomic positive

recurrent Markov chains in [34].

It was pointed out in [16] that the Regeneration based bootstrap is not second-
order correct (its rate is Op(n~'/2) only). To overcome this limitation, a variation
of this method, called Regenerative Block bootstrap (RBB), was introduced in [15].
This method consists in imitating the renewal structure of the chain by sampling
regeneration data blocks, until the length of the reconstructed bootstrap series is
larger than the length n of the original data series (notice the difference with the
Regeneration based bootstrap, where the number of sampled blocks is equal to the
number of regeneration blocks in the original chain). It was shown in [15] that,
for atomic positive recurrent Markov chains, the RBB for estimating the integral
of a function with respect to the invariant probability, has a uniform rate of con-
vergence of order Op (n!) (the same as in the i.i.d. case).

Despite all these efforts in the positive recurrent case, up to our knowledge,
no bootstrap method has been studied in the null-recurrent scenario. Hence, our
objective in this paper is to start this study and show that both Regeneration based-
bootstrap and Regenerative Block bootstrap are valid schemes for estimating inte-
grals with respect to the invariant measure when the Markov chain is 5-null re-
current and possesses an accessible atom.

The paper is organized as follows: in section 4.2 we provide a brief introduction
to null recurrent Markov chains, making a special emphasis on atomic ones and
presenting the main results that we use throughout the paper. In subsection 4.2.3

we present an extension of the Central Limit Theorem for randomly indexed se-
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quences (Lemma 4.2.1). Section 4.3 is dedicated to the Regenerative Block bootstrap
in S-null recurrent Markov chains, while Section 4.4 is devoted to the Regeneration
based-bootstrap. In section 4.5 we have added a few simulations to show the behav-
ior of both algorithms in practice. The technical proofs are postponed to Section

4.6.

4.2 A short introduction to null-recurrent Markov
chains

In this section, we introduce some notation and review some important con-
cepts from Markov chain theory that will be used throughout the paper. For more

details, please refer to [38, 87].

4.2.1 Notation and definitions

Consider an homogeneous Markov chain X = Xy, X;,..., on a countably
generated state space (E, £), with transition kernel P and initial probability dis-
tribution A. This means that for any B € £ and n € N, we have £ (X;) = A
and

P(X,11€ B| Xo,...,X,) = P(X,,B) almost surely.

Note that the assumption of a countably generated state space is commonly used
in Markov chain theory to avoid pathological examples known as ’anormal’ chains
[37]. For more information on this topic, see [37], [61], and [107]. An example of
an 'anormal’ chain can be found in [22]. This assumption does not significantly
limit the generality of our results since most of the time £ = B (Rd), which is

countably generated.
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In the following, we use P (or P, for x in F)) to denote the probability measure
on the underlying space such that Xy ~ A (or Xy = x). We use E,(.) to repre-
sent the P,-expectation (or E,(.) to represent the P,-expectation), and I {A} to

represent the indicator function of event A.

A homogeneous Markov chain is said to be irreducible if there exists a o-finite
measure ¢ on (F, &) such that for all z € E and all A € £ with ¢(A) > 0, there
exists some n > 1 such that P"(x, A) > 0. In this case, there exists a maximal
irreducibility measure 1) with respect to which all other irreducibility measures
are absolutely continuous. If X is ¢)-irreducible, there is d’ € N* and disjoints sets
Dy,...,Dy Dyi1 = D; weighted by 1 such that {)(E\ Ui<;<a D;) = 0 and
Vo € Dy, P(x,D;y1) = 1. The the g.c.d. d of such integers is called the period of

the chain. X is said to be aperiodic if d = 1.

In the following, we assume that the Markov chains under consideration are

homogeneous, aperiodic, and irreducible with maximal irreducibility measure ).

An irreducible chain possesses an accessible atom, if there is a set a € £ such
that forall z, y in a: P (x,e) = P (y, ) and ¢)(cx) > 0. For instance, when a chain
can take a countable number of values, any single point visited by the chain is an
atom. Denote by o, and 7,, respectively, the times of first visit and first return
of the chain to o, ie. 7o, = inf{n > 1: X,, e al and o, = inf{n > 0: X,, € a}.
The subsequent visit and return times 04, 7o (k), k = 1 are defined inductively as

follows:

Ta (1) =Ta , To(k)=min{n>r71,(k—1): X, € a}, (4.1)

0a(l) =04 , oaq(k)=min{n>o0,(k—1): X, €a}. (4.2)

We use T}, () to represent the random variable that counts the number of times
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the chain visits the set a up to time n, ie., T,(a) = > (I{X, € a}. Similarly,
we use T'(a) to represent the total number of visits of chain X to a. An atom « is
called recurrent if E,T'(ax) = +c0 for all z € a; otherwise, it is called transient. A
notable property of atomic chains is that all accessible atoms are either all recurrent
or all transient. Therefore, we say that an atomic chain is recurrent if one (and thus

all) of its accessible atoms is recurrent.

Denote by P, and E,(.) the probability and the expectation conditionally to
Xy € o If X possesses an accessible atom and is aperiodic, the probability of
returning infinitely often to the atom « is equal to one, no matter the starting
point, i.e.

P, (T () =) =1 VrzekE.

A fundamental tool for understanding the long-term behavior of Markov chains

is the existence of invariant measures, that is, a measure 7 such that
m(A) = JP(Q?,A) dr(x) VAef.

Every irreducible and recurrent Markov chain admits a unique (up to a mul-
tiplicative constant) invariant measure [87, Theorem 10.4.9]. In the atomic case, the
invariant measure is just the occupation measure over B; = (X'ra(l)+17 R XTQ(Q))

[38, Theorem 6.4.2], i.e.
To (A) = Eq <Z T{X;e A}) , VAe&. (4.3)
j=1

An irreducible Markov chain is positive recurrent if its invariant measure is
finite. When the invariant measure is just o-finite, then the chain is called null re-

current. From (4.3), it is clear that an atomic Markov chain is positive recurrent if
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Ta_ js an in-

EaTa

and only if E,7, < 400, and in this case, the measure defined by

variant probability for the chain. The existence of this invariant probability makes
the theory of positive recurrent Markov chains, very similar to the i.i.d. case [87,

Chapter 17].

Conversely, dealing with null recurrent chains is considerably more challeng-
ing, and a comprehensive theory of non-parametric estimation for this type of
chain does not exist. To address this issue, Karlsen and Tjestheim introduced in
[67] a regularity condition for the tail behavior of the distribution of 7, that ren-
ders the problem more tractable. Specifically, a chain is referred to as S-null recur-
rent (refer to [67, Definition 3.2 and Theorem 3.1]) if there is a constant 5 € (0, 1)

and a slowly varying function' L such that

1

Fo T = 1) S )

(4.4)

The number (3, also known as the regularity index (see [28, 30]) satisfies

B =sup{p>0:E,(72) < +w0}.

Some of the most well-known examples of 3-null recurrent Markov chain are
the random walks in R, which are 1/2-null recurrent [64], the Bessel random walks
[3], [36] and some types of threshold autoregressive (TAR) [49] and vector autore-

gressive processes (VAR) [88].

' A measurable and positive function L is said to be slowly varying at +co if it is defined in

[a, +0) for some a > 0, and satisfies lim,_, ;o LL((Z t)) = 1for all ¢ > a. For a detailed discussion

on these types of functions, refer to [21].
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4.2.2 Renewal properties and Block decomposition

The strong Markov property implies that the sample paths of an atomic Markov
chain can be partitioned into independent blocks of random length corresponding

to consecutive visits to o, given by:

BO = (X07X17 s 7XTQ(1))

Bl = (Xfa(l)Jrlv S aXToc(2))

Bn = (XTa(n)+17 s 7X7'a(n+1))

Note that the distribution of B, depends on the initial measure, and thus it does
not have the same distribution as B; for j > 1. The sequence {7,(j)};>1 defines
successive times at which the chain forgets its past, which are called regeneration
times. Similarly, the sequence of i.i.d. blocks {3;};> is called regeneration blocks.
As customary in the S-null recurrent Markov chain literature, we will use 7' (n)
to denote the number of complete regeneration blocks up to time n, ie. T'(n) =

max (T, () — 1,0). We will denote by ¢ (B;) the length of the i-th block, therefore,

Te , 7=0
((B;) - (45)

Ta(j‘i’l)_Ta(j) , o Jg=1

The random variable 7" (n), and its relationship with Z?:o ¢ (B;), is crucial in
the theory we will develop in this paper, therefore, we will state in this section its
main properties in the S-null recurrent scenario.

Assume X is a f-null recurrent Markov chain with an accessible atom . By
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(3.27) in [67], the function L in (4.4) can be normalized in such a way that
u(z) = 2°L(2) (4.6)

is a continuous function that is strictly increasing in the interval [z, +0) for some

20 € R;. Define v (2) as
v(z) = u"V (2) = inf {s : u(s) > 2}, (4.7)

then, u (v (2)) = v (u(2)) = z for z > 2.

Consider the space of cadlag functions defined on the interval [0, +0), denoted
by Z|0,+)- This space consists of the real functions that are right-continuous with
left limits and defined over [0, +-00). More precisely, a function g € Zjo ;) if and
only if g is right-continuous, has left limits at all points ¢ > 0, and lim; |y g(¢) =
g(0). The space Zjo ) is equipped with the Skorokhod” topology, making it a
completely separable metric space. We will use ot to denote weak conver-
gence in this space, and 5, for convergence of finite-dimensional laws. Two stochas-
tic processes Y,,, Z,, in Y| 1) are said to be equivalent if Y,, — Z,, converges

9 0 ]
—%*, Y and Y,, and Z, are equivalent, then

weakly to the zero process. If Y,
Do+ .
Zy 20y (see Lemma 3.31 in [60]).

Define the following processes

=20 o= LN s, (4.8)

and C\ Y (t) = inf {z : C), () > t}. The following Theorem, proved in [67], shows

that these three processes converge in %y ;) and that 7}, and C\ are equiva-

%See Chapter 6 of [60] or Chapter 3 in [20] for more details about this space.
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lent.

Theorem 4.2.1. Assume X is a 3-null recurrent atomic Markov chain. Then,

i) C, Lot Sz where S is the one-sided stable Levy process defined by the

marginal characteristics

E [exp (isSs ()] = exp (is”t) se R, t € [0, +o0].

ii) C™ and T, are equivalent processes and both converge in Py ;) to the

Mittag-Leffler process of parameter 3.

Remark 4.2.1. The Mittag-Leffler process with parameter (3 is defined as the inverse

of Sp. It is a strictly increasing continuous stochastic process defined as

Mg (t) = tﬁMﬁ (1) s E (Mgn (1)) = F(%'mﬁ) m = 0.

Theorem 4.2.1 shows a striking difference between positive and null recurrent
Markov chains. While in the former the existence of moments for ¢ (B;) implies

that C), and T, (taking u (n) = n) converge almost surely respectively to tE, 74

and and therefore, 7' (n) can be approximated almost surely by the deter-

t
EaTa’
ministic quantity n, in the latter, we only have weak convergence, hence 7" (n) can

only be controlled by the deterministic quantity «(n) in distribution.

4.2.3 Properties of linear functionals defined on S-null re-

current chains

For a measurable function f : £ — R, and an atomic Markov chain X with an

accessible atom «, consider the problem of estimating 74 (f) = S fdma, where g,
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is as in (4.3) and 74 (f) < +o0. Denote by S, (f) the partial sums of f over the

chain, that is

Su(f) = 37 (%), (49)

The Ratio Limit Theorem for atomic chains [38, Theorem 6.6.2] shows that if

g is a measurable function, then, for every invariant measure 7 we have

S

(f) as. m(f)

- ) (4.10)

3
®

as long as 7 (g) # 0.

Sj’f(%) is a strongly consistent estimator of

Sulf) a5, Talf)
aTa

7o (f), and, in the positive recurrent case, ="~ E

Remark 4.2.2. From (4.10) is clear that

. In the null recurrent

case, however, S”éf) 2% 0 (see Corollary 6.6.3 in [38]) and there is no deterministic

sequence a (n) such that i"(%) converges almost surely to a non-zero limit [28].

Given that our interest in this paper is to apply the bootstrap method to the
estimation of 7, (f) we need to find a series of i.i.d. random variables whose mean

strongly converges to m,, (f). To do this, define the following random variables

Srx) L =0
f(Bj) = ljg(j+1) .
X fX) o, g=1

i=Ta(j)+1

The strong Markov property implies that under Pq, the sequence {f (B;)},.,
is ii.d. Moreover, for every initial measure A € .Z(£), suchthatP) (7, < ) =1,
the random variables f (B;),j = 0 are independent and for j > 1 they are i.i.d.

Therefore, S, (f) can now be written as a sum of independent random variables

as follows:

123



4.2. A SHORT INTRODUCTION TO NULL-RECURRENT MARKOV CHAINS

124

T(n) n
Sa(f)=fBo)+ Y, FBY+ >, [f(X), (4.11)
Jj=1 i=Te(T(n)+1)+1

with the convention that the sum of an empty set is 0. As customary in the
[-null recurrent literature, we will denote the last term in (4.11) by f (B(n)).

Equation (4.3) indicates that

Eaf(B)) = ma(f), J=1,.... (4.12)

hence, if the assume that 7, (| f|) < +0o0, the Law of Large Numbers for ran-

domly indexed sequences [55, Theorem 8.2, pp 302] shows that

1 W
ﬂﬂzﬂm_”“” (4.13)

Remark 4.2.3. The almost sure convergence of both ‘gi‘((nf)) and ﬁ Z]T:(q‘) f(B;) to

7o (f) and the decomposition (4.11) shows that ’;(gf)) and fgi:))) both converge al-

most surely to 0. This allow us to only consider in our estimations the i.i.d. blocks

If we suppose further that f(B;) has finite second moment and we denote by

o? the variance of f (), then

1 T 1 T as. 2
() j; (f(Bj) “ T Z f(&)) — (4.14)

Much of the work carried out in this investigation deals with sequences indexed
by the sequence of random variables 7" (n). As explained at the end of Section 4.2.2,
this sequence, although it converges almost surely to 40, can not be deterministi-

cally approximated in probability, it only admits an approximation in distribution.
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This creates huge problems, even for simple tasks, as to obtaining a CLT, because,
CLTs for randomly indexed sequences (see [4] for the original formulation and Th.
17.2 in [20] for its more general form) require being able to control deterministi-
cally, at least in probability, the sequence of the number of terms. The result we
present below, extends this CLT, replacing the requirement of the control in prob-
ability by the existence of the limit of a stochastic process defined in terms of the

sequence of the number of terms.

Lemma 4.2.1 (CLT for randomly indexed sequences). Let Xy, X5 ... be i.i.d. ran-
dom variables such that E(X;) = j and Var X; = 0% > 0. Let N(n) be a sequence
of integer-valued random variables. If there exists an unbounded increasing sequence

of real numbers u,, such that the process N, (t) = N(nt]) satisfy the following condi-

Un

tions:

« Exists a process Sy, in Zjo o) that is non-negative and non-decreasing for each

n.

7

0,+00) . . . . . . .
o S, —— S where S is a strictly increasing non-negative process with inde-

pendent increments, no fixed jumps, and S(0) = 0.
+ N, is equivalent to Sy,

Then, N,, converges to S(-1),

Nmn) | = |, (4.15)

converges weakly to a standard Normal distribution and this distribution is indepen-

dent of SV (1).
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Corollary 4.2.1. [Theorem 17.2in [20]] Suppose X, ..., X, arei.id withEX; = p

andVar X, = 0. If N(n) is a sequence of integer-valued random variables such that

29, (4.16)

where 0 is a positive random variable and the u,, is sequence of positive numbers
going to infinity, then

N(n)

> (X — )

j=1

N(n) N(n)o

converges in distribution to a standard normal random variable.

Using Lemma 4.2.1 and Theorem 4.2.1 we can provide a different proof of
the following Central Limit Theorem for $-null recurrent atomic Markov chains,

which was originally proved in [8].

Proposition 4.2.2. Let X be a S-null recurrent Markov chain, with an accessible

atom av. For every m,- measurable function f such that E [( f (Bl))Q] < +o,

T(n) Fl—n - J fdr,, (4.17)

converges in distribution to a Normal random variable with mean 0 and variance o>
Moreover, %’?R) converges to a Mittag-Leffler distribution with parameter (3 that is

independent of the limiting distribution of (4.17).

The following corollary follows directly by Proposition 4.2.2, equation (4.14)

and Slutsky’s theorem.
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Corollary 4.2.2. Under the same hypothesis of Proposition 4.2.2,

¥ i)
Tn) | A7
. ) — dewa (4.18)

converges weakly to a Normal distribution with mean 0 and variance 1. Here s> =

T(n) T(n) 2 !
Ol ; (f(Bj) ~ T ; f(Bj)> :

4.3 The regenerative block-bootstrap algorithm

Let X = (X, ..., X,,) be observations drawn from a 3-null recurrent Markov
chain X with an a priori known accessible atom a. As in the previous section, let
f be a m,-integrable function such that f (B;) has a finite second moment. Denote
by o? the variance of f (B;).

The bootstrap method we study in this section was introduced in [15] for pos-
itive recurrent Markov chains. In the atomic case, it was shown to have a uniform
rate of convergence of O, (n™!) under mild conditions.

In this section, we show that the method is also applicable in the 5-null recur-
rent case, although, we have not been able to obtain a rate.

Proposition 3.1 in [14] shows that for positive recurrent chains, in the nonsta-
tionary case (when the initial law A is not the invariant probability measure), the
first data block B, induces a bias of order O(n'), which cannot be estimated from
a single realization X" of the chain starting from \. The last block By, (which is
incomplete) induces a first-order term in the bias too. This led the authors in [15]
to only consider statistics based on the regenerative data blocks By, ...., Br).

In the $-null recurrent case, the lack of finite first moment for the block sizes
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suggests that considering the non-regenerative blocks will incur in an even worst
bias, hence, as in [15], we will only consider statistics based on the regenerative
data blocks By, ...., Br().

While our asymptotic results are specifically stated for integrals with respect to
the invariant measure, the algorithm can be applied to a broader range of statistics
(7, that have an appropriate standardization S,,. This includes non-degenerate U-
statistics and differentiable functionals.

The RBB procedure is performed in four steps as follows:

1. Count the number of visits 7, () to the atom « up to time n. And divide
the observed sample path X" = (X, ...., X,,) into T}, () + 1 blocks, By,
By, ..., By, (a)-1, Bé:)(a) valued in the torus T = U;”_; E", corresponding to
the pieces of the sample path between consecutive visits to the atom a. Drop
the first and last (non-regenerative) blocks. Denote by 7" (n) the number of

remaining blocks.

2. Draw sequentially bootstrap data blocks By 1 , By, 7,y independently

n)’ cee
from the empirical distribution F,, = T (n) ™" Zﬁ? 0, of the blocks {B;}1<;<7(n)
conditioned on X, until the length ¢*(k) = 25:1 U(Bj () of the boot-
strap data series is larger than n. Let T* (o) = inf{k > 1, ¢*(k) > n} and

T (n, T (n)) =T (o) — 1.

n

3. From the data blocks generated in step 2, reconstruct a pseudo-trajectory of

size [*(T* (n,T (n))) by binding the blocks together

x*n) ( iT(n), - ;*(n’T(n)),T(n))'

Compute the RBB statistic G = G,,(X*™).
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4. If S, = S(Bu,..., Brm)) is an appropriate standardization of the original

statistic G, compute S5 = S(BY ()5 - Bl (. 0(n)) ()

The RBB distribution is then given by
HRBB(Z') = P* (S;Lkil (GZ — Gn) < il'))

where P* (o) = PP (¢ | X(™)) denotes the conditional probability given X(".
Our main asymptotic result, in the case of integrals concerning the invariant

measure, is the following.

Theorem 4.3.1. Let X be a 5-null recurrent Markov chain with an accessible atom
o, and let f be a Tq-integrable function such that E [(f (Bl))Q] < +0. Then we

have,

in probability along the data, where d* denotes the convergence in distribution con-

ditionally to the data and

, A L)
T = T ) >, (f(Bj) “ T Z f(&)) :

j=1

This theorem yields that the bootstrap distribution of the standardized sum has
T(n)
> f(Bj))

asymptotically the same distribution as the statistics ]:}(n) estimating { fdm,.

The regenerative block bootstrap is thus first-order correct. In particular, this jus-

tifies the use of the quantiles of the bootstrap distribution (with or without stan-
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dardizing) to obtain confidence intervals for { fdm,.

4.4 The regeneration-based bootstrap algorithm

In this section, we adapt the Regeneration-base bootstrap to the S-null recurrent
Markov chain scenario.

Similarly to Section 4.3, consider observations X" = (Xj,...,X,) drawn
from a $-null recurrent Markov chain X that has an accessible atom a known be-
forehand. Suppose that f is a function such 7, (f) is finite and the second moment
of f (B,) is also finite. Let 02 represent the variance of f (B;).

The algorithm we present in this section was introduced in [6, 34] for positive
recurrent Markov chains with an accessible known atom. Similarly to the RBB,
it consists on dividing the chain into By, ..., Br(,) regenerative blocks and then
resampling blocks to form the empirical distribution of By, ..., Br(,). The main
difference between the Regeneration-based bootstrap and the RBB is that in the
former, the number of bootstrapped blocks is 7" (n), hence, non-random condi-
tionally to X (™) while in the latter is random.

The full algorithm is as follows:

1. Count the number of visits 7, () to the atom « up to time n. And divide
the observed sample path X" = (X, ...., X,,) into T}, () + 1 blocks, By,
Bi,...., By, (-1, B(TZ)(Q) valued in the torus T = U;”_; K", corresponding to
the pieces of the sample path between consecutive visits to the atom a.. Drop
the first and last (non-regenerative) blocks. Denote by 7" (n) the number of

remaining blocks.

2. Draw T'(n) bootstrap data blocks B} 1., -, Bf,) 1(,) independently from
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the empirical distribution F,, = T (n)_1 EJT:(?) 0, of the blocks {B; }1<j<r(n)

conditioned on X,

3. From the bootstrap data blocks generated at step 2, reconstruct a trajectory

by binding the blocks together, getting the reconstructed sample path

X = ( L 7(m)s 5 BTy 7(n))-
Compute the statistic G = G, (X*™).

4. If S, = S(Bi,...,Brw)) is an appropriate standardization of the original

statistic G, compute i = S(BY 1) - - - s By r(my)-

As in the RBB case, the asymptotic result stated below shows the validity of
this bootstrap scheme when used in estimations of integrals with respect to the

invariant measure.

Theorem 4.4.1. Let X be a 5-null recurrent Markov chain with an accessible atom

o, and let [ be a mo-integrable function such that E [(f (Bl))Q] < 400, then

almost surely along the data, where d* denotes the convergence in distribution condi-

tionally to the data and

2 LT LT
OT(n) = T ) (f(Bj) " T ) 2 f(&)) :
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Remark 4.4.1. In its original formulation for the positive recurrent case, the estima-

tor used was %, however, by Remark 4.2.2, this can not be done in the null recurrent

Tt 2 f(By).

case, hence, we need to use 775 ) ;1

4.5 Simulations
To illustrate the convergence of the regenerative bootstraps method described

in the previous two sections we will do the following simulation experiment.

Take X as the simple symmetric random walk in 7Z, that is

0 , t=0
X, =1, (4.19)
XY, =1
k=1
—1) = % In this random walk, the state 0 is an atom

with P(Y; =1) = P(Y; =
and the invariant measure is 7y (i) = 1 (see pp.1143 in [8]). Consider the function

f(k) =% ifk # 0and f(0) = 0, then
+00 2
1 T
d —2) — =2
[r@in@ =235 =1
k=1
In order to show the validity of the proposed methods, we have simulated the
first 10® points of a simple symmetric random walk (see figure 4.1). Using this data,

we have applied both the RBB and the Regeneration Based-bootstrap 1000 times

each and computed the values of

)

J=1

T*(n,T(n)) . T'(n)
(B r) — 75 > 1(B)

Zrps = VI (n,T (n)) T+ (n, T (n)) orm)
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T(n) . T(n)
S (#8507t 3, 78

Z5 =/T
RegBB (n) T (n) UT(n)

Figure 4.2 shows the validity of both methods, despite the fact that we observed
a huge block (52% of the whole trajectory is inside this block) and 25% of the re-
alization is in the final incomplete block. The 95% confidence interval for { fdm
using the RBB is (3.1439, 3.3096) and using the regenerative based-bootstrap is
(3.1434,3.3067). Notice that the true value of § fdm, is 3.2899, while the esti-
mation obtained using (4.13) is 3.2226, and the confidence interval obtained via

Proposition 4.2.2 is (3.1432, 3.302).

Realization of simple symmetric random walk

10000 !

7500
5000

1
1
1
1
1
1
1
1
1
1
I
1
1
2500 1
[}
1

Xt

-2500

-5000

-7500

00 02 04 06 08 10
t 1e8

Figure 4.1: First 10® points of a realization of a simple symmetric random walk
starting at 0. There are 9406 complete blocks in this realization. The red dashed
lines delimit the largest block, while the green dotted line marks the end of the last
complete block.
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Density estimations

040 -~ —— RBB
v —— Regeneration BB
——- Standard Normal Distribution

- -2 0 2 4

Figure 4.2: Density estimation of the bootstrap distributions Zy 55 and 27, 5p
after 10® simulations.

4.6 Proofs

4.6.1 Proof of Lemma 4.2.1

For the proof of Lemma 4.2.1 we need the following result, which appears as

part A.3 of Theorem A.1 in [67].

Lemma 4.6.1. Let A,, and B,, be a pair of stochastic processes which are cadlag,
where A,, is non-negative and non-decreasing. Let B denote a Brownian motion de-
fined fort € R and let A denote a strictly increasing non-negative process with inde-
pendent increments, A(0) = 0 and with no fixed jumps. Assume that B,, T, B
and A, oo, 4, Then, A T, A1) gnd

1)
A gy, Beodn O 4 40y 2) wie 0,1,

ATV (@)

134



CHAPTER 4. REGENERATIVE BOOTSTRAP FOR 3-NULL RECURRENT MARKOV CHAINS

where Z is standard normal variable independent of AV (t).

To prove Lemma 4.2.1, let W, = Jfl(Xk — ,u), then {W}}2, is an iid. se-

quence with E(WW,) = 0 and Var W}, = 1 for all .

Let’s define the following continuous time process for ¢ > 0
1 L
Qult) = —= Y. Wi (4.20)

By Theorem 23 and Example 24 in [103], @), (USEON B and given that w,, is
an unbounded increasing sequence, we also have (), converges weakly to B in
Djo,+)-

The conditions imposed to the process /V,, allow us to apply Lemma 4.6.1 with
A, = S, and B, = @,,. Taking into account that N, is equivalent to STV we

obtain that for allt > 0
4 N (0,1). (4.21)

Using that N (|nt]|) = u, N, (t), we get

0.—1
u

N

N(|nt])
Qu, (Na(t)) = D (X5 — ), (4.22)
7=1

and Lemma 4.2.1 follows after plugging (4.22) into (4.21) and taking ¢ = 1.

4.6.2 Proof of Corollary 4.2.1

We assume, at first, that 0 is bounded, that is, there exists a constant K such

that 0 < # < K with probability 1. Without loss of generality, assume the u,, are
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integers. Define the process

tN(n) 7 if N(n) <1

N, (f) =

to , otherwise

As stated in pp. 147 of [20], this process converges to the process tf and trivially
satisfies the conditions of Lemma 4.2.1 (using S, (t) = %, ;! (t) = t0).
The case when K is unbounded can be treated by following the same argument

as in pp. 148 of [20].

4.6.3 Proof of Proposition 4.2.2

Recall from Section 4.2.3 that, by the Strong Markov Property, the sequence

{f(BJ)};LOi isiid. withmean § fdr, and variance o*. Consider the processes T}, (t)

and C), defined in (4.8)

By Theorem 4.2.1, we can apply Lemma 4.2.1 with X; = f(B;), u = { fdna,

N(n) = T(n) and u,, = n” L(n), which completes the proof.

4.6.4 Proof of Theorem 4.3.1

Assume we have observed the chain until time n, i.e, X = X, X1,..., X,.,
and we have extracted the 7" (n) regeneration blocks: By, ..., Br().

Now we start to sequentially bootstrap data blocks B T(r)r > B; T(n) inde-

pendently from the empirical distribution Fr,, = T (n) ™' ZJT:(? 6, of the blocks
{B;}1<j<r(n), conditioned on X™, until the length ¢*(k) = Z?=1 14 (Bi"T(n)) of
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the bootstrap data series is larger than n.

For each m, define

k
T* (m,T (n)) = max {k : 2 C(f(B}rmy)) < m} : (4.23)
j=1
< * 1 T(n)
Z f(B]7T(n)) - T_n) f(BZ)
j=1 =1
U*(m, T (n)) =+m (4.24)
Mo (n)
Theorem 4.3.1 will be proved if we show that
P* (U* (T* (n,T (n)),T (n)> < g;) P P(N<z) VreR, (4.25)

where P is a standard normal random variable and P* (¢) = PP (e | X(")) denotes

the conditional probability given X™.

Given that we will bootstrap T* (n, T (n)) terms, which is a random quantity
conditionally to the data, we will use Lemma 4.6.1 to prove (4.25). In order to do

this we need, conditionally to the data:

1. Find a process S’* T(n) (t) that is non-negative, non-decreasing that converges
in Zo,4+) to a process S* that is non-negative, strictly increasing, has inde-

pendent increments, no fixed jumps and S* (0) = 0.

2. Show that T\ (t) = T;((l:;” = T*([;%g(n)) is equivalent in Zjo ;) to

3. Find a process @}, 1, (t) that converges in Z|o ;) to a Brownian motion
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when n goes to +o0. This process should satisfy, for some ¢ > 0

Q) © Tariny (t)
T oy ()

U (T* (n,T (n)), T (n)) -

A natural choice for Q:’T(n), which satisfies (4.26) for t = 1, is

[T(n)t]

2 <f (Bf,ﬂn)) - ﬁT.(n)f (Bg)

Qi (6) = VT () | ——
n n = n
T(n) T (n) OT(n)
Take S}, 7, (1) as
1 [T'(n)t|
SEt) = —— (B i)
( ) o+ (T (n)) ; ( T( ))

T(n)
where v* (T'(n)) = ;} 0(B;).

Following the notation of [69], let Y; = [ (B;) andlet Y}, > Y5, > ...

be the order statistics of the sizes of the first n blocks, and take Zj,,, = Tieim

v

v (n) is as in (4.7). By Theorem 1 in [69],

Z0) = (Zyms Zomy s Zonns 0, 0) S (20, 2o,y ) = 2,

(4.26)

(4.27)

(4.28)

= Yn,n

where

(4.29)

where 7, = (F1 + -+ + Ek)_% and F; is a sequence of i.i.d. of exponential ran-

dom variables with mean 1. By Skorokhod-Dudley-Wichura Theorem (see pp. 1171

in [69] and pp. 476 in [12]) we can choose a probability space such that, without

changing the distribution of the left hand side of (4.29),

AR
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The following Lemma shows that in that space, conditionally to the data, the

« .
process S 1, converges in Zjo ;.c).

Lemma 4.6.2. Suppose that (4.30) holds, then % converges almost surely to a pos-

itive random variable and

D0, + D0, +0 _
;;T(n) [0,+00) S*  and SnTln)) [0,400) S*( 1) (4'31)

almost surely along the data.
+o0
Here, S* (t) = KR* (t)+t, R* (t) = >, Z; (A (t) —t) , A} (t) are independent
j=1
Poisson processes with parameter 1 and K is a positive constant. Moreover, the process

S* is non-negative, strictly increasing, continuous, with independent increments and

S*(0) = 0.

Proof. When (4.30) holds, by Theorem 1 and Remark 1.3 in [79],

1 n +00
— Y U(B;) N 7.
>j=1 j=1

The length of the first block, ¢ (By), is finite with probability 1 and does not depend

on n, hence é(ég )) converges almost surely to 0. This implies that

1 n s +®

In (4.7), we defined v (z) as the inverse of u (z) = z°L (z), then, by Proposition

1.5.151n [21], v(2) ~ 2/ L, (2) where L is a slowly varying function, hence,

1 s 1 +00
DBy “ 5y Z; V> 0. (4.33)

J=0 Jj=1
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Foreacht > 0,let S, (t) = -7 > L(By), SV () =inf{z > 0: S, (z) >t} and

+o0
S(t) = t5 Y. Z;, and define the three processes as 0 on ¢t = 0. By (4.33) and the
j=1
Continuous Mapping Theorem, S a8, g1
Similar to what is described on page 1141 in [8], suppose that y is such that y <

Sffl)(l). Then, since S, (y) < 1, it follows that Zj[iyg ((B;) < v(n). Consequently,

we have T'(|v(n)]) = |ny| > ny — 1. This in turn implies that —T([vrgnm

=Y —
1> Sy (1) — & for all n. In a similar way, but taking y > S5V, we show that

Dot} < 5579(1) + L for all n. Then,

n

1 _T(v(u®)) 1

Su(n)<*1)(1) - U (n) u n) < Su(n)(—l)(l) + m (434)

The first part of the lemma now follows from (4.34), the convergence of Siznl)) (1)
to S7! (1) and the fact that u (v (n)) = n for n big enough.

To show (4.31), consider the following process, which was studied in [12],

i (rem - E )

By Corollary 1.2 in [12] (and its proof®), we see that when (4.30) holds, for any m,,

L (1) =

such that ”* — ¢, conditionally to the data, the process Z};, , converges weakly

in 7 ([0,1]) to R* (ct). Let C' > 1, on [0, C'| define the process

.@
Notice that W (1) = Zi.,, (&), hence, W —9, R* as n — +o. Because

Wi () =

3In [12], they standardize by T, = max [ (By) but from the proof is clear that the result
<k<

n
remains valid if we standardize by v (n) (b, in their notation).
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this convergence holds for arbitrary C' > 0, by Lemma 1.3.ii in [68] we have that
Do, D0, +00
wr 20, R*, and therefore, WT* (n) 20, p,

The process S, (n) €an be written as

v (T (n))

_WWT(” m () + T (4.35)

-1
Conditionally to the data, *;‘Z;F(??z))) = <m ZJT:(’S) 14 (Bj)> converges to a
positive constant K by equation (4.32). Equation (4.31) now follows from the con-
vergence of W;(n) T(n) and (4.35).

The continuity of S* was shown in pp. 466 of [12], and the rest of the properties

are evident from the form of R*. [

The next Lemma handles the equivalence of T° ;T(n) and SZE;(ITS) in Z[o,+)-
Lemma 4.6.3. Under the same hypothesis of Lemma 4.6.2, the processes T;‘T(n) and
527(;(173) are equivalent in Do ;o).

Proof. The proof of this result follows the proof of Theorem 3.2 on [67] with slight
modifications.

We need to show that, for any € > 0 given,

P ( sup |1, 1) (t) — SnT(n ‘ > 8) -0 VK >0. (4.36)
O<t<K

To prove this, we will show that

O<t<K
O<t<K

from where (4.36) will follow by triangular inequality.
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Letn >0

{S:ff(lwa)> (1) < ’7} < { S5y (0) >t}
1 [T(n)nJ

= (B >t

{’U* (T (n)) ; ( z,T(n)) }

[T(n)nl
_ { {(Bir) > t0° (T <n>>}
B {T*(w (T ()], T (n)) _|T (W?J} (439)
) ) '

Toxayron O = = e @ ) T (n) :

therefore, equation (4.39) becomes

{s;f;(lg) (t) < n} c {T;*(T(H)LM (1) < W;(Zj)nj} (4.40)
Similarly, we obtain that

{Szf;(ﬁj) (t) > n} c {T;‘;(T(n))j(n) (t) > U;((Tg)?ﬂ } . (4.41)
Let 1 € (0, 1) be fixed and take 7; < 7, then, by (4.41) and (4.40),
{771 < S:,(T_(ln)) (t) < 772} = {771 (1—e) < SZ,(T_(% () < 772}
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This means, that, if Sz(T_(le) (t) € [1m1,m2), then

|7 (n)m (1 —e1)]

#(—1)
T (n) — M2 < T:*(T(n)),T(n) (t) — Sn,T(n) T (n) — M,
which implies that, if S:,(T_(lg) (t) € [n1,12), then
#(—1) 1
T:*(T(n)),T(n) (t) - Sn,T(n) (t)‘ < 772 - 771 + 51771 + m (442)

Let £ > 0 be fixed. For any s we have

P { sup |€2 T(n) (t)‘ >ec| <P (sup \é’f; T(n) (t)‘ > &, sup S:(;(Q) (t) <s
t<kK t<kK t<K

—1
+ P (Sup S:’(T(n)) (t) = s) ,

t<K

-1
where & ) (£) = T (p(ay) 7y (B) — S:,(T(n)) (t)-

By (4.31),
lim lim P (sup Sri (1) = s) = 0.

sT00 n—00 t<K

Therefore, for any 0 > 0 we can choose sj such that P° (?EE S:(;(ln)) (t) = 80> <0

for all n big enough. By (4.42), sup S:(;(lg) (t) < so implies that
t<K

X 1
|§n’T(n) @) <mo—m+em + T Vte [0,K] , Ve e (0,1).

Choose 19, ...,n5, N1,e1 withng =0 <m < ... < -1 < n = So such that

ni — Niy1 < 5 foralli. Lete; < 58_0 and choose N; such that ﬁ <:.

Notice that for all ¢ € [0, K] there is only one i, ; such that S:f;(ln)) (t) belongs
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to [7i, 1> iy .+1) then, by (4.42)

1
"S;,T(n) (O] < Miny = Wi prr + 1 + ) <e Vtel0,K], Vn> Ny,

whenever S:f;(lg) (t) < so. This implies that

P (sup & T(n) (t)| > e, sup S:(;(lrf) () < 50) =0 Yn=>=N.
t<K t<K
Hence,
P (Sup &5 rmy )] > s> <6 Vn>N. (4.43)
t<K

which implies (4.37).

Now we turn to the proof of (4.38).

T(n)
According to the definition of v*, v* (T (n)) = >. [ (B;) < n, therefore,
=0
" = (v (T (n)t],T (n)) _ T*(nt], T (n) _ .
T vy ) (1) = T (n) < T (n) =T rm (1) Vn,t.

T(n)+1
Notice that v* (T'(n) + 1) = >, [(B;) > n, therefore,
i=0

n,T'(n) (t) < Tv*(T(n)-ﬁ-l),T(n) (t) Tn) Vn, t.

Hence,

T(n)+1

W Vn, t.

o (7)) (8) < Ty (1) < Tos 121y ()
Equation (4.38) now follows from the convergence of both 17 (T(m)T(n) and T7%, (T(n)+1).T(n)

to S*(=1) and the fact that Tgl()r:)rl 25 1. O
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By (4.27), Lemmas 4.6.1, 4.6.2 and 4.6.3 we have that, in a space where (4.30)
holds, the convergence in (4.25) holds almost surely. Therefore, in the original

space we have the weakly-weakly (see pp.2550 in [26]) convergence

P* (U* (T* (n,T (n)),T (n)) < a:) LP(N<z) VzeR (4.44)

However, given that the right hand side of (4.44) is a constant for each z, the con-
vergence in (4.44) can be improved to convergence in probability, which completes

the proof.

4.6.5 Proof of Theorem 4.4.1

This proof follows the line of the proof of Theorem 2.1 in [19]. As in that paper,
let I'y be the set of distribution functions G satisfying { 22dG (z) < 0 and define

the following notion of convergence in I'y
G,=G iff G, - G weakly and f 22dG,, (z) — f 2dG (x (4.45)

Denote by ds a Mallows metric that metricizes the = convergence in I's (see details
in Section 8 of [19])
If Y1,...,Y, are iid. random variables with common distribution G, denote

by G(™ the distribution of
m=z Y (Y; - EY;)

J=1

By pp. 1198 in [19], if G, H € I'y then G™ and H™ are also in Iy and

dy (G, H™) < dy (G, H) . (4.46)
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Let F' be the distribution of f(B;) and denote by F,, the empirical distribution
function of f(Bi),..., f(By,). By (2.1) in [19] and the fact that 7' (n) — +o0 a.s.,

Fr) = I along almost almost all sample paths, hence, conditionally to the data
dy (Frey, F) — 0. (4.47)

Denote by N, a standard distribution with mean 0 and variance 2. By Propo-
sition 4.2.2,

dy (F"™) N,) — 0. (4.48)

Conditionally to the data, the distribution of

T(n)
ST UCHNERSEIE)
T (n)

T (n)

is Fgg”, then, conditionally to the data,

d ( RO, Ng) <dy ( R, F(T(n))) +dy (FT™)| N,

which goes to 0 by (4.47) and (4.48). The theorem now follows by (4.45), (4.14) and

Slutsky’s theorem.
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Chapter

Harris recurrent Markov chains and

nonlinear monotone cointegrated models

The content of this chapter is based on [41]. It is the result of a collaboration

with my advisors Cécile Durot' and Patrice Bertail'.

Abstract: In this paper, we study a nonlinear cointegration-type model of the
form Z, = fo(X,;) + W; where f is a monotone function and X; is a Harris re-
current Markov chain. We use a nonparametric Least Square Estimator to locally
estimate fj, and under mild conditions, we show its strong consistency and obtain
its rate of convergence. New results (of the Glivenko-Cantelli type) for localized

null recurrent Markov chains are also proved.

5.1 Introduction

The concept of linear cointegration refers to two time series, Z; and X, that

are both nonstationary and of unit root type, and where there exists a stationary

MODAL’X, UMR 9023 - Université Paris Nanterre, CNRS, UPL, 200 ave de la République, F92000
Nanterre.

147



5.1. INTRODUCTION

148

linear combination of X; and Z;. This concept was first introduced in [52] and has
since been extensively studied, particularly in the field of econometrics [44, 62, 63,

98, 99].

However, the long-term relationship between the two series, Z; and X;, might
not necessarily be linear, nor X, be linearly generated. This has led to the study of

nonlinear cointegrated models such as,

Zy = fo(Xy) + W, (5.1)

where a nonlinear function f; and a nonlinearly generated input process X; are

incorporated to model the relationship between the series.

In [23, 65] a relationship like (5.1) has been studied under the assumptions that
fo is nonlinear, X; and W, are independent processes, and X; is a positive or (3-
null recurrent Markov chain. They have applied the Nadaraya-Watson method to

estimate f; and established the asymptotic theory of the proposed estimator.

The problem of estimating f;, under the Markovian assumption has also been
tackled using local linear M-type estimators in [24, 80] and using advanced con-
cepts like local time and nonlinear transformations of Brownian motion-like pro-
cesses in [117, 118, 119]. A comprehensive survey of the latest advances in this

problem can be found in [112].

To the best of our knowledge, the case where f; is subject to shape constraints
has not been addressed under Markovian assumptions. Such estimators are non-
linear and therefore pose significant theoretical challenges. In the context of inde-
pendent observations, constraints such as convexity, concavity, and log-concavity
are known to be even more complex than monotonicity constraints (see [54, 109]

and the references therein). As a result, we have chosen to initiate our study of
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shape-constrained estimators in the Markovian setting by focusing on the mono-

tone case.

In this paper, we wish to establish a nonparametric estimation theory of the
nonparametric least squares estimator (LSE) for the function f; in the model (5.1)
under the constraints that f, is monotone non-increasing. Here, {I¥,;} is an un-
observed process such that £(W;|X;) = 0 to ensure identifiability of fy. Since a
minimal condition for undertaking asymptotic analysis on fy(x) at a given point
x¢ is that, as the number of observations on { X, } increases, there must be infinitely
many observations in the neighborhood of zy, the process {X;} will be assumed

to be a Harris recurrent Markov chain (cf section 5.2).

This model is clearly very attractive in situations where monotonicity is a rea-
sonable assumption but commonly assumed structures such as linearity or additiv-
ity are not. Indeed, this formulation, in the i.i.d. case, has found useful applications
in econometrics [59], biology [81, 91], medicine [110], engineering [86] among oth-
ers. However, up to our knowledge, it has not been treated under the markovian

assumption on X;.

5.1.1 The estimator

Let C be a set that its interior contains our point of interest xy. Having observed
{(X+, Zy)}7_, we denote by T,,(C') the number of times that X visited C' up to time
n and by o¢ (4) the time of the i-th visit. Then, we consider the nonparametric LSE

defined as the minimizer of

Tn(C)

oY (Zoowy = F (Xoe))” (5.2)

i=1
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over the set of non-increasing functions f on R. The nonparametric LSE fn has a
well know characterization, as follows. Let m be the number of unique values of
Xoo(1)s -+ Xoo(Tu(c)), and Y7 < --- < Y), be the corresponding order statistics.
Then, fn(Yk) is the left-hand slope at Z?ﬁgc) H{XUC () < Yk} of the least concave

majorant of the set of points

T (C) Tn(C)
{(070)7 < Z { Xo0() < Ya}, Z Zso i Xop(i) < Yk}) s k=1,... ,m}7

i=1 i=1

(5.3)
and it can be computed using simple algorithms as discussed in [10]. Thus, the
constrained LSE is uniquely defined at the observation points, however, it is not
uniquely defined between these points: any monotone interpolation of these values
is a constrained LSE. As is customary, we consider in the sequel the piecewise-
constant and left-continuous LSE that is constant on every interval (Y;_1, Yi], k =

2,...,mand also on (—o0, Y;| and on [Y;,, 20).

The use of a localized estimator is due to the fact that we need to control the
behavior of the chain around z, and, to do this, we need to estimate the asymptotic
"distribution" of X in a vecinity of xy. For Harris recurrent Markov chains, the long-
term behavior of the chain is given by its invariant measure (see Section 5.2). In
the positive recurrent case, the invariant measure is finite and it can be estimated
by simply considering the empirical cumulative distribution function of the Xj.
However, in the null recurrent case, the invariant measure is only o-finite, hence,
we need to localize our analysis in a set big enough that the chain visits it infinitely
often, but small enough that the restriction of the invariant measure to it is finite.
Moreover, contrary to the bandwidth in kernel type estimators, C' does not depend

on n, and the rate of convergence of the estimator does not depend on C'
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5.1.2 Outline

Since our paper draws quite heavily on the theory of Harris recurrent Markov
chains, we have added a small introduction to the subject as well as the main re-
sults that we use throughout the paper in Section 5.2. In Section 5.3, we show that
under very general assumptions, our estimator fn is strongly consistent, while its
rate of convergence is presented in Section 5.4. In Section 5.5, we present three
new results concerning Harris recurrent Markov chains that have emerged dur-
ing our investigation and we believe are interesting in their own right. Section 5.6
contains an overview of the proofs of our main results, while the technical proofs

are presented in Section 5.7.

5.2 Markov chain theory and notation

In this section, we present the notation and main results related to Markov
chains that are needed throughout the paper. For further details, we refer the reader
to [38, 87, 90].

Let X = Xy, X1, Xo,... be a time-homogeneous Markov Chain defined on a
probability space (F, £, P) where £ is countably generated. Let P (z, A) denote its

transition kernel, i.e. forz € £, A € £ we have
P(I,A):]P(Xl_;_lEA‘XZ:I), i:(),l,...

Let P"(z, A) denote the n-step transition probability, i.e.
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If \ is a probability measure in (F, £) such that £ (X)) = A, then )\ is called the
initial measure of the chain X. A homogeneous Markov chain is uniquely identified

by its kernel and initial measure.

When the initial measure of the chain is given, we will write PP, (and E,) for
the probability (and the expectation) conditioned on £ (Xy) = A. When A = 4,

for some = € F we will simply write P, and E,..

An homogeneous Markov chain is irreducible if there exists a o-finite mea-
sure ¢ on (E, &) such that for all x € F and all A € £ with ¢(A) > 0 we have
P"(x,A) > 0 for some n > 1. In this case, there exists a maximal irreducibil-
ity measure 1 (all other irreducibility measures are absolutely continuous with
respect to ). In the following, all Markov chains are supposed to be irreducible
with maximal irreducibility measure .

For any set C' € &, we will denote by o and 7¢, respectively, the times of
first visit and first return of the chain to the set C,ie. 7c = inf{n > 1: X,, € C}
and o¢ = inf {n > 0 : X,, € C'}. The subsequent visit and return times o¢, 7¢ (k),

k > 1 are defined inductively as follows:

Tc(l)ZTC , Tc<k)Zmin{n>Tc(k—1):Xn€C}, (5.4)

oc(l)=0c , oc(k)=min{n>oc(k—-1):X,eC}. (5.5)

Given that our methods will only deal with the values of X in a fixed set C, if
A is a measurable set, we will write [{X,; € A} instead of [{X; € A n C'} and if
A = E, then we will simply write I (X;).

We will use T, (C) to denote the random variable that counts the number of
times the chain has visited the set C' up to time n, that is T,, (C') = >3}, Lo (Xy).

Similarly, we will write 7" (C') for the total of numbers of visits the chain X to C.
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The set C' is called recurrent if E, T (C) = +oo for all z € C and the chain X is

recurrent if every set A € £ such that ¢ (4) > 0 is recurrent.

Although recurrent chains possess many interesting properties, a stronger type
of recurrence is required in our analysis. An irreducible Markov chain is Harris

recurrent if for all z € F and all A € £ with ¢)(A) > 0 we have

P (X, € A infinitely often | X, = x) = 1.

An irreducible chain possesses an accessible atom, if there is a set a € £ such
that for all x, y in a: P(x,.) = P(y,.) and ¢(a) > 0. Denote by P, and E,(.) the
probability and the expectation conditionally to X € a. If X possesses an accessi-
ble atom and is Harris recurrent, the probability of returning infinitely often to the
atom « is equal to one, no matter the starting point, i.e. Vo € E,P, (74 < 0) = 1.
Moreover, it follows from the strong Markov property that the sample paths may be
divided into independent blocks of random length corresponding to consecutive

visits to o:

taking their values in the torus T = U, E™. Notice that the distribution of By
depends on the initial measure, therefore it does not have the same distribution as

Bj for j > 1. The sequence {74(j)},, defines successive times at which the chain
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forgets its past, called regeneration times. Similarly, the sequence of i.i.d. blocks
{B,};>1 are named regeneration blocks. The random variable T (n) = T, (o) —
1 counts the number of i.i.d. blocks up to time n. This term is called number of

regenerations up to time n.
Notice that for any function defined on E, we can write )"  f (X;) as a sum

of independent random variables as follows:

T(n)

D) = f(Bo)+ Y, F(By)+ f (Bw), (5.6)

j=1

where, f (Bo) = 70 f (X), £ (B;) = Y20, f(Xy) forj = 1,..., T (n) and
f (B(n)) = Z?:Ta(:r(n)+1)+1f(Xt)~

When an accessible atom exists, the stochastic stability properties of X amount
to properties concerning the speed of return time to the atom only. For instance,

the measure 7, given by:

T (B) = Eq (Tza X, e B}) , VBe¢& (5.7)

is invariant, i.e.

e (B) = JP(:I:,B) drie ().

Denote by £ the class of nonnegative measurable functions with positive v
support. A function s € £7 is called small if there exists an integer mq > 1 and a

measure v € .# (&), such that
Pm™(z,A) = s(x)v(A) VreE Acf. (5.8)

When a chain possesses a small function s, we say that it satisfies the minorization
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inequality M (mg, s,v). As pointed out in [90], there is no loss of generality in
assuming that 0 < s (z) < 1l and {, s(z)dv(z) > 0.

A set A € £ is said to be small if the function 14 is small. Similarly, a measure
v is small if there exist m, and s that satisfy (5.8). By Theorem 2.1 in [90], every
irreducible Markov chain possesses a small function and Proposition 2.6 of the
same book shows that every measurable set A with ¢ (A) > 0 contains a small
set. In practice, finding such a set consists in most cases in exhibiting an accessible
set, for which the probability that the chain returns to it in m steps is uniformly
bounded below. Moreover, under quite wide conditions a compact set will be small,
see [45].

If X does not possess an atom but is Harris recurrent (and therefore satisfies
a minorization inequality M (my, s,v)), a splitting technique, introduced in [89,
90], allows us to extend in some sense the probabilistic structure of X in order
to artificially construct an atom. The general idea behind this construction is to
expand the sample space so as to define a sequence (Y, ) ey of Bernoulli r.v’s and a
bivariate chain X = {(X,,,Y,)}, %, named split chain, such that the set & = (E, 1)
is an atom of this chain. A detailed description of this construction can be found
in [90].

The whole point of this construction consists in the fact that X inherits all the
communication and stochastic stability properties from X (irreducibility, Harris
recurrence,...). In particular, the marginal distribution of the first coordinate pro-
cess of X and the distribution of the original X are identical. Hence, the splitting
method enables us to establish all the results known for atomic chains to general
Harris chains, for example, the existence of an invariant measure which is unique

up to multiplicative constant (see Proposition 10.4.2 in [87]).

The invariant measure is finite if and only if E575 < +00, in this case we say
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the chain is positive recurrent, otherwise, we say the chain is null recurrent. A null
recurrent chain is called S-null recurrent (c.f. Definition 3.2 in [67]) if there exists
a small nonnegative function h, a probability measure A, a constant 5 € (0,1) and

a slowly varying function L such that

E, (;h(Xt)) ~ ﬁnﬁl}h (n) asn — oo.

As argued in [67], is not a too severe restriction to assume my = 1. There-
fore, throughout this paper we assume that X satisfies the minorization inequality
M(1,s,v), ie, there exist a measurable function s and a probability measure v

such that 0 < s (z) < 1, {, s(x)dv(x) > 0 and
P(xz,A)=s(z)v(A). (5.9)

Remark 5.2.1. The extensions to the case where my > 1 of the results that will be
presented in this paper can be carried out (although they involve some complicated
notations/proofs) using the m-skelethon or the resolvent chains, as described in [28, 30]
and Chapter 17 of [87]. However, they are not treated in this paper.

A measurable and positive function L, defined in [a, +0) for some a = 0, is
called slowly varying at +o0 if it satisfies lim,_, o, % = 1forallt > a. See [21]
for a detailed compendium of these types of functions.

It was shown in Theorem 3.1 of [67] that if the chain satisfies the minorization

condition (5.9), then it’s -null recurrent if and only if

1

Flra>n) ~ F0 = 3wL ()

(5.10)

where L is a slowly varying function.
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The following theorem is a compendium of the main properties of Harris’s
recurrent Markov chains that will be used throughout the paper. Among other

things, it shows that the asymptotic behaviour of 7" (n) is similar to the function

u (n) defined as

n, if X is positive recurrent
u(n) = . (5.11)

n’L (n), if Xis S-null recurrent

Theorem 5.2.1. * Suppose X is a Harris recurrent, irreducible Markov chain, with
initial measure ), that satisfies the minorization condition (5.9). Let T'(n) be the
number of complete regenerations until time n of the split chain X , let C € £ be a

small set and 7 be an invariant measure for X. Then,
1. 0 <7 (C) < +o0.

2. For any function f, defined on F, the decomposition (5.6) holds. Moreover, there
is a constant K, that only depends on , such that if f € L' (E, ), then

Exf (B1) = K SE fdm.

3. 72: ((Tg) converges almost surely to a positive constant.

4. % converges almost surely to a positive constant if X is positive recurrent and
converges in distribution to a Mittag-Leffler’ random variable with index (3 if

X is B-null recurrent.

ZPart 1 is Proposition 5.6.ii of [90], part 2 is equation (3.23) of [67], part 3 is an application of the
Ratio Limit Theorem (Theorem 17.2.1 of [87]). For the positive recurrent case, part 4 also follows
by the aforementioned Ratio Limit Theorem while the claim for the null recurrent case appears as
Theorem 3.2 in [67].

3The Mittag-Leffler distribution with index 3 is a non-negative continuous distribution, whose
moments are given by

m!

E(Mg”(l)):m m = 0.

See (3.39) in [67] for more details.
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5.3 Consistency

The aim of the section is to show that for an arbitrary xz( in the support of f,
the LSE fn(xo) is consistent. We make the following assumptions on the processes

X ={X;}and W = {W;}.

(A1) X is a Harris recurrent Markov chain whose kernel P(z, A) satisfies the

minorization condition (5.9).

Let F,, = 0 ({Xo, ..., X,}) be sigma algebra generated by the chain X up to

time n.

(A2) For each n, the random variables W7, ..., W, are conditionally independent

given F,,, E(W;|F,,) = 0 and Var (W;|F,,) < o2 for some o > 0.

It follows from Assumption (A1) that the Markov Chain X admits a unique (up
to a multiplicative constant) o-finite invariant measure 7. Let C' be a set such that
0 <7 (C) < wand xy € C. We denote by F}, the process defined by

Tn(C)

1 1 =
Fn(y> = Tn(C) ; ]I{Xac(z) < y} = Tn(C') ;)I[C{Xt < y} (512)

for all y € R, which is a localized version of the empirical distribution function
of the X;’s. It is proved in Lemma 5.5.1 that F;, converges almost surely to the

distribution function F' supported on C' and defined by

F(y) = : (5.13)

Our next two assumptions guarantee that there is a compact C, that is a small
set and contains z as an interior point. Sets like this can be found under very wide

conditions (cf [45]).
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(A3) Thereis 6 = §(z) such that the set C' = [z¢ — 0, ¢ + 0] is small.

(A4) xq belongs to the interior of the support of X;.

Notice that by part 1 of Theorem 5.2.1, (A3) guarantees that 7(C') is finite and
positive, and hence, F' is properly defined.

In addition to the assumptions on the processes { X;} and {IV;}, we need smooth-
ness assumptions on F' and on fj. In particular, we will assume that F' and f are
continuous and strictly monotone in C'. This implies that f, and F' are invertible in
C, so we can find neighborhoods of f(zo) and F'(x() respectively, over which the
inverse functions are uniquely defined. We denote by f; ' and F~! respectively the
inverses of fy and F' over such a neighborhood of fj(zo) and F'(x() respectively.

The function f; is assumed to be monotone on its whole support.

(A5) F islocally continuous and strictly increasing in the sense that for all 2’ in
C, forall € > 0, there exists v > 0 such that | F~!(u) — 2’| > ~ for all u such

that |u — F(2')| = e.

(A6) fois non-increasing, and f is locally strictly decreasing in the sense that for
all 2/ in C, for all ¢ > 0, there exists v > 0 such that | fo(2') — fo(y)| > 7 for

all y such that |y — 2| > e.

(A7) fo continuous in C.

Assumptions (A1), (A3) and (A5) ensure that X; visits infinite times any small
enough neighborhood of =y with probability 1, and guarantee that x is not at the
boundary of the recurrent states. Assumptions (A1) and (A3) and Lemma 3.2 in

[67] imply that 7,,(C') — oo almost surely.
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Theorem 5.3.1. Suppose that assumptions (A1)-(A7) are satisfied. Then, asn — 0,

one has

Ful@o) = folxo) + op(1), (5.14)

and

~

Fo (fo(wo)) = mo + op(1). (5.15)

5.4 Rates of convergence

To compute rates of convergence, we need stronger assumptions than for con-

sistency. We replace assumption (A1) for the following stronger version

(B1) {X,}isapositive or S-null recurrent, aperiodic and irreducible Markov Chain

whose kernel P(x, A) satisfies the minorization condition (5.9).

We replace, (A5), (A6) and (A7), for the following slightly more restrictive as-

sumption

(B2) The function fj is non-increasing, the functions f, and F are differentiable
in C, and the derivatives F({, and f) are bounded, in absolute value, above

and away from zero in C.

Let A be the initial measure of X. Our next hypothesis imposes some control

on the behaviour of the chain in the first regenerative block.

(B3) There exists a constant K and a neighborhood V' of 0, such that

t=0

Ex (Z(HC{Xt<$0+7}—H0{Xt<xo—7})> <Ky VyeV.
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Assumption (B3)is satisfied if we assume that the initial measure of the chain is
the small measure used for the construction of the split chain (see equation 4.16¢
in [90]). In the positive recurrent case, taking A equal to the unique invariant prob-
ability measure of the chain also satisfies (B3).

And finally, we need to control the number of times the chain visits C' in a

regeneration block.
(B4) Lc(Br) = e, Ie{ X} has finite second moment.

Theorem 5.4.1. Assume that (A2), (A3), (A4), (B1), (B2), (B3) and (B4) hold. Then,

asmn — oo, one has

J?n(llfo) = fo(zo) + Op(u (n)_l/g), (5.16)
with u (n) as defined in (5.11).

The rate u (n) comes from Lemmas 5.5.3 and 5.6.7, and as it can be seen from
Theorem 5.2.1, it is a deterministic approximation of 7" (n). Note that in the positive

13 as in the i.i.d. case

recurrent case, u (n) = n, hence we obtain the same rate n~
[53, Chapter 2]. In the S-null recurrent case, however, the rate of convergence is
n®3LY3 (n) which is slower than the usual rate. This is due to null recurrence of
the chain because it takes longer for the process to return to a neighborhood of

the point zy and it is these points in the neighborhood of xy which are used in

nonparametric estimation.

5.5 Localized Markov chains

Given the localized nature of our approach, in this section, we present some
results that are particularly useful in this scenario. These results are well known

for positive recurrent chains but are new in the null recurrent case.
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The first result can be viewed as an extension of the Glivenko-Cantelli theorem

to the localized scenario.

Lemma 5.5.1. Assume that (A1) and (A3) hold. Then, there exists a stationary o-

finite measure 7, and F' defined by (5.13), such that,

sup |F, (y) — F (y)| > 0 a.s. (5.17)
yeR

asn — 0. If (A5) is also satisfied, then, for all sufficiently smalle > 0, asn — o
we have

sup |F, ' (p)—F ' (p)| >0 as. (5.18)
[p—F(zo)|<e

Our next result (Lemma 5.5.2), which is an extension of Lemma 2 in [18] to the
localized S-null recurrent case, deals with the properties of classes of functions
defined over the regeneration blocks. Before presenting the result, we need some
machinery.

Recall that £ < R denotes the state space of X. Define E = Ui, E* (ie. the

set of finite subsets of F) and let the localized occupation measure M¢ be given by

c(B,dy) = Z 0z ( for every B € E.

xeBNC

The function that gives the size of the localized blocks is ¢ : E—N
lc(B) = J Mq(B,dy), for every B € E.

Let € denote the smallest o-algebra formed by the elements of the o-algebras

EF, k > 1, where EF stands for the classical product o-algebra. Let @ denote a prob-

~

ability measure on (E, £). If B(w) is a random variable with distribution @', then
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M¢(B(w), dy) is a random measure, i.e., Mo (B(w), dy) is a (counting) measure on
(E, &), almost surely, and for every A € £, M¢(B(w), A) = §, Mc(B(w),dy)isa
measurable random variable (valued in N). Henceforth £( B(w)) x { f(y) Mc(B(w), dy)

is a random variable and, provided that @(ﬁz) < 0, the map Q)¢, defined by
Qc(A) = Ej (EC(B) X f MC(B,dy)> /E@(KQC), for every A€ &£, (5.19)
A

is a probability measure on (F, £). The notation E(, stands for the expectation
with respect to the underlying measure (). Introduce the following notations: for

any function g : £ — R, let ¢ : E — Rbe given by
gc (B) = Jg(y) Mc (B, dy) = >, g(x) = ) go (), (5.20)
xeBNC zeB

and for any class G of real-valued functions defined on F, denote the localized

version of the sums on the blocks by G¢ = {9c : g€ G}.

Notice that, for any function g,

(5.21)

Lemma 5.5.2. Let Q) be a probability measure on (E, ) such that 0 < el 25y <
o0 and G be a class of measurable real-valued functions defined on (E, E). Then we

have, for every 0 < ¢ < o0,

N (elibely gy Gor 12 (@) ) <N (.6, 12 (@)

where () is given in (5.19). Moreover, if G belongs to the Vapnik—Chervonenkis (VC)

class of functions with constant envelope U and characteristic (C,v), then G is VC

163



5.6. PROOFS

164

with envelope Ul¢ and characteristic (C, v).

Remark 5.5.1. For a probability measure i, and a class of functions H, the covering
number N (e, H, L" (1)) is the minimum number of L" (1) e-balls needed to cover

‘H. For more details about this concept and the VC class of functions, see [70].

To put into perspective Lemma 5.5.2, consider a class of bounded functions G
that is VC with finite envelope. Lemma 5.5.2 tells us that the class of unbounded
functions (jc is also VC. If we also have that (B4) holds, then Theorem 2.5 in [70]
tells us that Q\C is a Donsker class. A reasoning like this is used in the proof of the
following result, which is a stronger version of Lemma 5.5.1 under assumptions

(B1) and (B2) and has some interest on its own.

Lemma 5.5.3. Assume that (B1), (B2), (A3), (A4) and (B4) hold. Then, for all suffi-

ciently small e > 0 we have,

T,(C) sup |F,(y) — F(y)|2 =0, (1) (5.22)

ly—zol<e

when n goes to +c0. If (B2) is also satisfied, as n — o0 we have

T.(C) suwp  |F7'(p) = F ()" = O, (1). (5.23)

lp—F(zo0)|<e

5.6 Proofs

In this section we give a general outline of the proofs of Theorems 5.3.1 and

5.4.1. The technical proofs can be found in sections 5.7.2 to 5.7.5.
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5.6.1 Outline of the proof of Theorem 5.3.1

Recall that we consider the piecewise-constant and left-continuous LSE fn, that
is constant on every interval (Y, _1, Y%,k = 2,...,mand also on (—o0, Y7 ] and on
[V, 0). With § > 0 fixed, we denote by T,,(C') the number of times the Markov

Chain X visits the set C' := [zg — J, g + J| until time n:

n

T.(C) = Y I{X, e C}. (5.24)

t=0

Let I, = > Io{X; <Y} forallke {1,...,m}and, = 0.
Our aim is to provide a characterization of ﬁ(xo) . Recall from (5.12) that the
localized empirical distribution function F,, is defined as

T (C) n
Fu(y) = Tn(lC) Z W Xoow) <y} = TiC) ZHC{Xt <y

=0 =0

fory € R. F}, is 0 on (—0, Y}), so, with an arbitrary random variable Yy < Y] we

have F,,(y) = F,,(Yo) = 0 for all y < Y). Let K be the set
K:={F.,(Ys), k=0,...,m} (5.25)

and let A,, be the continuous piecewise-linear process on [F,(Yy), [ (Y;,)] with

knots at the points in K and values

1 n
D ZIe{X, < Yi} (5.26)

at the knots. The characterization of fn in Lemma 5.6.2 involves the least concave
majorant of A,. Note that we use 7,,(C') as a normalization in the definitions of

the processes F}, and A,, since this choice ensures that F;, and A,, converge to fixed
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functions, see Lemma 5.5.1.

Lemma 5.6.1. Forally € [F, (Yy), F, (Y],

where,

and M, is a piece-wise linear processes with knots at F,,(Y},) fork € {0, ...

such that
1 n
M, (F,(Y:)) = Wilc{ X < Yy}
Moreover, M,, can be written as
0 , ify=0
M, (y) =
Ri(y)+ MI | otherwise
where,
M = My(Ey(Y))) = e T Wil X, < Vi),
T"(C) t=0

t;) WtHC{Xt = Y}'H}

Rl (y) = (y— Fa (Y))),

i1 =1

and j is such that Y1 = F,; ' (y).

n

(5.27)

(5.28)

(5.29)

(5.30)

In the next lemma, we give an alternative characterization of the monotone

nonparametric LSE fn at the observation points Y7, ..., Y,,.
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Lemma 5.6.2. Let C' = [x — 6, + 0] for some fixed § > 0. Let A, be the left-hand

slope of the least concave majorant of A,,. Then,
FoYi) = Ano Fo(Ya), Yke{l,...,m}). (5.31)

with probability 1 for n big enough.

We consider below the generalized inverse function of fn since it has a more
tractable characterization than fn itself. To this end, let us define precisely the
generalized inverses of all processes of interest. Since A, is a non-increasing left-
continuous step function on (F),(Yy), F,,(Y,,)] that can have jumps only at the
points F,(Y3), k € {1,...,m}, we define its generalized inverse U, (a), for a € R,
as the greatest y € (F,(Yp), F,,(Y,,)] that satisfies Xn(y) > a, with the convention
that the supremum of an empty set is F,(Yy). Then for every a € R and y €

(Fn(Yo), Fu(Yy,)], one has
Xn(y) > a if and only if Un(a) > y. (5.32)

Likewise, since fn is a left-continuous non-increasing step function on R that can
have jumps only at the observation times Y; < --- < Y},,, we define the generalized
inverse J?n_l (a), for a € R, as the greatest y € [Yp, Y,,| that satisfies fn(y) > a, with

the convention that the supremum of an empty set is Y. We then have
fuly) = aifand only if £ '(a) >y (5.33)

forall a € R and y € (Y5, Y,,,]. On the other hand, since F,, is a right-continuous
non-decreasing step function on R with range [F),(Yp), F,.(Y;,)], we define the

generalized inverse F), !(a), for a < F,(Y,,), as the smallest y € [Yp,Y,,] which
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satisfies F,(y) = a. Note that the infimum is achieved for all a < F},(Y},,). We then
have

F.(y) = aifand only if F; '(a) < y (5.34)

forall a < F,(Y,,) and y € [y, Y;,], and thanks to Lemma 5.6.2 we have
Fl=F100, (5.35)
on R. Moreover, one can check that

ﬁn(a) = argmax {A,(p) —ap}, foralla e R, (5.36)
PE[Fn (Y0),Fn(Ym)]

where argmax denotes the greatest location of maximum (which is achieved on
the set KC in (5.25)). Thus, the inverse process U, is a location process that is more
tractable than ]?n and \, themselves. A key idea in the following proofs is to derive
properties of U, from its argmax characterization (5.36), then, to translate these
properties to fn_l thanks to (5.35), and finally to translate them to ]?n thanks to
(5.33). The last step will be the aim of Section 5.7.3. We consider below the first

two steps.

To go from U, to j/’\n_l using (5.35) requires to approximate F, ! by a fixed func-
tion. Hence, in the sequel, we are concerned by the convergence of the process F;,
given in (5.12), where 0 > 0 is chosen sufficiently small, and by the convergence

of the corresponding inverse function F; !,

It is stated in Lemma 5.5.1 that under (A1) and (A3), F}, converges to a fixed
distribution function F' that depends on C, hence on ¢. If, moreover, F' is strictly
increasing in C, then we can find a neighborhood of F'(z) over which the (usual)

inverse function F'~! is uniquely defined, and F; ! converges to F'~'.
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In the following lemma, we show that F'(x() belongs to the domain of A,, with

probability that tends to one as n — co.

Lemma 5.6.3. Assume that (A1), (A3), (A4) and (A5) hold. Then, we can findc > 0
such that the probability that Y, +¢ < z¢ < Y,,, —¢ tends to one asn — o0. Moreover,
the probability that I, (Y1) < F(xzo) < F,,(Y;,) tends to one asn — .

We will also need to control the noise {I¥;}. The following lemma shows that

the noise is negligible under our assumptions.

Lemma 5.6.4. Assume that (A1) and (A2) hold. Let F,, = 0 ({X1,...,X,}). Then,

i WtHC{Xt = An} = op (Tn(C)) )

t=0

and

sup | Y. Wille {X; € (A, ul}| = op (T,(C)).

u>An =0
for any sequence of random variables A,,, independent of the process {W,}, that is

adapted to the filtration { F,}.
With the above lemmas, we can prove convergence of U, given by (5.36), and

then convergence of ﬁjl given by (5.35), at the fixed point f,(x().

Lemma 5.6.5. Suppose that assumptions (A1)-(A7) are satisfied. Then, asn — 0,

one has

Un(fo(wo)) = F(wo) + op(1). (5.37)

5.6.2 Outline of the proof of Theorem 5.4.1

The proof of Theorem 5.4.1, uses similar ideas as the ones used in the proof
of Theorem 5.3.1 but under stronger assumptions (and therefore using stronger

lemmas).
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The first intermediate result is the following stronger version of Lemma 5.6.4.

Lemma 5.6.6. Assume that (A2), (A3), (A4), (B1), (B2) and (B3) hold. Then, there
exists K > 0, 79 > 0 that do not depend on n and N,, € N, such that for all

v € [0,70] andn = N.,, one has

DYIW(Ief X, <y} —Ief Xy < m})| | < Ku(n)y — (538)
t=0

E\ sup

ly—zo|<y

Zn: Wile{X: =y} |<Ku(n)y (539
t=0

Ey sup

l[y—zo|<y

Then, we need to quantify how well we can approximate 7,,(C') by u (n).

Lemma 5.6.7. Assume that (B1) and (A3) hold. Then we have

a) Asn — o we have

b) Let v and be positive constants, then there exists constants Ny, ¢, and c,, such

P ((ZL<<5))Q € [gn,En]> >1-1n, VYn=N,

With the above lemmas (including Lemma 5.5.3 and the ones used in Section

that

5.6.1), we can obtain the rate of convergence of (A]n given by (5.36), and then the

rate of convergence of ﬁjl given by (5.35), at the fixed point f(x().

Lemma 5.6.8. Assume that (A2), (A3), (A4), (B1), (B2), (B3) and(B4) hold. Then, as
n — o0, one has

Ol o) = Flao) + Op (u(m) ). (5.40)
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and

A~

Bt (folwo)) = 2+ Op (w(m) 7). (5.41)

5.7 Technical proofs

5.7.1 Technical proofs for Section 5.5

Proof of Lemma 5.5.1. Equation (5.17) follows from Corollary 2 in [9] and
part 2 of Theorem 5.2.1.

Now, we turn to the proof of (5.18). To do this, we adapt some of the ideas
presented in the proof of Lemma 21.2 in [114].

Let V' a normal random variable independent of the X;’s, and @ its distribution
function. it follows from (5.17) that conditionally on the X,’s, F},(V') converges
almost surely to F'(V'). Thus, denoting by Px the conditional probability given the
Xy’s, it follows from (5.34) that ®(F), ! (u)) = Px(F,(V) < u) converges almost
surely to Px (F(V) < u) = ®(F~'(u)) at every u at which the limit function is
continuous . Since F'is strictly increasing in C, one can find ¢ > 0 such that F' —lis
continuous on [F'(xy) — &, F/(zo) + £], so the above limit function is continuous at
every u € [F(zo) —¢, F(xg) +¢]. By continuity of ® ' on (0, 1), F,,; }(u) converges
almost surely to F~!(u) for every such u. By monotonicity, the convergence is

uniform, hence

sup  |F,H(p) = FH(p)l = o(1)  as.

lp—F(zo)|<e

asn — 0.
Proof of Lemma 5.5.2. This proof is an adaptation to the localized case of

the proof of Lemma 2 in [18]. Let f/, € F(, i.e., there exists f € F such that
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f4(B) = { f(y) Mc(B, dy). By Cauchy-Schwarz inequality,
(f f<y>Mc<B,dy>)2 <o) ([ Pycan)
then
B 72) < Eor (1c(B) [ 107 Mo, ) ) = Eau ) B )
where the last equality follows from (5.21). Applying this to the function
FolB) = F(B) = [ (7(0) ~ fulw) Mc(B. dy)

when each fj, is the center of an e-cover of the space F and | f — fi|r,00) < €
gives the first assertion of the lemma. To obtain the second assertion, note that

Ul = Ul is an envelope for F/.. In addition, we have that
10 Loy = Ulllel La@)-
From this, we derive that, for every 0 < e < 1,
N(e|Ue | La@): Ue, L2(Q)) = N(eU e Lo, U', L2(Q)).
Then using the first assertion of the lemma, we obtain for every 0 < ¢ < 1,
NENUE] ra@)s For L2(Q) < N(eU, F, La(Qc)),

which implies the second assertion of the Lemmaz whenever the class F is VC

with envelope U.
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Proof of Lemma 5.5.3. Let B € £ and g: F xR — R,.Foreachy € R
we define g, () = ¢ (x,y), then, using the notation of section 5.6.2 we will have

Gy (B) = Y. .cp~c 9 (,y). Finally, for any function 7 : R — R, we define

3 (B) = (g, — h()(B) = > (9(z,y) —h(y)) =G, (B) —Lc (B)h(y).

reBNC

Let g (x,y) = I{z <y}, and h = F as defined in (5.13). Then, g, (B) =

S,enlefe < y) and

4y (B)= », (Mz<y}—F(y)=3,(B)—tc(B)F(y).

zeBNC

From now on, we’ll remove the superindex from ﬁj to ease the notation.

By the definition of F}, and F' ((5.12) and (5.13)), we have that

Tn(C)
) = F0) = g 2 (UXeoy < 9= F)
= 72107 5 0ol <)~ LX)
. T(n)

- 70 (1, (By) + Z Gy (Bi) + gy (B(n>)> ;

therefore,

Notice that |g, (Bo)| < 2lc(By) < +w and T,(C) — +o0 almost surely,

therefore, the first term in the last equation converges almost surely to 0 uniformly
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in . For the last term, we have that

19y (B(n)’ 2lc(Brm)) _ T(n) lo(Bre)

VIC) © VIO ¢) VT (n)

by (B4), the expectation of ¢Z (B, ) is finite, then, Lemma 1 in [9] shows that C(B") —

0 a.s. which implies that EC\(/ZE also converges to 0 a.s. Since 7' (n) — + a.s., by

Theorem 6.8.1 in [55] we have % — (0 almost surely. Joining this with the

T
almost sure convergence of (n)

Tn(%) to a positive constant (see Theorem 5.2.1) we

. 3y (B )| : .
obtain that M converges almost surely to 0 uniformly in y. Therefore,
V/Tn(©) g y ymy

) ~ (1
L (R - Fw) = 2208 o0 ) sy

where we have used that T;((nc)) converges almost surely to a positive constant

to use T'(n) instead of T,,(C").

Then, (5.22) will be proved if we show that, for ¢ small enough

sup ‘Zl_y) ~0,(1). (5.43)

y-zol<e A/ T(n)

Fix > 0 arbitrarily. By Lemma 5.6.7 and Slutsky’s theorem, we can find pos-
itive numbers g, , @, and an integer N, such that P (&,) > 1 — J foralln > N,

where

En = {a,u(n) <T(n) <ayu(n)}. (5.44)

Define W,(¢) = sup [>1, gy (B;)| and let M, be a fixed positive number.

ly—zo|<e

Then, for alln > N,

P < ;(n) WT(n) > Mn) <P ({ﬁWT(n) > Mn} N gn) +1- P(gn)
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1 U
<P{—Wpy>M,snE, |+~ (545
(= fos) 3 e
On &,, a,u (n) < T'(n) < @yu (n), therefore for alln > NV,
1 1
P\ {——=Wrem)y > M, n&, | <P ———— max Wy>M,né&, |,
T(n) a,u(n) 1<k<anu(n)
&y
1
<P|——— max W;>M,
a,u (TL) 1<k<ayu(n)
(5.46)

anu(n)

., are iid. therefore, by Montgomery-

The random variables {g. (By)
Smith’s inequality (Lemma 4 in [2]), there exists a universal constant K such that

foralln > N,

Uk

P ; mabx()I/Vk>J\477 < KP Wau(n) M ,
1<k<anu(n
a,u (n) "SEE «/
anu(n)

M

< KP sup g, (B)| > =

AlG Iy zo|<e i K

(5.47)

For an arbitrary set 7', let £7*(T") be the space of all uniformly bounded, real
functions on 7', equipped with the uniform norm. Weak convergence to a tight
process in this space is characterized by asymptotic tightness plus convergence of
marginals (see Chapter 1.5 in [115]).

The class of functions G — F' = {g,(") — F (y)},z is VC with constant en-
velope 2, hence, by Lemma 5.5.2, the class of functions g/’—\F is also VC and has

2(c as envelope. E(%(1;) is finite (by (B4)), therefore, by Theorem 2.5 in [70],
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G — I is Donsker. Then, the process g,,lu(n) Z?ﬂ(n) Gy (B;)

converges weakly in
(* [ﬁ] to a tight process Z. The map y — |y|,, from (% [ﬁ] to R is

continuous with respect to the supremum norm (cf. pp 278 of [114]), therefore,

ﬁ sup Z?rf(n) Gy (B;)| converges in distribution to sup Z (y), hence,
G ly—zo|<e ly—zol<e
we can find V;, and IV, such that
1 anu(n) 1
P ——— sup gy (B)| >V, | < 5=, Yn>N,. (5.48)
a,u (n)ly=ml<e | i5 2K

Choosing M, = KV, in 5.48 and joining (5.47), (5.46) and (5.45), completes the

proof of (5.22).

Now we proceed to prove (5.23). Let 1) be fixed, by (5.22) and Lemma 5.6.7, we
can find €, Mé and N{7 such that

P ( T,(C) sup |Fu(y) — Fly)| > Mé) < Z Vn > N} (5.49)

ly—zo|<e’

P(D,) >1— g Vn= N, (5.50)

where D,, = {a,u (n) < T,,(C) < @yu (n)}. Define the sets

Uy =3VT,(C) sup |E '(p)—F p)|>M,¢,
[p—F(zo0)|<e

U, = {ﬂpe [F(x0) — €, F(x0) + €] - F, M (p) — F~(p) > L}

U2 = {ap € [F(xo) — &, Flxo) + ] : F~'(p) = ' (p) > L} .

where € and M,, are constants that will be specified later.
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OnU! NnD,, F7'(p) > 2 4+ F1(p) > —22_ 4+ F~(p), hence,

VTn(C) anu(n)
M, 1
F, T +F! <E (F'(p)<p+
( a,u (n) (p)) (70 <2 T.(C)
<p+ ! (5.51)
a,u(n)

Assumption (B2) indicates that F' has bounded derivative in C, take K; as the

maximum value of this derivative in C, then, the Mean Value Theorem implies

that
p=F(F'(p)=F <% + F! (p)> - —F/ée’;) (J\f)"

Mn -1 . Kan
gF(W” (”) T ()’

After plugging this into (5.51) we get

F(L()U)F (LU) KMy

anu a,u(n) au(n) au(n)

1 _ 1 foralln > Ny,

a, K1
taking M, bigger than %4 /Z—" + 1 and using that 7,,(C) < a

Because u (n) — +o0, we can find N7 such that

,u(n) on D, we

obtain, for all n > NV;

F (% iy (p)> _F <% iy (p)> - \/% (5.52)

My
A/ anu(n)

there exists ¢ > 0 such that |[F~! (p) — x| < § forall pin [F(zo) — &, F(x0) + €],

Let Ny, be such that < & forn = N,,. By the continuity of 7! in F(x)

My

anu(n)

+ F~1 (p) lies in the in-

therefore, the triangular inequality implies that
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terval [z — &', z9 + '] for all n > N,, = max (Nq, N,,,). This, alongside (5.52),

shows that for alln > N,

Ulﬁ'D c | _ . _ L’G
2nD, X 3yelzg—¢,x0+e]: Fly) — Fuly) >

< { T.(C) sup |Fu(y) — F(y)| > Mé}-

ly—zo|<e’

By a similar argument, it can be shown that
U2nD,c {Hy €lwo—¢,z0+€]: F(y) — Fly) > —t=

Using (5.49) and U,, = U} U U} we obtain that P (U,, n D,,) < % foralln > N,,.

Equation (5.23) now follows by (5.50).

5.7.2 Technical proofs for Section 5.6.1
Proof of Lemma 5.6.1. Combining (5.26) and (5.1) yields

1 n
< .
7T ;)Wtﬂc{xt i}

1
T.(C)

1=

An(Fo(Yi)) = Jo(X)IoA Xy < Vi) +

t=0

The first term on the right hand side of the previous display can be rewritten

as follows:
1 = 1 &
T,(C) D (XTI X, < Vi) = 7.(C) (D)l = 1-)TefY; < Vi)
n t=0 n j=1
k  pli/Ta(C)
=2 foo Fy ! (u)du,

using that F,*(u) = Y for all u € (1;_1/T,,(C),1;/T,,(C)]. Hence, for all k in
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{0,...,m}

Uk/Tn(C)

M(E ) = |

1 n
1 L
. fO o Fn (u)du + Tn(C’) t_éo [/Lt]IC{Xt < Yk} (553)

Combining (5.53) with the piece-wise linearity of A,, yields
An (Fn (Yk)) = Ly (Fn (Yk)> + M, (Fn (Yk)) )

where L, and M,, are piece-wise linear processes with knots at F,,(Y}) for k in

{0,...,m} and such that

n

/T (C)
Lu(Fu(Y2) = j foo F (w)du

and
1 n
D IWe{X, < Vi)

In order to ease the notation, we will write I = F,(Y;), L', = L,, (F, (Y;)) and
M = M, (F, (Y;)). Lety € (F,, (Yo), Fy, (Y,n)], take j such that ;. = F; ! (y),

n

then F), (Y;) <y < F), (Y;+1). With this notation,

L%Jrl — Lgl . )
L, (y) = m (y - Fr]z) + L7,
Mg-&-l _ Mer . .
M, (y) = w(y—]’ﬁ) + M.
Notice that
AES
T (C) ] I
) ) _ +1 — Yy
Lt i J foo B () du = S (V).
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" T(0)
therefore,
y y
Lo (y) = fo(Yis1) (y — F))+Li = f Joo F7 (u) dutLi, = ffo o F' (u) du,
1 0
T (O)
which proves (5.27).
For M,, we have,
‘ , 1 L
+1 . .
M= M = s S WL {Xe = i)

then,

2, Willo{X; = Yy}
t=1

M, (y) = (y— Fl) + M = Rl (y) + M.

i =1l

and this completes the proof.
Proof of Lemma 5.6.2. By definition, with iy = 0,and [, = > ;' jIo{X; < Y}
forall k € {1,...,m}, we have F,(Y;) = aly for all k € {0,...,m}, where a =

1/T,,(C) and does not depend on k. Moreover,

An (Fn(yk)) = ai Zt]lc{Xt < Yk}

t=0

Since fn(Yk) is the left-hand slope at [;;, of the least concave majorant of the set of
points in (5.3), the equality in (5.31) follows from Lemma 2.1 in [42].

Proof of Lemma 5.6.3. The first assertion follows from Assumption (A4) and

the second immediately follows from the first one by (5.17) combined with the
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strict monotonicity of F'in C.

Proof of Lemma 5.6.4. Let F,, = o ({Xo, ..., X,}) be sigma algebra gener-
ated by the chain { X} up to time n. Denote by Pz, the probability conditioned to
F,,. Take ¢ > 0.

By Chebyshev’s inequality,

Z Wl {X: = A} o’ 2 o {X; = A} o2
P < t=0 <
Fn T, (O) - F 22T, (0) 27T, (O’

which implies the first part of the Lemma because 7,,(C') — oo with probability 1.

For the second part, let 7, (u) be the number of times the chain visits (A,,, u]nC
up to time n and A4, (u) = {t <n:X,e (A, ul nC} = {a1,...,a,@)} the
times of those visits. Using that v, = sup v, (u) < T, (C') and Kolmogorov’s

u>An

inequality (Th 3.1.6, pp 122 in [55]) we obtain,

S Wl {X, € (A, ]}

P sup |=2 >c|=P sup YW |l >e
I u>Anp Tn (C) I u>An 1 Tn (C)
<P su k i | s g
< 'F, 1<k<p'yn = Tn (C)
o2
< -
e2T, (C)

which by the same argument as before, implies the second part of the Lemma.

Proof of Lemma 5.6.5. In the sequel we set a = fo(x). We begin with the

proof of (5.37).

Fix ¢ > 0 arbitrarily, and let » > 0 and vy > 0 be such that |F~(u) — x| > v

for all u such that |u — F'(z0)| = €/2, and | fo(z0) — fo(y)| >  for all y such that
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|y — x| = /2. Note that existence of v and 7 is ensured by assumptions (A5) and

(A6).

By Lemma 5.6.3, we can assume without loss of generality that F'(xy) belongs
to the domain [F},(Y}), F,,(Y,,)] of A, since this occurs with probability that tends
to one. Therefore, we can find j(2o) such that Y}, = F, " (F (xo)). It follows
from the characterization in (5.36) that the event E. := {U,(a) > F(z) + €} is

contained in the event that there exists p € IC such that p > F(z¢) + ¢ and
An (p) —ap = An (F (20)) — aF (x0) ,
where we recall that a = fj (z9).

By Lemma 5.6.1, E}L is contained in the event that there exists p € K such that

p > F(zo) + ¢ and
La(p) + Mo(p) — ap > Ly(F(zo)) + My(F(z0)) — aF () (5.5)

Using (5.27) in (5.54) we obtain that E! is contained in the event that there exists

p € K such that p > F(xg) + ¢ and

D F(xo)
f foo BN u)du + S, — ap = J foo F, Y (u)du — aF(xy),
to/Tn(C) to/Tn(C)
where
Sp = sup {My(p) — My, (F (20))} -

p>F(zo)+e, pek

Let j and k such that Yj,; = F,, ! (F (20)) and p = F,(Y%). By equation (5.28) we

n
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have M,, (p) — M,, (F (z0)) = M* — MJ — RI (F(x)), therefore,

Sp=sup {My— M} — R (F (o))

p>F(xo)+e
pekC
1 n
< sup D Wi (I Xe < F7M(0)} — Tod X < F N (F(x0))})
p>]g(xo)+€ Tn(0> t=0
pe

+ | R, (Fy (Vi)

1 n
< Wile{X, e (F7X(F (z0)); F
p>I§(L:1£E))+E Tn(C)t;) tC{ te( (£ () (P)]}‘
pE

3 Wil (X, = B (F (370))}‘
(C)

+

Hence,

n

DI Wile{ X, (F; (F (x0) Fn1<p>]}‘

t=0

T,(C)S, < sup
p>F(z0)+e
pekC

+ Zn: Wlc{X, = F," (F (:no))}| :

Therefore, the event E! is contained in the event that there exists p > F(zg) + ¢
such that

/4
J foo F-N(w)du + S, > a(p — Flxo)).
F(zo)

Now, let Efl be the event that

sup  |F 7 (u) — F7H (w) <

lu—F(z0)|<e

wheren € (0, v/4) is such that | fo(v)— fo(zo)| < /2 forally such that |zo—y| < 7.

Note that the existence of 7 is ensured by assumption (A7). Then, it follows from
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the monotonicity of fy and F}, that on E2,

P

D F(xo)+e/2
f foo Fy (w)du < J fo(F~H(u) —n)du+f Jo(FyH(F (o) + £/2))du.

F(J,‘()) F(ﬂ?()) F(.Z’o)+6/2

Hence, it follows from the definitions of 7, v and y that on EEL

Jr foo it < S0+ I (= Flan) = o0 (P +22) )
0 ve
T

%fo(mo) + -+ (p— F(zo) — £/2) fo(zo + v/2)

%fo(xo) + Wf + (p = F(xo) —¢/2)(fo(xo) — 7).

A

N

This implies that on E2,

fp foo FyM(w)du < a(p — F(xo)) — (p — F(xo) — 3¢/4)y

F(zo)
< a(p— F(xg)) —ev/4

for all p > F(xq) + ¢. Hence, the event E! n E? is contained in the event {S,, >

ev/4}. Now, on E2, for all p > F(x() + ¢ we have

=
S
Y

Fﬁl(F(QZo) + 5)

n

WV

F Y (F(xg) +¢)—n

WV

T+vV—n

\%

F Y (F(x0)) +v —2n

n

\%

F N (F(x0)) +v/2,

n
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since v > 4n). Therefore,

3 Wile{X, < (B (Flao)). ul}

t=0

T.(C)S, < sup

u>Fy Y(F(x0))+v/2

_|_

_l’_

Z Wlc{X, = F, ' (F (5’30))}‘ :

t=0

Hence, it follows from Lemma 5.6.4 that S,, converges in probability to zero as
n — o0, so that the probability of the event {S,, > v/4} tends to zero as n — o0.
It follows from Lemma 5.5.1 that for € sufficiently small, the probability of the event
E?2 tends to one as n — o0, so we conclude that the probability of E! tends to zero
as n — oo. Similarly, the probability of the event {ﬁn(a) < F(zy) — ¢} tends to
zero as n — oo, so that

lim P(|U,(a) — F(x)| > ) =0

n—0o0

for all ¢ > 0. This completes the proof of (5.37).

5.7.3 Proof of Theorem 5.3.1

We first prove (5.15). Fix ¢ > 0 arbitrarily small. It follows from (5.35) and (5.34)

that

P(ﬁ:l(a)>x0+€> < P(Fn‘loAn(a)>xo+5>
< P(An(a) > Fn($0+5>>
< P (Oula) > Flag +6) ~ K, ).
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where

K, = sup |F.(y)— F(y)l.

ly—zo|<e

With v := F(x¢ + ) — F(x), we obtain
]P<]?”_l(a) >x0+5) S P(ﬁn(a) >F($0)+V—Kn),

and v is strictly positive since F' is strictly increasing in the neighborhood of xy.

Hence, it follows from (5.17) that for sufficiently small ¢ > 0 one has
P (f,;l(a) > 20 + s) < P <(7n(a) > Fxo) + y/z) +o(1),

so it follows from (5.37) that the probability that fn’l (a) > xg + € tends to zero as
n — co. Similarly, the probability that fn_l(a) < xp — € tends to zero as n — 90 so
we conclude that the probability that ]fn_l(a) — o] > ¢ tends to zero as n — .

This completes the proof of (5.15). ]

To prove (5.14), fix ¢ > 0 sufficiently small so that F' and f; are continuous and
strictly increasing in the neighborhood of 2’ := f;*(fo(z¢) + ). Equation (5.15)
shows that

£ (folwo) +€) = fo  (folwo) + ) + 0p(1), (5.55)

as n — o0. Now, it follows from the switch relation (5.32) that

P (fulwo) > folwo) +¢) <P (f(folwo) +2) > o)
<P (f7(folao) + ) = 5 (folao) +2) + ).
(5.56)
where v := 1 — f; (fo(x0) + ) > 0. It follows from (5.55) that the probability on
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the right-hand side tends to zero as n — co. Hence, the probability on the left-hand
side tends to zero as well as n — co.

Similarly, the probability that ]?n(xo) < fo(zog) — € tends to zero as n — ©
so we conclude that the probability that |J/”\n(x0) — fo(zo)| > € tends to zero as

n — oo. This completes the proof of Theorem 5.3.1.

5.7.4 Technical proofs for Section 5.6.2

Proof of Lemma 5.6.6. Let F,, = o ({Xo, ..., X,,}) be sigma algebra gener-
ated by the chain X up to time n. Denote by E~  the expected value conditioned

to F,,. Take 0 < v < § and define Iy = [zg — 7, x¢], [1 = |20, xo + 7] and

So () = sup | D Wi (T{X; < y} — T{X; < xo})
yGI() =0
n 2
$1(7) = sup STWi (LX< y} — T{X, < 20})
YEN =0

2

()= sup [ <)~ 10X < aod)| = max (S0(3).51 ().

ly—z0l<V |t=0

< So () +S1(7) (5.57)

Following the notation of section 5.2, let

al (v) =sup T, ([y, o)), al) (v) = sup T, ([0, y]) ,
yely yelr
T ([wo)) ? Tu([z0.0) ?
with thisnotation, So =sup | >, Wy, | and Sy =sup| > Wy ) -
velo | i=1 oo veli | i=1 0¥
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By Doob’s maximal inequality (Th 10.9.4 in [55]), we have, for j = 0, 1,

. 2
of)

Er,S;(v) <4Eg, Z W, | = 4029 (7)
=1

1=

< 40°T, ([0 = 7, 20 + 7))

<40 Y (I{X, < @o + 7} — T{X; < 20 — 7}). (5.58)
t=0

Therefore, by (5.57) and (5.58)

Ex,S (7) < 802 i (]I {Xi <o+~ —T{X; <29 — ”y}) (5.59)
=0

Define,

« h(y,v) =Lye [xo—7 20 + 7]},

Zoh(Xtﬁ) , 7=0
t=
* h<BJ 7) = Ta(j+1)
> h(Xey) o i=1
t:TA(j)+1

« Zo(7) = z B (X, )

Ta , Jj=0
- ((B)) =

Ta(j"i’l)_Ta(j) , Jg=1

~

« T(n)= min{k ; é}é(Bj) > n}

Gr =0 ({(h (B;,7) ,e(Bj))}fzo) for k = 0.

By the Strong Markov property, {(h (B;,7), ¢ (Bj))};:ol is an i.i.d. sequence

which is independent of (h (By, ), ¢(By)) (and, therefore, of the initial measure
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A). For n fixed, the random variable T (n) is a stopping time for the sequence

o0 .
+O in effect

{(h(Bj,7) £(B;))} ;o

For each n and v we have that

n

To T(n)
Zn (V) =D h(Xey)+ Y h(Bi)+ D, k(X))
t=0 j=1 t=to(T(n))+1
I'(n)
< h(Bo,7) + ), h(Bj, 7). (5.60)
j=1

~

where the last inequality is justified by the fact that, 7’ (n) < 7' (n) and h (y, ) is

a nonnegative function. Because ¢ (Bj) > 1 for all 7, we have that,

A?
3

) n
h(Byy) = Yy (BT () > 5}

J

<.
Il
—_

then, .
E %)h(gj,y) ziE<h(Bj,7)H{f(n)>j}>. (5.61)

Jj=

For each j we have,

By (1 (B L{T (n) > j}) = Ex (E (h (B, ) L{T () > j} 16,1))

Notice thatﬂ{f(n) > j} =1- ]I{YN”

(n)<j— 1} € G;_1 and h (B;,) is inde-
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pendent of G;_;, therefore,

Ex (h (BN {T () = j}) = Ea (1{T () = 1} ) E (0 (B;,7)

Plugging this into equation (5.61) we get,

> b (B :Z NP (T (0) = ) <E(h(Br7)ET (n).

Then, by taking expectation in (5.60) we obtain

ExZ, (7) < Exh (Bo,7) + E (h(B1,7)) BT (n)

< Exh (Bo,y) + E(h(B1,7))Ex (T (n) +1). (5.62)

By Theorem 5.2.1 and the fact that F' is Lipschitz we can find K independent of

~ such that,

E (h (B, ) = f h(t,~) dr (t) = Ky (C) (F (20 + ) — F (20 — 7))

< Kw. (5~63)

If X is positive recurrent, by Theorem 5.2.1, ((”)) converges almost surely to a pos-

T
u

—~

n
n

N

itive constant K5 > (. Moreover, < 1 therefore, by the Dominated Conver-

—~
Nl

gence Theorem we obtain that E)\T “("

—~

n) ~ .If X is S-null recurrent, by Lemma

3.3in[67], E\T (n) ~ hence, for both positive and S-null recurrent chains,

F(1+B)’

we can find K, and N, both independent of ~, such that E\T' (n) < Ksu (n) for
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all n > N. Using this with (5.62) and (5.63) we get,

ExZ, (7) _ Exh (Bo, )
u(n)y — u(n)y

+ K1Ky Vn =N, ¥ye(0,6]. (5.64)

Combining (5.64) with assumption (B3) and the fact that Z,, (0) = 0 we obtain

that there exist positive constants K3 and v, such that
ExZ, (7) <u(n)y VYn= N, Vye (0,7].

Equation (5.38) now follows after taking expectation in (5.59). The proof of (5.39)

follows the same reasoning, but using

n 2

W (o {X; = o))

t=0

S; (v) = sup

yEIj

Proof of Lemma 5.6.7. a) If X is positive recurrent, Theorem 5.2.1 implies

Tn(C)

that there exists a positive constant /K such that )

converges almost surely to

K7 (C), which is not zero by (A3).

On the other hand, if X is S-null recurrent, Theorem 5.2.1 and Slutsky’s The-

orem implies that there exists a constant X > 0 such that T;((TS) converges in

distribution to K Mpz(1) where Mz(1) denotes a Mittag-Leffler distribution with

parameter (3. This distribution is continuous and strictly positive with probability

> Tn(C)

1, then, by the Continuous Mapping Theorem converges in distribution to a

> Ty (C)

multiple of M%;’ therefore is bounded in probability by Theorem 2.4 in [114].

b) Let X be positive recurrent, then, we can find N, such that

(G -remerl= (557))

WV

1-n, Vn>=N,.
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hence,

Now let X be S-null recurrent. Let Z = (K Mj (1))®, This random variable is
continuous and positive, therefore, we can find positive constants [ and ¢, such
that

P(Ze€lc,cn]) 21— (5.65)

N3

T (C)
u(n)

By the Continuous Mapping Theorem, < ) converges in distribution to

Z, therefore, we can find /V,, € N such that

P ((29) cleral) - ze ey

<

~

, Vn=N,, (5.66)

N3

Combining (5.65) and (5.66) we obtain that

P ((fj((f)))a € [gn,En]> >1-n, Vn=N,. (5.67)

Proof of Lemma 5.6.8. Fix ¢ € (0, 1) small enough so that F’ and |f{| are
bounded from above and away from zero on [F' 1 (F(xq) — 2¢), F 1 (F(x¢) + 2¢)],
see the assumption (B2). Then, the proper inverse functions of F' and f; are well

defined on [F'(xy) — 2¢, F(zo) + 2¢] and

[fo o F~1(F(x0) — 2¢), fo o F~'(F(x0) + 2¢)]

respectively. We denote the inverses on that intervals by F~! and £, * respectively.
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Let

Un(a) = argmax {A,(p) — ap} (5.68)

lp—F(zo)|<e
where a = fo(x¢) and where the supremum is restricted to p € [F},(Yp), F},(Yin)]-

We will show below that
Un(a) = F(@o) + Op(u(n)~"%), (5.69)

as n — 00. Combining (5.36) to Lemma 5.6.5 ensures that ﬁn(a) coincides with

Uy, (a) with probability that tends to one as n — 0, so (5.40) follows from (5.69).

We turn to the proof of (5.69). Fix > 0 arbitrarily and let
Yo = Kou (n) ™ (5.70)

for some K > 1 sufficiently large so that

1

Yn = (5.71)

Then, by part ii) of Lemma 5.6.7, we can find positive constants Cyps Cn and N, such

that
P (Tn(C)Q/Sfynu (n) e [Koc,, Koén]> >1-n/2 V¥n=N,, (5.72)

Let ¢ = Koc, and ¢ = K¢y It follows from (5.23) that for sufficiently small € > 0,

we can find K; > 0 such that

P (Tn(C‘) sup  |F N (p) = FH(p) < Kl) >1—1)/2

lp—F(z0)|<2e
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for all n. Hence for n > N,,

]P)(gn) =1- 7,

where &,, denotes the intersection of the events
T (C) Py ()™ € [c, ] (5.73)

and

T.(C) sup [F;Hp)—F ') < K1 (5.74)

lp—F(z0)[<2e

Combining equations (5.73) and (5.74), we obtain that, in &,,

sup  |Ft(p) = F7H (p)|” < Kaa(n) ™! (5.75)
Ip—F(z0)|<2e

3/2
where Ky = K, (%) is independent of n and K.

By Lemma 5.6.3, we can assume without loss of generality that F'(xy) belongs
to [F,(Yp), F,.(Y.,)], since this occurs with probability that tends to one. Hence,
by (5.68), the event {|U,(a) — F(x¢)| = 7} is contained in the event that there

eXiStSp € [Fn(yb)a Fn(Ym)] with ’p - F(Qfg)’ S 6, |p - F(xO)’ = Tn and
An(p) — ap = Ap(F(0)) — aF(x0). (5.76)

Obviously, the probability is equal to zero if 7, > € so we assume in the sequel

that v, < e.Forall p € [F(zo) — ¢, F(xg) + ] define

A(p) = fp foo F~'(u)du.

F(zo)

Let ¢ > Osuchthat |f}|/F’ > 2contheinterval [['~(F(xq)—2¢), F~1(F (z0)+
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2¢)]. Since A'(F(xg)) = aand A” = fjo F~!/F" o F~!, it then follows from Tay-

lor’s expansion that
Alp) = A(F(20)) < (p — F(o))a — c(p = Flxo))?
forall p € [F(xy) — €, F(x0) + €] and therefore, (5.76) implies that
An(p) = An(F (20)) = c(p = F(x0))* = 0
for all such p’s, where we set A, := A,, — A. Hence, for alln > N,,

P (|Un (a) = F (z0)| = )

<n+P (l _F(sup {AL(p) — Ap(F(x0)) — c¢(p — F(x0))*} = 0and 8n>

$0)|e[7n=5]

|u|e[7n2j 7'Y7L2j+1]

sn+ ZP ( sup  {Au(F(xo) +u) — A(F(20))} = ¢(7,27)? and 5n>

<n+ EIP’ ( sup A (F(20) +u) — Ay (F(x0))| = c(7,27)* and Sn) (5.77)

where the sums are taken over all integers j > 0 such that 7,2’ < ¢. Recall that
we have (5.53) for all & € {0,...,m}. Since A,, is piecewise-linear with knots at

F,(Yo),..., F,.(Yy), by (5.27) and (5.28) we get that for every j in the above sum,

sup | A, (F(wo) + u) = An(F(20))]

[u|<yn 291
F(xzo)+u
< sup J (foo Fy M (y) — foo FH (y)) dy
ul<yn29+1
F(JI())
b M (F () +w) - Mo (F(m)]. (578)
|u|<7n2j+1
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Moreover,

f4]is bounded above on [F~!(F(zg) — 2¢), F~1(F(xq) + 2¢)], so we
obtain that for every j with 7,27 < ¢, the first term on the right-hand side of (5.78)

satisfies

F(xzo)+u
J (foo BN (p) — foo F~'(p)) dp
F(z0)

sup
|u|<yn 27 +1

F(x0)+7n29 1
4 oo E'(p) — foo F-\(p)| dp

F($0)_'Yn2j+1

< K32 sup  |E;Np)— Fl(p),

n
lp—F(z0)|<2e

for some K3 > 0 that does not depend on n. Hence, it follows from the previous

display and (5.75) that

2

F(zo)+u
| e )~ oo P )dn| 18

F(xo)

E sup

ul<yn27+1

< Kiv22%E ( sup  |F, (p) — Fl(p)|2ﬂ(5n)>

lp—F(z0)|<2e

< K2922% Koyu (n) ™.

Hence, taking K; = K2 K, we get that for all j with 7,27 < e < 1.

2

E sup I(&,) | < Kayn2u(n) ™.

ul<yn29+1

F(xzo)+u
f (foo ') — foo F(p)dp

F(zo)

(5.79)
By equations (5.28) and (5.29) in Lemma 5.6.1, the second term on the right-hand

side of (5.78) satisfies,

sup | M, (F (zo) + u) — M, (F (20))| < I + I3, (5.80)

ful <y 2+
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where [} and 1" are given by

ny 1 = _ _
i sup |3 Wi (TedXo < By (Flao) + w)} = Tof X, < B, (F(ao)} ) |,
To(C) julyn2i+t |5
. 2
i Wi (T X, = F~U(F (20) + .
e N |u\<sil;‘+1 ;) t( c{ Xy = F, " (F (x0) uﬂ‘)‘

For I}/, it follows from the triangle inequality that

n

DI (e X, < F7 M (F(0) + u)} — Ie{X, < xo})| .

t=0

2
sup

]ﬂ,j <
1 ~
T(C) juj<yn2itt

Combining (5.75) and the fact that F'~! is Lipschitz in [ F'(zo) — 2¢, F'(z0) + 2] we

can find K5 = max (\/KQ, sup (Ffl)) independent of n such that, on &,,

sup  |F M p) — F 7 (p)| <
[p—F (x0)|<2¢ u(n)

and |F~1(F(zo) +u) — x| = |F1(F(xo) +u) — F 1 (F(xg))| < Ks|u|/2 for all u

with |u| < 2¢. Hence, on &,

I < T.(C Sup ZWt (IeAX: <y} — Ie{Xe < 20},
n(C) ly—w0| <K5yn27 +Ks/4/u(n) |t=0

I < T (C sup ZWt<HC’{Xt = y})‘ :
n(C) ly—20| <Ks57n 29 +Ks/4/u(n) [t=0

It follows from (5.71) that 7,27 > ~,, = 1/4/u (n) for all j > 0, then, on &,

_ 9 S
I < sup Wi (Ie{ Xy <y} — Lo{Xe < wo})],
S 0 R |
. 9 C
i < sup Wt (HC{Xt = y}> :
2 T, (C) ly—zo|<2K57n27 ;)
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By Lemma 5.6.6, we conclude that there exists K > 0 and N{7 such that, for
/
n= Nn

E((I{L’j + 1371)211(8“)) < Keyn2'u (n) ™ (5.81)

Combining (5.78), (5.79), (5.80) and (5.81), we conclude that there exists K7 > 0,

independent of n and K, such that for all n > N,’] and j > 0 where 7,2’ < ¢, one

has

E ( sup  |AL(F(zo) + u) — An(F($0))|2H(€n)> < Ky 2'u (n)fl.

| <yn 271

Combining this with (5.77) and the Markov inequality, we conclude that there exist

Kg > 0and N7'7’ , that do not depend on n nor Ky, such that, for all n > N,;’ ,

B(|Una) — Fleo)l = 1) < n+ Ky 3 22l

The sum on the last line is finite, so there exists K > 0, independent of n and K|,

such that for n bigger than NN,/

_ K
P (|Uy(a) — F(x0)] =) <0+ Ky 3u(n)" =n+ =7 (5.82)
0

The above probability can be made smaller than 27 by setting (5.70) for some suf-
ficiently large K independent of n. This proves (5.69) and completes the proof of
(5.40).

Now, we turn to the proof of (5.41). It follows from (5.35) combined to (5.37) and
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Lemma 5.5.3 that

~

£ (fo(o)) = F~1 o Uplfolwo)) + T(C) ™20 (1).

Hence, by Lemma 5.6.7 we have

~

£ (folwo)) = F~ o Unlfolwo)) + Op (u (n)_1/2) .

Now, it follows from the assumption (B2) that F'~! has a bounded derivative in the
neighborhood of F'(z), to which ﬁn( fo(xo)) belongs with probability that tends

to one. Hence, it follows from Taylor’s expansion that

A~

fuH(folwo)) = F~1 o F(xo) + O (’ﬁn(fo(xo)) - F(Io)’) + Op (u (n)_1/2>

=2+ Op(u(n)™*) + Op <u (n)_1/2> ,

where we used (5.40) for the last equality. This proves (5.41) and completes the

proof of Lemma 5.6.8.

5.7.5 Proof of Theorem 5.4.1.

Inspecting the proof of Lemma 5.6.8, one can see that the convergences in (5.40)
and (5.41) hold in a uniform sense in the neighborhood of ;. More precisely, there
exists 7 > 0, independent on n, such that for all > 0 we can find K; > 0 such

that

sup P (

la—fo(zo)|<y

ﬁn(a) —Fo fo_l(a)‘ > Kiu (n)71/3> <n

and

sup P (

la—fo(wo)|<y

fit@) = fit@)| = Kium)™?) <,
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Let e = Kqu (n)_l/3 where K7 > 0 does not depend on n, and recall (5.56) where
v =ua— fy ' (fo(zo) + €) > 0.1t follows from the assumption (B2) that f, * has
a derivative that is bounded in sup-norm away from zero in a neighborhood of
fo(xo). Hence, it follows from the Taylor expansion that there exists K5 > 0 that
depends only on fy such that v > Kse, provided that n is sufficiently large to

ensure that fy(zo) + ¢ belongs to this neighborhood of fy(x(). Hence,

P(ﬁ<x0)>f0(xo)+g) < IP’(ﬁ;l(fo(:co)Jrg)>f51(f0(:c0)+5)+K25>.

~

) = f7 (@) > KaFau () ).

n

< sup IP’<

la—fo(zo)|<y

provided that n is sufficiently large to ensure that fo(xo) + € belongs to the above

~1/3

neighborhood of fy(x¢), and that v > Cu (n)”/". For fixed 7 > 0 one can choose

K5 > 0 such that the probability on the right-hand side of the previous display is

smaller than or equal to 7 and therefore,

lim P (fu(20) > folwo) + Kau(n) ) <.

n—0o0

Similarly, for all fixed 7 > 0, one can find /5 that does not depend on 7 such that

lim P (o) < folwo) = Kyu (n) %) <.

n—o0

Hence, for all fixed > 0, there exists K > 0 that independent of n such that

lim P (|fn(1‘0) ~ folxo)| > Ku (n)—l/?’) <.

n—00

This completes the proof of Theorem 5.4.1.
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